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摘　要：富油煤原位热解是通过隔绝空气加热煤层以获取油气资源的创新煤炭利用方式，对有效提升

国内油气供给能力，保障国家能源安全具有重要意义。为了探究富油煤原位热解过程中地层温度分

布规律，采用自行设计的富油煤热解试验装置，模拟了富油煤地下热解过程中的温度场演化趋势，

结合扫描电镜 (Scanning Electron Microscopy，SEM) 和三维显微镜 (3D Microscopy，3DM) 分析了富

油煤层及其覆岩的温度响应和热弛豫特性，揭示了富油煤热解过程中的地层传热机制。结果表明：

富油煤热解过程中，不同位置温度随时间呈非线性增加，煤层与覆岩温度变化规律相似，在竖直方

向的扩散快于在水平方向的扩散；煤层及覆岩均表现出明显的热弛豫，中心区域温度高且增速快，

四周温度较低且增速慢，热弛豫范围与煤岩体的各向异性及空间位置有关，距离热解区中轴线横向

距离越大，地层二次升温时间越长；富油煤热解过程中，热解半焦内部孔裂隙发育、裂隙网络密度

增大，富油煤导热性能降低，内部形成封闭空间，热解焦油滞留于煤基质中。同时，热解焦油因其

密度大、黏度高，在煤层底部及低温区域凝结，致使半焦局部胶结成块，形成隔热层，降低热量的

传递效率，影响热解反应的深度和速率，导致煤及覆岩温度整体呈“圆锥形”分布特征。研究成果可

为富油煤原位热解工程实践提供理论支撑。

关键词：富油煤；原位热解；温度场；实时监测；热弛豫
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Spatio-temporal evolution of temperature fields in tar-rich coal and overlying strata
during pyrolysis

DUAN Jiyuan1,2,3, GENG Jishi1,2,3, WANG Shuangming1,2,3, SUN Qiang1,2,3, ZHANG He1,2,3, SHI Qingmin1,2,3,
LI Yuhang1,2,3, YANG Boxing1,2,3, YU Kexin1,2,3

（1. Key Laboratory of Coal Green Exploitation and Geological Safeguard, Xi’an 710054, China; 2. School of Geology and Environment, Xi’an University of

Science and Technology, Xi’an 710054, China; 3. Institute of Geological Research on Coal Green Mining, Xi’an University of Science and Technology, Xi’an

710054, China）

Abstract: In-situ pyrolysis of tar-rich coal is an innovative coal utilization method that heats coal seams by isolating air to extract oil and
gas resources. This approach plays a crucial role in improving domestic oil and gas supply and ensuring national energy security. To in-
vestigate the temperature distribution pattern during the in-situ pyrolysis of tar-rich coal, a self-designed pyrolysis experimental apparatus
was used to simulate the temperature field evolution in the underground pyrolysis process of tar-rich coal. Scanning Electron Microscopy
(SEM) and 3D Microscopy (3DM) were employed to analyze the temperature response and thermal relaxation characteristics of the tar-rich
coal seam and its overburden, revealing the heat transfer mechanisms within the strata during the pyrolysis process. The results show: Dur-
ing the pyrolysis of tar-rich coal, the temperature at different locations increases non-linearly with time. The temperature variation in the
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coal seam and overburden follows a similar pattern, with diffusion in the vertical direction occurring faster than in the horizontal direction.
Both the coal seam and overburden exhibit significant thermal relaxation. The temperature in the central area is higher and increases rap-
idly, while the temperature at the periphery is lower with a slower rate of increase. The extent of thermal relaxation is related to the aniso-
tropy of the coal-rock body and spatial position. The further the distance from the central axis of the pyrolysis zone, the longer the second-
ary heating time of the strata.During the pyrolysis process, the development of pores and fractures in the pyrolyzed semi-coke, along with
an increase in fracture network density, reduces the thermal conductivity of the tar-rich coal, forming sealed spaces and causing the reten-
tion of pyrolysis tar within the coal matrix. At the same time, due to the high density and viscosity of the pyrolysis tar, it condenses in the
lower sections of the coal seam and low-temperature areas, causing partial cementation of the semi-coke into lumps and forming insulat-
ing layers. This reduces heat transfer efficiency, impacts the depth and rate of the pyrolysis reaction, and leads to a conical temperature dis-
tribution pattern in the coal and overburden. The research findings provide significant theoretical support for the engineering practice of in-
situ pyrolysis of tar-rich coal.
Key words: tar-rich coal； in-situ pyrolysis； temperature field； real-time monitoring； thermal relaxation

  

0　引　　言

随着我国能源消费水平的不断提高，国内油气

供应严重依赖对外进口，能源安全问题日益突出[1-3]。

我国的资源禀赋表现为“缺油，少气，相对富煤”的特

征，非常规能源的开发利用变得十分重要[4-6]。富油

煤作为重要的非常规能源，主要分布于陕西、内蒙古、

新疆等地[7]。煤中潜在油资源量约 500亿 t，气资源

量约 75万亿 m3[8-9]。相较于传统模式，地下原位热

解可直接将富油煤中的油气资源分类提取，同时将

半焦保留在原位，实现煤炭资源的多级、清洁利

用[10-12]。富油煤的地下原位热解为缓解我国能源安

全、促进绿色能源转型提供了切实可行的技术路径，

具有重大战略价值[13-15]。目前，富油煤原位热解仍

处于起步阶段，相关研究主要集中于热解过程中的

多场条件的耦合、孔隙结构演化和油气运移特征等

方面[16-18]。杨甫等[19]、董光顺等[20] 通过数值模拟研

究了原位热解过程中多场耦合条件下的传热传质规

律，结果表明，温度、煤层渗透率等是影响热解效率

的重要因素。师庆民等[21] 利用低场核磁共振试验和

热重分析试验揭示了热解焦油的迁移约束性与煤中

含氧官能团和脂肪结构不断减少密切相关。郭伟

等[22] 构建了陕北富油煤的分子热解动力学模型，探

讨了温度与焦油产率之间的关系。王双明等[23]、耿

济世等 [24] 通过非等温热失重 (Thermogravimetry，
TG)并结合体视显微镜，将富油煤热解过程分为 3个

阶段，认为 300～500 ℃ 阶段，产油量最大，煤孔隙最

为发育，活化能最大。通过多手段结合可以相互印

证富油煤热解特征，但实验室所采取的技术手段仍

有待完善。目前，多数试验研究聚焦于小尺度下

(50 mm×100 mm)富油煤试样的热解行为 [25-26]。对

原位条件下富油煤及覆岩的热解特征研究仍显不足，

特别是热解过程中地层温度场实时变化亟待厘清。

基于此，笔者通过构建富油煤热解物理模型，模

拟富油煤的热解过程，剖析煤及覆岩在热解过程中

的温度场变化规律，以期为富油煤原位热解提供理

论支撑。 

1　试　　验
 

1.1　模拟试验流程

物理模拟模型主要由 3个子系统构成，分别为

富油煤地层模拟系统、供热及温度监测系统、热解油

气及数据采集系统 (图 1)。各系统具体构成如图 2
所示。其中，富油煤地层模拟系统中热解反应装置

由模型钢铸造，热解反应装置外观尺寸 (内径×高) 为
ø300 mm×275 mm，壁厚 10 mm，其内部构造主要包

括底板、炉壁和顶盖 3部分。供热及温度监测系统

由控温装置 (加热台)组成。热解油气及数据采集系

统的组成单元包括温度监测装置、油气收集装置、冷

凝装置。

试验根据相似准则，强度相似比为 20。模拟地

层选用沙子、水泥、石膏粉和水按比例进行配制 (表 1)，
各岩层材料中，水的质量占岩层总质量的 10%。其

中，模拟地层材料的导热系数与实际粉砂岩、细砂岩

相近 (表 2)。煤层采用长焰煤 (焦油产率为 9%)。
模型填充时 (图 1)，每填充 1层地层，用水平尺

整平并静置 24 h，之后进行下一地层的铺设。煤层

铺设时，将陶瓷加热台布置于煤层底部中心区域。

此后，在高出加热台 15、85、170 mm处各呈十字型

水平布置 3层热电偶，每层 12个。同一半径范围

1—4号热电偶按照顺时针方向排布 (图 3)。
在模型填充及温度监测系统布设完毕后，将加

热台预设温度设置为 600 ℃，加热速率设置为

2 ℃/min。热解过程中，实时记录地层温度场变化，

采样间隔为 10 s。待富油煤热解油气产出，经冷却系

统冷却后，使用锥形瓶和集气袋收集。 
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2　试验结果与分析
 

2.1　煤及覆岩温度−时间响应特征

煤及覆岩温度与时间的变化均呈现出非线性的

特征 (图 4)，不同岩层对温度的响应出现明显差异。

通过温度曲线的变化可进一步反映各层岩体受热的

快慢。

在热解过程中，粉砂岩层与煤层上部 (距离加热

台 85 mm)的温度变化特征相似，均经历了极速升温

(I)、缓慢升温 (II) 2个阶段 (图 4a和图 4b)。但对于

同一阶段，其升温速率出现明显差异，尤其对于极速

升温阶段 (I) 20 mm处，粉砂岩层平均升温速率为

8.7 ℃/h，峰值温度为 87.1 ℃，煤层上部平均升温速

率为 12.4 ℃/h，峰值温度为 149.2 ℃。在缓慢升温阶

段 (II)，粉砂岩层与煤层上部则表现出随着距离中心

位置逐渐增大，其二次升温时间延长的现象。如对

于煤层上部，20、70和 120 mm热电偶处的温度保持

不变的时间分别是 5、9和 14 h。值得注意的是，煤

层上部温度曲线中阶段 (III)仍在升温，而粉砂岩层

阶段 (III)为降温阶段。与之不同的是，煤层底部 (距
离加热台 10 mm)的温度曲线特征则表现为极速升

温阶段 (I)、恒温阶段 (II)、降温阶段 (III)（图 4c）。其

极速升温阶段 (I)的平均升温速率为 54.5 ℃/h，峰值

温度为 613.8 ℃。

此外，富油煤层及覆岩的水平温度随着与模型

中轴线距离的增加逐渐降低。如 47 h时，随着距离

中轴线 20 mm增加至 120 mm，煤层底部处的温度

由 621 ℃ 降低至 310 ℃。 

 

材料配比

地层填充

(a) 富油煤地层模拟系统

油气收集

(c) 热解油气及数据采集系统

数据采集

布设热电偶

(b) 供热及温度监测系统

预埋加热板

纵向
剖面线

水平
剖面线

图 1    试验流程

Fig.1    Flow of experiment
 

温度监测装置 控温装置

冷却装置

油气收集装置

热
解
反
应
装
置

图 2    模型装置

Fig.2    Diagram of modelling device
 

表 1    各岩层材料配比[27]

Table 1    Material ratios for each rock layer[27]

岩层
沙子质量
分数/%

水泥质量
分数/%

石膏粉质量
分数/%

细砂岩层 90 3 7

粉砂岩层 90 5 5
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2.2　水平剖面温度分布特征

煤及覆岩的水平温度分布特征随着加热时间的

延长，表现为中心区域温度最高且增速快，四周温度

较低且增速较慢的特点 (图 5)。0～12 h，粉砂岩层、

煤层上部及煤层底部中心区域的峰值温度依次为

87.1、161.6、613.8 ℃，升温速率分别为 5.4、11.7、
49.2 ℃/h。相比之下，该时段各层边缘区域峰值温度

依次为 79.1、90.5、276.8 ℃，升温速率较低，依次为

4.9、5.9、21.4 ℃/h。
当加热时间超过 12 h，粉砂岩层与煤层上部温

度上升缓慢，但中心区域与边缘区域的升温速率差

异现象依然存在。如 12～47 h，煤层上部中心及边

缘区域峰值温度依次为 315.9、152.1 ℃，升温速率依

次为 4.4、1.8 ℃/h。煤层底部温度基本维持不变。

 

表 2    模拟材料与实际岩石导热系数[28-29]

Table 2    Thermal conductivity of each rock formation[28-29]

温度/℃
细砂岩导热系数/
(W·m−1·K−1)

粉砂岩导热系数/
(W·m−1·K−1)

模拟细砂岩导热系数/
(W·m−1·K−1)

模拟粉砂岩导热系数/
(W·m−1·K−1)

文献

25 — — 1.10 1.08

[28]

50 1.30 1.20 1.06 1.04

100 1.23 1.11 1.09 1.05

200 1.20 1.11 1.03 1.01

300 1.10 0.97 1.07 1.00

400 0.98 0.99 0.97 0.99

500 0.96 1.01 0.94 0.95

600 0.95 0.93 0.95 0.93

25 — — 1.10 1.08

[29]

50 — — 1.06 1.04

100 1.15 1.22 1.09 1.05

200 1.11 1.19 1.03 1.01

300 1.09 1.09 1.07 1.00

400 0.97 0.99 0.97 0.99

500 1.00 0.95 0.94 0.95

600 0.91 0.94 0.95 0.93

 

细砂岩层 60 mm

加热台 15 mm

粉砂岩层 100 mm

煤层 110 mm

距离中心 20 mm 距离中心 70 mm

距离中心 120 mm

温度纵向
监测位置

地层厚度

热电偶
170 mm

热电偶
85 mm

热电偶
15 mm

�
�
�
�
�
�

�
�

�
�

热电偶水平
监测点位

加热台

1 号

2 号
3 号

4 号

X/mm

Y
/m

m

−50−100−150 50 100 1500

150

100

50

−100

−50

−150

0

图 3    地层分布及热电偶布设

Fig.3    Stratigraphic distribution and thermocouple placement
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47 h后停止加热，地层中心高温区域逐渐缩小，外缘

温度开始下降。 

2.3　纵向剖面温度分布特征

模拟地层纵向剖面温度场随时间变化如图 6所

示，总体呈现出显著的“圆锥形”升温特征。加热开

始后至 12 h，底部中心区域温度升高明显，具体表现

为底部中心温度由 20 ℃ 升高至 570 ℃，升温速率

为 45.8 ℃/h。温度场云显示该区域颜色由深蓝色转

变为深红色。同时，两侧边缘温度升至 170 ℃，升温

速率为 12.5 ℃/h。温度场云显示该区域颜色由深蓝

色转变为浅蓝色。这说明随着煤层底部被加热，温

度开始向四周扩散，至 12 h时，覆岩温度达到 90 ℃。

当加热至 47 h时，煤层底部中心区域温度维持在

570 ℃ 左右，但在高于 570 ℃ 的区域面积呈现出先

降低后增大的趋势。47 h后，加热停止，地层开始

降温。
 

3　富油煤及覆岩温度场时空演化
 

3.1　富油煤热解的非稳态传热模型

为探究富油煤热解过程中热传递特征，将煤体

简化为若干个立方体，假设条件如下：

1)  温度函数 T(x, y, z, t)由时间 t 和空间位置 (x,

y, z)共同决定。

2) 导热系数 λ=λ(T)， λ 为岩体所受温度 T 的

函数。

3)  地层三维传热过程中，热量传递遵循傅里叶

定律[30-31]，传热模型[32] 如式 (1)所示：
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图 4    煤层及覆岩各位置横向温度变化

Fig.4    Lateral temperature variations at various locations in overburden and coal seam
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ρc
∂T
∂t
= ∇[λ(T )∇T ]+Q （1） 式 中 ： ρ 为 地 层 密 度 ， kg/m3； c 为 地 层 比 热 容 ，

J/(kg·K)；T 为温度，℃；t 为时间，s；λ 为导热系数，
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图 5    煤及覆岩水平温度分布云

Fig.5    Cloud of stratigraphic horizontal temperature variations over whole time period
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∇T表示传热过程中热通量的散度，W/(m·K)； 为温

度场梯度，℃/m；Q 为热通量，W/m2。

结合温度场变化实时云，将煤及覆岩传热模型

进一步简化。当温度场在 z 方向上保持均匀，即考

虑 T=T(x, y, t)，认为 T 为平面位置 (x, y)和时间 t 的
函数，如式 (2)所示：

ρc
∂T
∂t
=
∂

∂x

[
λ (T )

∂T
∂x

]
+
∂

∂y

[
λ (T )

∂T
∂y

]
+Q （2）

通过控制体积法，将二维平面划分为若干微小

单元，选取任意一个微单元，微单元坐标记为 (i, j)，
面积为 ΔA=ΔxΔy。对 Δt 时间内微单元应用能量守

恒定理[33]，则式 (2)可改写为式 (3)，即：

ρcΔA
ΔTi, j

Δt
= Qs+Qi, jΔAΔt （3）

式中：ΔTi,j 为控制体积 Δt 时间内温度的变化，℃，

ΔTi, j = ΔT t+Δt
i, j −ΔT t

i, j

Qi, j

Qi, jΔAΔt

。Qs 为在边界 s 上，由热传导引

起的净热通量，W/m2。 为单位时间及面积内产生

的热量，W/m2； 为 Δt 时间内控制体积内部由

热源产生的总热量，J。
根据傅里叶定律，热通量 [34] 的计算如式 (4)

所示：

q = −λ(T )
∂T
∂n

（4）

∂T ∂n式中：n 为法向坐标； / 为法向温度梯度，℃/m。

净热通量 Qs 为各个边界上热通量的代数和，边

界 s 由上边界、下边界、左边界及右边界组成，如式

(5) 所示:

Qs = q(i−1)/2, j−q(i+1)/2, j+qi,( j−1)/2−qi,( j+1)/2 （5）

将式 (5)代入式 (3)，得到控制体积 (i, j)在 t+Δt
时间内温度传导模型，如式 (6)和式 (7)所示:

ρcΔA
ΔT t+Δt

i, j −ΔT t
i, j

Δt
=

[
−λ(i+1)/2, j

Ti+1, j−Ti, j

Δx2
+λ(i−1)/2, j

Ti, j−Ti−1, j

Δx2

]
Δy+[

−λi,( j+1)/2
Ti, j+1−Ti, j

Δy2
+λi,( j−1)/2

Ti, j−Ti, j−1

Δy2

]
Δx+Qi, j （6）

化简得：

ΔT t+Δt
i, j = ΔT t

i, j+
Δt
ρc
×{

1
Δx2

[
λ(i+1)/2, j(Ti, j−Ti+1, j)+λ(i−1)/2, j(Ti, j−Ti−1, j)

]
+

1
Δy2

[
λi,( j+1)/2(Ti, j−Ti, j+1)+λi,( j−1)/2(Ti, j−Ti, j−1)

]
+Qi, j

}
（7）

T = T (r, θ)

对于水平温度场传热方程，可将坐标系转化为

极坐标系，则温度场函数 ，对坐标进行以

下变化：

x = rcos θ （8）

y = rsin θ （9）

Δx = Δrcos θ− r
Δθ
Δr

sin θ （10）

Δy = Δrsin θ+ r
Δθ
Δr

cos θ （11）

式中：r 为温度测点到原点的距离，m；θ 为温度测点

相对于 x 轴的夹角，(°)。
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图 6    纵向温度随时间变化云

Fig.6    Longitudinal temperature variation with time cloud plot
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联立式 (6)、式 (8)—式 (11)，则水平温度场传热 模型，可表达为式 (12)：

ΔT t+Δt
i, j =ΔT t

i, j+
Δt
ρc

{
1

ri(Δr)2

[
λ(i+1)/2, j(Ti, j−Ti+1, j)+λ(i−1)/2, j(Ti, j−Ti−1, j)

]
+

1
ri(Δθ)2

[
λi,( j+1)/2(Ti, j−Ti, j+1)+

λi,( j−1)/2(Ti, j−Ti, j−1)
]
+Qi, j

}
（12）

ri = r0+ iΔr θi = θ0+ jΔθ式中：i 对应 ，j 对应 ；r0 为起始

径向坐标，m；θ0 为起始角向坐标，(°)。
通过式 (7)、式 (12)可知，富油煤热解过程中

的温度变化主要受岩体导热系数 λ 的影响，λ 越大，

热传递速率越快。结合前期导热系数的测量结果

(表 2)，岩石的导热系数显著受温度的影响。随着

温度的增大，岩石导热系数逐渐降低[28-29]。鉴于此，

笔者在热传导模型中将 λ 表征为一个随温度变化

的动态参数，以更准确描述非稳态传热过程中的

热物性变化规律。此外，温度是影响岩体导热性

能变化的宏观性质，其本质在于改变岩石内部矿

物 [35-36] 及孔隙结构 [37]。然而在实际热解过程中，

受煤层导热性质差等因素的影响，地层传热过程

中往往存在局部热传导不均现象，进而影响其整

体传热规律。 

3.2　热解过程中微裂隙与胶结作用对温度的影响

在富油煤热解过程中，煤体结构的演化显著影

响地层温度场的变化特征 [21]。其本质在于由于煤

及覆岩热弛豫现象而引发的微裂隙发育不均与胶结

现象。

从模型的水平剖面来看，加热开始后的短时间

内 (0～12 h)，温度变化规律主要表现为中心升温迅

速，边缘升温较慢。随着时间的延长，热量逐渐向四

周扩散，但由于覆岩向外界热交换明显且受热程度

低 (峰值温度为 126 ℃，升温速率为 5 ℃/h)，致使地

层横向热扩散现象不明显。

由温度场演化曲线可知，不同岩层在热解过程

中均出现了热弛豫现象，即图 7中浅棕色区域。具

体表现为随着距离地层中轴线的横向距离增大，地

层二次升温时间也增加。如对于煤层上部，恒温阶

段 (Ⅱ)，距离地层中轴线横向距离 20 mm处的二次

升温时刻为 5 h，而在 120 mm处则延迟至 13 h。此

外，不同层位热弛豫现象对比显示，热弛豫现象出现

的时间正比于岩层与热源之间的距离。具体表现为：

煤层底部在降温阶段 (Ⅲ)出现热弛豫，而煤层上部

及粉砂岩层则在恒温阶段 (Ⅱ)出现明显响应。

图 7中，h1、h2、h3 分别对应 2号热电偶所在岩层 20、
70、120 m位置的初始升温时间。

热弛豫现象反映了地层内部热传导过程中的非

均匀性，其主要受控于地层与热源之间的空间距离
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图 7    煤层及地层热弛豫现象

Fig.7    Thermal relaxation in coal seams and strata
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变化以及岩体导热性能的非均质特征[38–39]。一方面，

靠近热源区域的岩层接收热量更集中，升温更迅速。

另一方面，随着温度升高，岩体内部微裂隙逐步发

育[40] 并呈现出一定的方向性[41–43]，这改变了热量在

地层内部的传热路径，使局部区域表现出导热特性

的各向异性，从而影响热量的横向扩散能力。尽管

天然岩石中也存在因矿物组构[35-36] 和层理方向等因

素造成的固有导热各向异性，但在本研究所设定的

试验条件下，该因素对于模拟材料传热性质的影响

相较于微裂隙演化所引起的变化有限。

通过对比富油煤在不同热解深度下微观形貌差

异 (图 8)，表明随着热解深度的增加，煤中微裂隙逐

渐发育且煤孔逐渐坍塌。图 8b—图 8d说明，在 1号

试样处 (350 ℃)，煤体处于热解初期，局部形成小尺

度封闭单元[21]。2号试样处 (400 ℃)对应热解最活

跃区[44]，但此处，热弛豫效应明显，封闭单元数量最

多。这是由于煤体结构因局部热量不足，热解产物

无法及时释出。3号试样接近热源，热解反应充分，

封闭单元数量减少，煤体结构出现显著塌陷与裂隙

贯通特征。对比试样 1号—3号微观形貌分析结果，

同时结合热重 (TG)和热重导数 (Derivative Thermo-
gravimetry，DTG)分析，如图 8e—图 8f所示，可知对

于传热速率较高的区域，热解反应最为迅速，微裂隙

发育充分，产物释放最多，封闭单元数量越少。

热解过程中地层的纵向传热主要经历 4个阶段

(图 9)，即初始阶段、升温阶段、恒温阶段、降温阶段。

从初始阶段至升温阶段，随着温度升高，煤层底部率

先受热，呈现出“圆锥形”增长趋势 (图 10)。当煤层
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图 8    热解过程中富油煤微观形貌分析

Fig.8    Microscopic morphology analysis during pyrolysis
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底部进入恒温阶段，地层升温速率降低明显，主要原

因为：一方面，富油煤开始发生剧烈的热解反应[44]。

据畅志兵等 [45] 研究表明，半焦孔隙在 400～600 ℃
随温度升高互相连通，孔隙数量更少、体积更大，致

使其导热性能差[46]。另一方面，富油煤热解会生成

以焦油蒸汽和煤气为主的气态物，液态煤焦油

(图 11) 及半焦 (图 12) 使热量传递受限。液态热解

焦油因其密度大[47-48]、黏度高，在煤层底部及低温区

域凝结，形成黏稠状的胶质体。热解过程中产生的

挥发分从胶质体中析出，导致胶质体表面产生微裂

隙，结合其热解过程中产生的裂隙，在这样的孔裂隙

环境及气态、液态产物的相变条件下，热量传入上覆

地层受限，煤及地层升温速率变慢如图 13所示。当

地层进入降温阶段，煤层底部大于 570 ℃ 区域逐渐

缩小。这是因为其热量传入中温区 330～490 ℃ 地

层中，致使其区域短暂扩张，从而散热，热量向上传

递。且加热台停止工作后，其温度低于煤层底部，煤

层底部向下进行散热，该区域面积缩小。

此外，部分学者研究表明 [49-51]，在常温条件下，

长焰煤的导热系数为 0.07 W/(m·K)，比热容为

0.83 J/ (g·K)，粉砂岩的导热系数为 1.12 W/(m·K)，
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图 9    热解过程中地层传热机制

Fig.9    Stratigraphic heat transfer mechanisms
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图 10    热解后“圆锥形”半焦区

Fig.10    “Cone-shaped” semi-coke zone after pyrolysis

 

图 11    热解煤焦油

Fig.11    Pyrolysis of coal tar

 

图 12    热解结束后的半焦

Fig.12    Semi-coke at the end of pyrolysis process
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比热容为 0.95 J/ (g·K)。300 ℃，长焰煤的导热系数

为 0.10 W/(m·K)，比热容为 1.27 J/(g·K)，粉砂岩的

导热系数为 0.97 W/(m·K)，比热容为 0.89 J/(g·K)。
这表明，随着温度增长，粉砂岩导热系数逐渐增大，

比热容降低，其热物理性质强于长焰煤，表现为导热

能力强，单位时间吸收或释放的内能大。

在富油煤热解过程中，由于煤体导热性能较差

且伴随胶结现象的产生 (图 13)，煤层底部在向煤层

上部传递热量的过程中会发生显著的热量损失，进

而导致温度场呈现明显的“圆锥形”分布特征。这种

分布形式使得粉砂岩层所接收到的热量明显低于煤

层本体。此外，粉砂岩的比热容低于煤层，在降温阶

段，其温度变化主要受控于外部散热作用。由于其

位于模型上部边界，与外部环境热交换频繁，当煤层

上部向粉砂岩层传热时，粉砂岩层的散热效应反而

对传热过程形成抑制作用，使靠近粉砂岩层界面的

煤体温度在一定时间内保持短暂稳定，随后随时间

推移而逐渐下降，恒温区域面积也随之减小。 

4　结　　论

1） 在富油煤热解过程中，煤层与覆岩的温度变

化规律相似，具体表现为温度随时间呈现出非线性

增长的趋势，且在煤层及覆岩在竖直方向上的温度

扩散速率明显快于水平方向，致使地层中心区域温

度高且增速快，四周温度较低且增速慢。

2） 热解过程中，煤层及覆岩均表现出明显的热

弛豫，热弛豫范围与煤岩体的各向异性及空间位置

有关，距离热解区中轴线横向距离越大，地层二次升

温时间越长。当煤层上部处于恒温阶段，距离热解

区中轴线横向距离 20 mm处，开始升温时刻为 5 h，
当距离热解区中轴线横向距离 120 mm处，开始升温

时刻则增加至 13 h。
3） 富油煤热解过程中升温速率降低主要与其孔

隙特征及胶结现象有关。热解过程中，由于半焦内

部孔裂隙发育、裂隙网络密度增大，导热性能变差，

同时，热解焦油因其密度大、黏度高，在煤层底部及

低温区域凝结，致使半焦局部胶结成块，形成隔热层，

降低热量的传递效率，影响热解反应的深度和速率，

导致煤及覆岩温度整体呈“圆锥形”分布特征。
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