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Calculation of slope stability of fault-containing slopes under the action of

cyclic blast vibration

JIANG Juyu', XING Yujiao’, WANG Laigui’, WANG Dong’
(1. Ordos Institute, Liaoning Engineering Technological University, Ordos 017000, China; 2. School of Mines, Liaoning Technical University, Fuxin 123000,
China;, 3.School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China)

Abstract: In order to accurately quantify and predict the evolution of slope stability of fault-containing slopes under the long-term effect of
blasting vibration, and to realize the safe, efficient and sustainable mining of open-pit mines. Taking an open-pit mine as the engineering
background, the dynamic characteristics of blasting seismic waves in time and space dimensions are investigated by on-site vibration test-
ing and numerical calculations, and the propagation and attenuation laws of blasting seismic waves in the horizontal and vertical directions
are studied to elucidate the mechanism of elevation amplification effect and the vibration isolation effect of faults; Hopkinson compres-
sion rod impact test is used to study the crack expansion and damage deterioration laws of slope rock and soil bodies under the effect of
cyclic blasting impacts. Established the quantitative relationship between the intensity and frequency of blasting vibration and the internal
damage of the rock body, and established a dynamic damage degradation mathematical model of the slope geotechnical body; applied
FLAC?” numerical simulation to study the characteristics of the dynamic response of the slope under the action of blasting vibration, and

analyzed the potential landslide mode of the slope and the mechanism of destabilizing evolution, and put forward the calculation method of
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the stability of the slope containing faults under the action of blasting vibration, and analyzed the effect of the blast vibration on the stabil-

ity of the slope quantitatively. Quantitatively analyze the effect of blasting vibration on slope stability, predict the number of blasting vibra-

tion that the slope can withstand. The results show that: blasting vibration has a greater impact on slope stability, the maximum dynamic

stress response of the slope under the action of blasting vibration is positively correlated with the amount of single shot, elevation differ-

ence, and negatively correlated with the center of the blast distance; with the increase of the maximum dynamic stress of blasting vibration

and the number of blasts, the damage parameter is an exponential function of the damage parameter is larger, and the rate of reduction of

the dynamic-static coefficient of safety of the slope is a trend of the power function of the increase. Combined with engineering examples,

it verifies the reasonableness of the calculation method of slope stability of fault-containing slopes under the action of blasting vibration,

and provides a new perspective for the evaluation of slope stability of similar mines.

Key words: open-pit mine; fault; cumulative damage effect of rock mass; blasting vibration; stability
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Fig.1 Force analysis of slope body under static loading condition
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Table 3 Measured vibration data

&3 LREEE

> v -1 = = %
N Bk . PRENEMEEE/ (cm + s7) il JRB Hz
i - WA RO SREel £
R 2 HE/kg HLo B /m HER/m 3 v, v. (em-s™) F. F, F.
4, 39.5 15 35312 4.1532 4568 1 7.1120 36.5 302 394
B, 45.6 20 2.8247 3.861 4 42035 43320 240 296 358
el 86.7 30 2.9949 2.8679 1.9617 4.0370 314 274 330
No.l 390
D, 126.5 30 14708 1.484 0 0.6457 2.026 0 244 258 263
E, 158.9 50 0.6522 04112 0.656 0 0.8530 210 223 228
F, 194.5 50 03728 0270 1 0.236 8 0.3850 189 203 163
4, 171.2 10 03375 03751 0.5130 0.5610 275 291 434
B, 182.0 10 0320 6 02572 0.320 4 0.396 0 260 279 365
G 202.5 20 03119 02228 0.306 9 0.340 0 243 236 285
No.2 292
D, 2422 20 02548 0.192 1 0.1880 0.2820 212 217 228
E, 323.1 30 0.174 6 0.1300 0.1172 0.1850 183 224 197
F, 483.1 40 0.0800 0.0730 0.0533 0.092 0 145 128 171
4, 182.4 15 03863 03983 0.458 6 0.8755 399 502 403
B, 194.1 15 0.479 4 0.368 1 0.478 0 0.5910 308 406 39.1
el 215.0 25 02548 0.192 1 0.1880 0.2820 252 317 328
No.3 160
D, 255.4 25 02170 0.186 1 02697 0.3450 222 316 251
E, 334.9 50 0.1845 0.1482 0.201 6 02140 153 288 237
F, 494.1 60 0.0622 0.070 0 0.093 9 0.109 0 133 271 197
4, 35.9 15 54577 5.563 7 5.965 4 9.8150 472 354 433
B, 40.1 15 42449 4.9373 4546 4 5.607 0 210 268 283
ol 60.4 30 34850 3.540'5 33781 5.9920 158 220 272
No.4 293
D, 100.8 50 14195 1.746 8 11310 2.0540 157 170 230
E, 130.8 60 12435 1.108 3 25721 27880 108 128 210
F, 160.3 90 0.743 6 0.616 0 0.553 4 0.8520 8.8 41 106
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Fig.6  Propagation path of vibration wave
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Fig.7 Dynamic stress-strain curves of rock sample
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Fig.9 Relationship between damage coefficient and number of
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Table 4 Damage parameter fitting equations for rock mass

under different impact air pressures

e Mz BUCA 4l A
MPa AEAZ R PAEAK R

0.35 D=1-¢7004697m1 0953 12 p=1-¢-00121m 0,095 539

0.40 D=1—-¢"005075m1  0.936 96 p=1—¢0-01665m1 (.877 350
0.45 D=1-¢005433m1 0.941 03 p=1—¢=0-01788m; (.849 860
0.50 D=1-e70056m1 091748 p=1-¢~00199m1 (.858 160
0.55 D=1-¢005846m1 091204 p=1—-00233m1 (.804 800
0.60 D=1-¢00598%m1 (0.898 15 p=1—¢=0-02517m; (.860 100
0.65 D=1-¢0:06236m;  (.85550 p=1—~002615m;1 (0,830 140
0.70 D=1-¢006466m1  0.82041 p=1—-002587m1 0.915710
0.75 D=1-¢006616m (0.813 10 p=1—¢=0-02715m1 (0.910 450
0.80 D=1-¢00709m;  (0.81755 p=1—¢=0-03256m; (.862 020
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Fig.10 Variation rule of coefficient 4 with impact air pressure
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Fig.11 Calculation results of static stability of slope under

initial damage state of limit equilibrium method
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Table 5 Relationship between 7 and rock mass integrity

n >0.75 0.75~0.55 0.55~035 035~0.15 <0.15
SERRE SR BOEE Ry MR AR

BT A5 0 2 A BCA AR R R S5 R 1 5
AR, R SR . B2 W20 5
R A AR SE 3P g 1.0, 1.0, 0.3, 0.5, JETTsR
D, 1 AP s B S8, L3R 6.

xR 6 BREIRENFHRMERESH

Table 6 Slope shear strength parameters after blasting and vibration

. R A TR BT B2 722 i

o/MPa o FERRSE RRROD ONPEEEM RO WEEEEM B RSN BNR ABERM BRD AR AR
0/(%) c/kPa e c/kPa 0% c/kPa 0% c/kPa 0% c/kPa 0% c/kPa

50 2659 94.98 3134 46338 2564  617.34 2.85 14.25 6.65 33.24 3324 85478

0003 100 2625  93.74 3093 45932 2531 609.30 2.81 14.06 6.56 32.81 3281  843.64
200 2614 9336 3081 45745 2521  606.83 2.80 14.00 6.54 32.68 32.68  840.90

50 2656 94.84 3130 46474 2561 61649 2.85 14.23 6.64 33.20 3320 853.60

0030 100 2623  93.68 3091 459.01 2529  608.89 2.81 14.05 6.56 32.79 3279 843.08
200 2614 93.35 3081 45742 2520  607.17 2.80 14.00 6.53 32.67 32.67  840.16

50 2633 94.03 3103 46073 2539 61118 2.82 14.10 6.58 3291 3291 846.25

0300 100 2615  93.41 3082 457.69 2522 607.14 2.80 14.01 6.54 32.69 3269 840.65
200 2613 9333 3080 45734 2520  606.67 2.80 14.00 6.53 32.67 3267 840.01
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Table 7 Calculation results of dynamic and static safety
coefficients of slope by limit equilibrium method

i) BB 4
oMPa oM Ml M %e
LRFH  BEFH  RUMITR
50 1.399 1.380 1.36
0.003 100 1.395 1.369 1.86
200 1.371 1.339 2.33
50 1.397 1.377 1.43
0.030 100 1.391 1.364 1.94
200 1.371 1.338 2.41
50 1.367 1.353 1.02
0.300 100 1.360 1.334 1.91
200 1.353 1.312 3.03
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Fig.12 Variation curves of slope dynamic safety coefficient
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Fig.13 Calculation results of static stability of slope under

initial damage state of strength discount method
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Table 8 Calculation results of dynamic and static safety

coefficients of slopes by strength reduction method

—_— HRAEHSS
oMPa e NN A MR
BRFM  HARE  RERER
50 1.400 1.383 1.21
0.003 100 1.395 1.371 1.72
200 1.371 1.343 2.04
50 1.398 1.380 1.29
0.030 100 1.393 1.369 1.72
200 1.370 1.341 2.12
50 1.371 1.354 1.24
0.300 100 1.363 1.339 1.76
200 1.353 1.316 2.41
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