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Characteristics of pressure relief gas enrichment zones in overlying strata during

high-strength mining based on elliptical-parabolic zone theory
SHUANG Haigqing'?, ZHANG Jiatao', LI Shugang'?, LIN Haifei'?, ZHOU Bin'?,
XU Peiyunl’z, ZHAO Pengxiangl’z, ZHANG Peizhen'
(1. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; 2. Shaanxi Key Laboratory of Higher Edu-

cation Institutions of Western Coal Mine Gas Disaster Prevention and Control, Xi’an 710054, China)

Abstract: With the deepening and high-strength development of coal resource mining, gas issues and safety hazards in the mining process
become increasingly prominent. To grasp the evolution law of overburden rock fractures under high-strength mining disturbance and clari-
fy the characteristics of pressure-relieved gas enrichment areas, a microseismic monitoring test on overburden rocks was conducted in the
high-strength mining face of Huangling mining area. Using the mathematical model of the elliptic paraboloid zone, the development char-
acteristics of overburden rock fractures under high mining speed and large mining height were explored, the range of gas enrichment areas
was defined, and extraction verification was carried out. The results show that overburden fractures formed by high-strength mining face
mining have the characteristics of “three big, two high and one long”, namely large first weighting step distance, large periodic weighting

step distance, large advance support stress, high development of caving zone and fracture zone, and long cantilever beam length. Based on
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the theory of the elliptical throwing belt, a mathematical model with mining height and pushing speed as key parameters was established.
Large mining height and high pushing speed lead to fracture development and morphological changes of the elliptical throwing belt, form-
ing an elliptical throwing belt with the development form of “wide waist and narrow top”. In the early stage of microseismic events, they
are mainly concentrated in the low level. Due to energy accumulation, high-energy microseismic events increase significantly when the
working face is in square, and the occurrence horizon rises significantly, concentrating in the compacted area of the elliptical throwing belt.
Combined with microseismic monitoring and borehole peeping, high-level directional boreholes were designed for gas extraction accord-
ing to the mathematical model of the elliptic paraboloid zone. The peak gas concentrations in the two drilling fields reached 72.8% and
88%, respectively. The drilling fields can be effectively connected with good extraction effect, verifying the accuracy of microseismic
monitoring. During the advancement of the working face, the maximum gas concentrations in the upper corner and return air roadway are
0.61% and 0.34%, respectively, keeping the gas concentration within a safe range and ensuring the safe production of the working face.
The research results provide theoretical guidance for the gas extraction design of high-strength mining faces.

Key words: high-strength mining; microseismic monitoring technology; overburden rock fissures; elliptical throwing belt; high direc-

tional drilling

0 35 B

HRE I3 G R S e ] 2 A R DAL ) O Y T
TESR AL SR IR & BTk . IRSh 2 R R A e B
AP MR BB TR BRI,
ey 5t BE AT R AR 2 )12 0, HB A i
RS AR RS T 2%, JUHAE e | IR R A4 F T,
FUSr e e R BT BRI R AT R
WIRFIE S e R B AL L X B I 22 4t 7 By
R

WAt R sl B R A LA | AR HEFE IR BT
B X JE HEAT HIE FCIrA B B SR . XF ik, S Z
SRR SR AL ST T T R AT
FEo Mg ZERNIAEE S bRt T AR
SEZ G S T “O” LR | ML AR SRR
FEEHE QAL XS 5T 1 2R s B R AL
FRAE, A BIF 5 S0 s BG4k R Y FER G T B ARG
E oG 58 B T SR A L A SR BT A T T, 2 e
SFUT AR T TR R TR TR S BB, R
BT KB 2 M RBUETE A 7= AL
Fab A WS T RS A THAR BT SLRRAE, B T
FRIERR DA " R A& B X
RSO S ORI T A T W R S
HIB BT R G, 20 T AR A3 ZS
AR MG IO SR T
P R AR, WA 1 R RS R R s i X
(e TR IR B AR SR s DX U (I 3 1 o di
bR, ST TR i TR A A A M AL LA . Xk
SRR R R R T RRIE R TR
W SR PUYTIE 1 A4 S AL, ST T PUSTE E A4 4
SE o S SO A e TR A R
BRSE. T e R JEE TSR e BN T R 3 14 9 B H

. Enr s RG00R T ERIEITR FE AR
BRI R, PR T SRR AT R Y AL
FRARAY,

SR, TSRS 2R, R A IR
LI R AR FRIE IR e 4R . JEF UL, F 225
HRAE A ARG 77 A | P R IR AR B g BRI
— J B, ) FH R W R e o AR R B Y
BLARB RGBT o0 B A A R B o R Ty 2%,
[ AR AL AR AT R MR W AR 4 B R
BILIAHA 125 2 16 o0 L SR 2R b R 36 sh LA
FERERLAES /N B ) R R W SR B L
WESOEES, AL, T A S RIS 5 R
RS 2R o %A AR S T ORI R 4
AT WG st akE, R B TR E
25 [ 25 R A B AL RRAE, 20T T 4 TAE R
AR R R R g AR
FoF B R i A A R X AR 24 Bty & B R AR AT T
WE5E . SRR D S R R L 4, R
TR R IR AL

DL 2 A X R s 2L B A il T Ak R R
WA R R B EAT T K o dr, RS T R4
R o7 RSO, AELGT T e i B SR SR T, WA 1 30
AT A BE X R B LI R BT SR D, B Sk
TR XHA 213 TAEMIFREAR S, il i i
IR S S 50N 3 G R B AL RRE B 5T, SR I
P B EE ST LIRS | HEUN SR B AR,
A T i 5 B TSR A FUINT 6 4 X W I S A,
Itiz FH B0 W0 Bl FL i I B, R s 5 B SR
Bl T 5 R R A S R R B URRAE HEA T 40 BT
Shy ¥R R R TSR AR T SR B B 4 X 00 B B b
R S E i R HE RS BEA

253



2025 4F5 8 11

#HEHMFHAK

53 %

1 SREFRBEWIMHERREGE

1.1 SREFRIIEEESWIRSE

1o 9 B R AR R TAR G 2R 7, AR AR AR 8
FE—UCR R, TAEmRK R, A
DA R TAE B g, XA R 7 EE R S8 5 4
PR AT TSGR BT RATAE 35 X )Y

e R 5 SR A T 7 SR FH 2R TV 1) SR R D7
KSR RA) TR RS, RIEFEAR T 25 TAEH
R 28 B s, B8 2A 24T BT UK TR . 2 2R 1W
T 0 45 ) e At il AR e T R | R
KHE B R SR E R 4, s/ N TAE
GG RAG O T IR E B

1o R R TAE TR 46 B B, POHAPR s e, T
WA A A8 T W SR B W S B A1, P oA 4 s S R
A RO PO, R SR (R R 7 1 R ) G
I, AT SORE IR, k37 8 FlA 2N RE 58 43 )%,
T R RS TR R Bl R B2 /DN, 8 J2 DR AR 2 4K 5
Bl (R Re T AR T A AN BT E, SRS XY R, Hk
R 23 5 0 TVUNR 199 J5) 301 ., S5 ey T Al A DR B
(RN, T IR T AR )8 R 44, e J) R e 2P
PR, B e b 23k I A B s B R, K 25 i
A NIEIR SR, S8 S 20 FEBER

HEEIFR TR (9 §

] 1~5 km

o R B SR A T P O 2 A T T SR v R R TR
RN A KW s BN R, e B LA
JEYEVE IR 5 BE Y, s 5 O B S I 2o A o ]
BRI RSE . KRB ARF T I AL “MAR” 254,
FERESREHEBAY, RECRIGHEY R, KRE
FERER | R B BRI AL A BE AR N

SRR (A TR R b e 7 25 % SN R ) R R
TE SR TR R, 2 | T RIS K R BRI
Fo/Ne SRR OLT, 78 25 vty R BT 1Y) o i
FXHE 2 IR E (4 LB 5K . AR B N
755 MU IRYEVE G, T HL T A 2 0
HAG R IR 5 A7 bk, & S80S RS B
PRI P S 1o R 5 B Sk, L 3 A 28 T RN I RRAIE 6
PN ARSI

1o 5 B TR S5 A T B S5 A5 G T RAS [ 1 R A
FAR T2 BRM TAER R, B p bl B | 4
TR SR RHE, TER G TE MU A “ =i SR RRAE
BRI R EA SR — K7 e (E D), 1
VIR AR | TR AR K AT SR 1K
P MU R A R BT R, R
FRSC IR AR S S BRI R R R AN 3.5 m, A
FSE T AR T PR o B B 2 s TR 4R (33 m/d),
ATHEAN A 1 58 35 TSR 5 S5 R

TR T2 B TR R
TAETE R |:> TR A W Bt ok
A T ek IR 5 B e R
JE R s 25 B K

HHim g

i
o RS

e AW TARIR 3.0 m, DIHEREEEE 5.4 m/d, 3 RSEEEIFRILHE .

B BT R TEE A E KB A R RAE

Fig.1 Layout of high-strength mining face and its failure development characteristics
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Fig.20 Gas concentration in some boreholes
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