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Spatio-temporal evolution of temperature fields in tar-rich coal and overlying strata

during pyrolysis
DUAN Jiyuan1”2"3, GENG Jishi'*®, WANG Shuangmingl’2’3, SUN Qiangl’2’3, ZHANG He'*?, SHI Qingmin1”2’3,
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Science and Technology, Xi’an 710054, China; 3. Institute of Geological Research on Coal Green Mining, Xi’an University of Science and Technology, Xi’an
710054, China)

Abstract: In-situ pyrolysis of tar-rich coal is an innovative coal utilization method that heats coal seams by isolating air to extract oil and
gas resources. This approach plays a crucial role in improving domestic oil and gas supply and ensuring national energy security. To in-
vestigate the temperature distribution pattern during the in-situ pyrolysis of tar-rich coal, a self-designed pyrolysis experimental apparatus
was used to simulate the temperature field evolution in the underground pyrolysis process of tar-rich coal. Scanning Electron Microscopy
(SEM) and 3D Microscopy (3DM) were employed to analyze the temperature response and thermal relaxation characteristics of the tar-rich
coal seam and its overburden, revealing the heat transfer mechanisms within the strata during the pyrolysis process. The results show: Dur-

ing the pyrolysis of tar-rich coal, the temperature at different locations increases non-linearly with time. The temperature variation in the
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coal seam and overburden follows a similar pattern, with diffusion in the vertical direction occurring faster than in the horizontal direction.

Both the coal seam and overburden exhibit significant thermal relaxation. The temperature in the central area is higher and increases rap-

idly, while the temperature at the periphery is lower with a slower rate of increase. The extent of thermal relaxation is related to the aniso-

tropy of the coal-rock body and spatial position. The further the distance from the central axis of the pyrolysis zone, the longer the second-

ary heating time of the strata.During the pyrolysis process, the development of pores and fractures in the pyrolyzed semi-coke, along with

an increase in fracture network density, reduces the thermal conductivity of the tar-rich coal, forming sealed spaces and causing the reten-

tion of pyrolysis tar within the coal matrix. At the same time, due to the high density and viscosity of the pyrolysis tar, it condenses in the

lower sections of the coal seam and low-temperature areas, causing partial cementation of the semi-coke into lumps and forming insulat-

ing layers. This reduces heat transfer efficiency, impacts the depth and rate of the pyrolysis reaction, and leads to a conical temperature dis-

tribution pattern in the coal and overburden. The research findings provide significant theoretical support for the engineering practice of in-

situ pyrolysis of tar-rich coal.

Key words: tar-rich coal; in-situ pyrolysis; temperature field; real-time monitoring; thermal relaxation

0 51 B

Bifi 5 T [ BB VR 2 AT IR 4 =, B TR
L = FE AR A E 1T, RETR A Al H R e U
T A IR BRI “Beah, D AR R By
fiE, A% MURE TR 9 I & A AR 15 23 B0 H
SV EE AR R RLREYR, EZ A0 TR . N5l
FramaE T BRI AE I PR 2 500 12 t, EEE
Y 75 AL ™™ M TFAL SR, #F SR A
i T B HRE T v 4 T AR UR A SR B, [R] PRy
A DR B AE B A7, S B e DR UR A 2 9L T T R
FAUOT T R A T DR P A % e Tk R R
4 R PESk AR IR BRI T U SE AT AT R R B AR,
HA TR E" HAT, & AR A A
Qb TR BY B, eI T T IR R
Z 9 ARG« FLBRZE A 8 AL AN B B AFE S
Tyl AN IR S B LT
I8 T VR IR R T Z R B A T BAG PR TR
A, 5K, IR | JR)Z 508 AR W AR R
R . IR R RS R IR 56
PE M ISR R T AR T IR R AR M S
& EUE RE AR 5 45 A AN e b D AR O . A
02T M A T G B AR A 20 T AR B T 2R R 4R
o TIRE SR Z e R, EXUHEDT Bk
o 25 B 3 3 F 45 R 4 5k (Thermogravimetry,
TG) HE5 R A, B w A R 5o 3 4>
BrBE, TAH 300 ~ 500 °C B EL, Pl Rk, BEFL B i
HKRE, WiLRE R K . it 2B A nT LIAH B E)
UE & AR AR, (0 5256 % T R B 1 AR T B4
fAfeseE. B, 2800 HRRETNAIET
(50 mm>x 100 mm) & i LR (0 B AT o P20 %t
A2 T & I R A AR R R SR AT AN A
R ) AR o R b2 G 37 S I AR A R A R

HET I, A T A A TR ) AR, A
PR IRE A B, ST RE S e e g i A
AL IE S5 8 A ML, DAY O e L Do A A B {3 3t
WS

1 iR I8

1.1 RN RRE

Yy AR I B 3 AT R M R, 49k
T AR G A B W R G BT
KEBIRRERG (B 1) & R B ianE 2
JiRs o Fer, TR b2 B R G v A R N R
PR TR AN s, AV 2 MR ST (A< ey i
0300 mmx275 mm, BEJE 10 mm, F N 54 7E 32 B4
FEIEAR ., PrRERNTI A 3 #045. HERA R IR W R 46
PR E NG A, i< B R R
SE A A T AL R R R W | AR R
BERE

TG AR AR B EE U], 5 B AR DL L 20, ASE40L
SRV, KR AR RS LB TRCH] (% 1),
BA R, K T A R AR 10%,
i LA R AR B S SR L A
FHIT (3 2)o MR HRAGIE (B2I= %R 9%).

B R (8] 1), RRHLAE 122, RIS R
BOPIFHE 24 h, ZJR AT T —HZ T . B2
BRI, B B A £ A TR RS 0 X
WA, fEE A 15, 85, 170 mm ib 4% 5 70
KOFAR a3 EIE A, B2 1240 [ PR
1—4 S (e BRI RS 27 T HE A (1 3).

FEABE TR L 70 R W R 4 A i e e R
A IR CE N 600 °C, I HGE R E N
2 °C/min, AR T, SCAFE SRR IR 735 1k,
SRALEIRRN 10 5. FF & MBI 1, 2R AR
SR HG, (A A e .

61



2025 4F55 10

#EHFHK

553 %

(a) BB Z I R 5

A 1

(b) PEH IR S 3R 4t

Pl S
(c) P T BB R R G

Fig.1 Flow of experiment

e R R R

BHILEE
4

(T --——':‘.' =y | o

AR E

H2 #ARE

Fig.2 Diagram of modelling device

®1 BEERHREL

Table 1 Material ratios for each rock layerm]

e VT KUl TR il

e 5YE0% 5380% 5Y0%
A 90 3 7
WAz 90 5 5

2 REERSHN

2.1 BREERE-BTE R FE

L K T BE 55 R A AR A A S B AR PR Y
FEAE (] 4), AS R 2 00 e A o 1o+ 398 ) 4 2 5
T8 R R AR AT 2P R A R AR A AR

TERfR R, By A 2 52 A (R R A
5 85 mm) (MR ARALRRIEAR L, 2805 T MG TR
(D). 12 THE (1) 2 BB (B 4a FTEl 4b), HXTTF
[ — B B, LT iR 5 % B g 2 5, U LX) A

62

FHRBY B (1) 20 mm &b, #i b5 J2 7 3 7 il o 2k
8.7 °C/h, WE{H IR EE Jy 87.1 °C, HEJ2 b BB 34 Fh i3k
FH 12,4 C/h, AR R 149.2 °C. TEZETHRBY
B (1), Wb 2 S A2 e B B o S s
A7 BB R, R IR B RE R A S . nX)
THEZE FEB, 20, 70 F1 120 mm A HL {5 A0 i YL 5455
AR ] 43002 5. 9 A1 14 he {EASF R, M
2 AR M2k b B BE (L) AT 7E TH, TR D A 2
Bt (I MFER B . 52 ARG, B2 (15
BIAAE 10 mm) (938 i 2 AR AE D) 3R 30 R A
BB (). TR EE (D), FERBY B D) (F 4c) . H:
W TR B B (1) 9 P3R5 54.5 C/h, WE(H
IRFER 613.8 °C.

BEAR, & M2 BB A B KT R B 2 5 AR
2R B IR R . a0 47 h B, BE A B R
FRAHZE 20 mm B HNE 120 mm, B2 S FB AL Y U6 BE
i 621 C F#{RZ 310 C.



BAloeas IR BB il g 23 AR

2025 4F55 10 A

£2 BHHHSREERSARYS

Table 2 Thermal conductivity of each rock formation

[28-29]
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L/ W-m'-K" W-m'-K" W-m'-K" W-m'-K" Sk
25 — — 1.10 1.08
50 1.30 1.20 1.06 1.04
100 1.23 111 1.09 1.05
200 1.20 111 1.03 1.01

[28]
300 1.10 0.97 1.07 1.00
400 0.98 0.99 0.97 0.99
500 0.96 1.01 0.94 0.95
600 0.95 0.93 0.95 0.93
25 — — 1.10 1.08
50 — — 1.06 1.04
100 1.15 122 1.09 1.05
200 111 1.19 1.03 1.01

[29]
300 1.09 1.09 1.07 1.00
400 0.97 0.99 0.97 0.99
500 1.00 0.95 0.94 0.95
600 0.91 0.94 0.95 0.93
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