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Abstract: Mine pressure appears extremely strong during mining in hard and thick roof working faces. The prevention and control of this
type of roof disaster has always been a problem that has plagued the safe and efficient production of working faces in my country. Based
on the analysis of roof disaster cases, the types and disaster-causing characteristics of hard thick and difficult roof in my country are sorted
out, and research on the occurrence mechanism and influencing factors of strong dynamic load mine pressure in hard thick and difficult
roof working faces is carried out. Targeted prevention and control measures have been proposed in three stages: pre-design, pre-mining
weakening and mid-mining monitoring and early warning, and have been applied in practice. The research shows that the hard thick and
difficult to collapse roofs have the characteristics of high strength, large thickness and strong integrity, and can be divided into three cat-
egories: thick roof with high compressive strength, thick roofs with good integrity, and roofs directly covering basic roofs. Large-area in-
stantaneous collapse of hard thick and difficult to collapse roofs is often accompanied by strong pressure from the working face, hur-
ricanes and other phenomena, which may easily cause equipment damage, gas overlimits or explosion, endangering personal safety. There
are two types of roof failure types that induce strong mine pressure in the working face. One is that the roof bends and sinks under the state
of long overhanging roof, resulting in back-frame fractures; the other is that the long overhanging roof fractures in front of the coal wall,
causing rapid rotation. The mine pressure in the stope with hard thick and difficult to collapse roof conforms to the movement form of the I-
II-III-IV zoning support model. The roof has a large thickness, high tensile strength, and long cyclic collapse steps. When breaking, it is
easier to cause the subsidence at the coal wall to increase, and significantly increase the resistance of the support, which is the reason why
the mine pressure appears strong in the working face with hard thick and difficult to collapse roof. Based on the above analysis, a roof dis-
aster prevention and control method that combines roof weakening and mine pressure monitoring is proposed. Under the conditions of pre-
verification of the occurrence characteristics of overlying rocks and reasonable support selection, microseismic monitoring is used to de-
termine the fracturing target layer, and the working face support-pressure relief effect is evaluated based on mine pressure monitoring. This
method has been successfully applied in the 10 m super-high mining face of Caojiatan Coal Mine. During mining, the first weighting step
distance of the working face has been reduced from more than 100 m to 49.35 m, and the high-energy microseismic events above the
fourth power accounts for only 1.2%, achieving good prevention and control effects.

Key words: hard and thick roof; roof disaster prevention and control technology; occurrence mechanism of strong mine pressure; zoned

support model; regional fracturing
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Fig.28 Location map of microseismic event of a mine in Xinjie mining area, Ordos
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