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Pore fractal characteristics of granulated blast furnace slag-carbide slag

cementitious material and its effect on heavy metal adsorption
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Abstract: Coal has long occupied the main position of energy consumption structure in China. The problem of heavy metal pollution in
mine water has become increasingly severe due to washing and processing as well as tunnel development activities. Cementitious materi-
als have significant advantages in the treatment of heavy metal mine water, and their pore structure characteristics and fractal properties
play a key role in the adsorption performance. In order to study the adsorption effect of pore structure and pore fractal characteristics of ce-
mentitious materials on heavy metal ions, solid waste cementitious materials (GCCM) were prepared from slag and carbide slag. Through

experimental methods such as XRD, SEM, low-temperature N, adsorption/desorption, o™ adsorption, and the FHH fractal model, the
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evolution of hydration products of GCCM, the characteristics of pore fractals and the adsorption performance of Cr®" were studied. The
results show that the hydration products of GCCM are mainly C—(A)—S—H gel. When the molar ratio of n(Ca0O)/n(SiO,+ALQ,) is 0.635,
the gel network is dense. The adsorption/desorption curve of low-temperature nitrogen belongs to Type IV and presents a hysteresis loop
of type H,, mainly mesoporous (2—50 nm). The pore structure characteristics of GCCM show obvious fractal behavior. The partial shape
dimension within the pore (D)) is greater than the fractal dimension of the pore surface (D,), reflecting that the multi-level pore structure
dominated by the hydration products of C—(A)—S—H gel and the material heterogeneity lead to higher internal spatial complexity. The
fractal dimension D is positively correlated with compressive strength, specific surface area and pore volume, and negatively correlated
with average pore diameter and n(Ca0O)/n(SiO,+ALO;). The adsorption process of Cr®" by GCCM conforms to the Langmuir monolayer
adsorption. D is positively correlated with the maximum adsorption capacity (Qu..) of Cr®", and D1 has a more significant effect on Q..
(R>=0.964). The surface pores of GCCM provide direct contact sites for the adsorption of heavy metals. The leaching concentration of
heavy metal ions in GCCM meets multiple limit requirements such as Class III water in GB 8978—1996 and GB 20426—2006. The re-
search provides fractal theoretical support and proportioning optimization basis for the application of solid waste-based cementitious ma-
terials in the treatment of heavy metals in mine water.

Key words: cementitious material; microscopic pore structure; low temperature nitrogen adsorption experiment; FHH fractal model; ad-

sorption-stabilization
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Table 2 Fractal dimension fitting results of GCCM adsorption hole based on FHH theory

i FLHE X (P/P<0.45) & L EX (PIPy=0.45)
R
[EE YN R? D, AR R D,
G5C4 1=2.418-0.685x 0.999 2317 1=2.786-0.448x 0.925 2,552
G6C3 1=2.407-0.643x 0.999 2357 1=2.744-0.417x 0.947 2.583
G7C2 y=2.456—0.602x 0.997 2.398 1=2.668—0.338x 0.928 2.662
G8C3 1=2.303-0.680x 0.978 2320 1=2.689-0.527x 0.928 2.473
G9CO 1=2.280—0.797x 0.993 2.203 y=2.527-0.538x 0.950 2.462
AL, BEE n(Ca0)/n(SiO+ALO;) B K, /3K S mEE A, FEALBRIE ST A E 4. 4658

Y8 D SeAE RG2S /N, 5 H R TR A AR fb i S —
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A KAA, 73900 2.398 Fl 2.662, xSt T Itk 4k
) C—(A)-S—H IR 5 5, HAZ S Ak ALBRSS
i) 8 BT S R, FLBR 45 Mt T4 2, LK
FEI R AL % ADREDRE 2 B (¥ 388 Jon L JS0RL [R] EE 488 07 1)
a5 A KR REE ) B B PO SR, 24 n(CaO)/
n(Si0+ALO;) it 0.635 J&, Ca(OH), WAL SeHr Hi B
3 7 C—(A)-S—H %7K 4k 7= Wy iy i — 20 4 1, GC-
CM {7 TE MK IR HE LSS 44 (18] 3), FL B 3% 3 1
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Fig.11 Langmuir adsorption model fitting of Cr®" adsorption
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Table 3 Langmuir model fitting results of cr® adsorption

experiment
BEEHS  Oudmg-g?h) R BE IR

G5C4 0.199 0.973 Ge = 1.005C.
1+5.050C,

0.683C,

G6C3 0.219 0.981 =

%= 1312100,
G7C2 0.231 0.982 Ge = _2716C.
1+11.759C,

2.164C,
G8C3 0.203 0.981 = 0%
9= 1410.661C,

G9CO 0.175 0.973 ge = 1.335C.
1+7.629C,

Ono/(mg-g™)
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52 GCCM HZ£MHIFM

M4 (AR B FE R i ARG )
(HJ 557—2010), il % J5 &+ GS Fil CS LA} GCCM %
W, B4R B T A R Lk 4, S5 EH,
Wz AT GCCM iR i Cr®' | Hg, Cr, Pb %
4B AEFRIE I TE GB 5085.3—2007(fE 6 K1) %
SIbRAE 2 AR ) . GB/T 14848—2017(3 Tk

JEFRAE) . GB 8978-1996 (75 /K 5 & HERUbRUE YA K
CHEAR Tl 75 Y HEChR v ) (GB20426—2006) ML E
FEVFHERCRIE M o % & B, GCCM = b Cr®
S 2 e BE AR T GS FI CS. 4% |, GCCM B A
WhF— Ak T LA 3, A REME B Cr®, 3 AT i 1 4
BRI R, fb27 D00E A0 2 [ 3 25 Z Rl ) P [R) 4
AT Cr Ak, TR AN RIS YA, A
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Table 4 Results of heavy metal leaching concentrations in raw materials and GCCM leachate

GSEIM  CSEIM  GCCMiZii  GCCMIWMiR b MI2EH 7K TSR Rl H i i
Tebr WREERIE,  WBEYNME/ R IE/ 2 R BE A/ (‘m' ) L) [t bR R AR/ Hek BRAE/ HEMC R (E/
(mg-L') (mg-LH  (mg-L") (mg-L" £ (mg - L )y** (mg« L )***  (mg-: L 'yoes
o 0.0152 0.0174 0.004 9 0.0035 5.0 <0.05 0.50 0.50
Bk 0.005 4 0.003 8 0.000 8 — 0.1 <0.001 0.05 0.05
JaXS 0.0212 0.0222 0.0177 — 15.0 — 1.50 1.50
Hr 0.005 6 0.005 5 0.003 4 — 5.0 <0.01 1.00 0.50

W “” F/RGB 5085.3—2007 (fG YIS bRE RN EEESESR]) 5 %7 FOR GB/T 14848—2017 (b F/AKBLRARE) 5 “***” F/RGB
8978—1996 {T5/KLFEHEMbRIEY 5 “**++” FIRGB 20426—2006 M Tl i5 Y HEhRE ) .
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=) C—(A)-S—H BERE & i e, HAZZUGK AL
SEFGEETH LR R AN KL 5 Py ERi%E E %, D, (2.398)
Al D,(2.662) ik T KAE . BEAT SEM H M 0 28 20,
fLBRED, XRD S 7s T TR BERAT S W TR R K, 3%
WZIC LG T B EERBHEOR S5 A8 B A

2) GCCM IR N, W bR/ B 2R 2k 8 TV &, B
A H, BIAEIR, FLBR AR | SEATHCIR ISR AN
B TU T A G B e A /R Y LR S5 R S 5 B n
(Ca0)/n(Si0,+ALO;) #f K, GCCM Lt 3 i F1L 5 FL Ik
BUEADE, 5 TG GCCM M fLich K B,
I LAE B 4 S W BRI [T Ak rh T ek =20 H

3) GCCM FLBR &5 R AF A7 75 B 8 0 43 T AT R
(R*=0.925). WNFLBR o IE 4650 D,(2.462 ~ 2.662)
B E T RMEAEE D,(2.203 ~2.398), Sl Py
ZRALBR AR Btk B s M g5 R At . S50
3 A IR 2R A M B, D B/ S5 FLBR 2544
FP ) H 2 T AR R FLAR S SR A LR PR AR OGP . BRI
PIFLARER . BRI AL bR AR A N LR A
By T3 Do Dy 5 O 38 IEAHSE (R7=0.964), H:
R L i T KRS B B, B R A T 2
W BFH7 55 PIBALBRAME 4R D,(R*=0.770) B S T
PECCR, (R B = AL R 2 10 B2 R

4) YIHG B EE N 2 mg/L IF, GCCM W[ Cr*
BEN 92.5% ~ 95%, it F TR B I K Ab

GCCM 3 izt W i — 1 £k B[R] 4 F 3 AR Cr® e
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R AR ERRAE, oI B — ks e XU, HoAA %
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