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Research on the critical instability mechanism of water and sand inrush based on

the steady-state mining-induced fracture degradation model
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Abstract: The deterioration of the thin bedrock mining crack channel under the loose layer induces sudden water and sand inrush disasters,
which seriously threatens the safe production of the mine. To investigate the spatiotemporal evolution characteristics of mining-induced
fracture channels in overlying strata and the two-phase (water-sand) initiation-transport mechanisms within them, four types of transient
models for fracture degradation were constructed based on numerical simulations of mining-induced thin bedrock beneath unconsolidated
layers. By analyzing parameters including instantaneous fracture morphology (aperture and geometry), sand particle size, and hydraulic
pressure conditions, key indicators such as sand inrush volume, mass flow rate, sand arch formation time, rise-span ratio, arch foot line
angle, and contact stress distribution were systematically evaluated. This approach enabled the characterization of water-sand migration
dynamics and arch-induced stagnation patterns within mining fractures, thereby revealing the alternating spatiotemporal catastrophe mech-
anism of water-sand transport-stagnation cycles during overburden fracture propagation. The spatiotemporal evolution of water-sand mi-

gration in mining-induced fractures of overlying strata is characterized by alternating phases of sand arch formation/stagnation and arch in-
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stability/flow inrush. The relative relationship between fracture aperture and sand particle size (termed “aperture-particle ratio”) is identi-

fied as the critical determinant of sand arch formation or instability. Both sand particle size and hydraulic pressure are found to exert dual-

directional promotion effects on these processes. During the arch formation/stagnation phase, increased particle size and hydraulic pres-

sure enhance arch formation probability and stability, thereby reducing disaster risks. Negative correlations are observed between particle

size and arch particle count and between hydraulic pressure and arch formation time, while positive correlations exist with arch stability.

Conversely, during the arch instability/flow inrush phase, sand inrush mass flow rate shows linear positive correlations with particle size

and hydraulic pressure. Increased particle size and hydraulic pressure inversely amplify disaster risks. These findings reveal the alternating

catastrophe mechanism of water-sand transport-stagnation cycles in mining fractures, providing theoretical insights for disaster prevention

and control.

Key words: water and sand inrush; crack deterioration; transient model; fluid-solid coupling; catastrophic mechanism
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Fig.2 Dynamic evolution of mining overburden breakup and water-sand transport process
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Fig.3 Transient modeling of fracture degradation in overburden mining
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