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多元扰动行为下深部高应力煤体扩容与压实特性
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摘　要：深部煤体处于高地应力环境中，其在外界扰动作用下的力学与变形行为不同于浅部煤层。由

此进行了多种扰动模式（高压注水、卸压钻孔和循环加卸载）下高应力含瓦斯煤体加载破坏试验。研

究表明：高应力煤体趋向延性状态转化，未出现明显的峰后应力降。以剪切和拉伸型破裂为主的深

部高应力煤体表现出峰后线性扩容行为。相比纯力学破坏，含水平孔和高压注水煤体的强度分别降

低了 29.1% 和 4.1%，它们对煤体力学性能和强度的劣化机制不同，前者是由垂向变形持续增加引起

钻孔塌陷和压实区形成所致；后者是由于高压注水抵消了裂隙面法向应力，促使水平向煤体快速膨

胀，导致其扩容失稳，诱发剪切破断所致。含水平孔煤体在峰值应力处的剪胀系数 β=−1.524<0，也

表明其处于压实状态，利用单屈服面模型证明了其在峰后出现体积压实行为的合理性。等幅加卸载

扰动对弹性高应力煤体力学性能起着循环强化作用，其强度提升了 18.0%～27.0%，出现了显著的峰

后扩容行为。由于卸荷作用对煤体变形影响更大，其各向不可恢复压实应变（ΔεH、Δεv 和 Δεh）随加载

次数增加而增大，表现为各向呈压缩趋势的应变硬化现象，这与循环加卸载对岩石产生疲劳损伤现

象相反。研究成果可为深部高能煤层解危、立体缝网改造和渗流评估等工程问题提供借鉴。

关键词：含瓦斯煤；深部高应力；扰动；扩容；压实
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Dilatancy and compaction characteristics of deep high-stressed coal under multiple
disturbance behaviors
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No.3 Coal Mine, Yankuang Energy Group Co., Ltd., Jining　272000, China; 4. State Key Laboratory of Coal Mine Disaster Prevention and Control, China

University of Mining & Technology, Xuzhou　221116, China）

Abstract: The mechanical and deformation behavior of deep high-stressed coal seams under ambient disturbance is different from that of
shallow coal seams. Based on this, the effects of various disturbance schemes i.e., high-pressurized water injection, depressurized borehole
and cyclic loading-unloading, on failure mechanical behavior of gas-bearing coal under high confining pressure constraint are investigated
experimentally.  The  results  show  that  high-stressed  coal  tends  to  ductile  state  transformation  without  significant  post-peak  stress  drop.
Deep high-stressed  coal  dominated  by  shear  and  tensile  fracture  exhibited  post-peak  linear  dilatancy  behavior.  Compared  with  the  pure
mechanical failure, the strength of coal with horizontal borehole and pressurized water is decreased by 29.1% and 4.1%, respectively, and
their degradation  mechanisms  for  coal  strength  and  mechanical  properties  were  different.  The  former  is  induced  by  the  continuous   in-
crease of vertical deformation, resulting in borehole collapse and compaction zone formation. The latter is induced by pressurized water
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counteracting  the  normal  stress  of  fracture  surface,  which  promotes  the  rapid  expansion  of  coal  in  horizontal  direction,  resulting  in  its
dilatancy instability and subsequent shear failure. The dilatancy coefficient β=−1.524<0 at peak stress of coal within horizontal borehole
also indicates that it is in a compacted state. The single yield surface model is used to prove the rationality of the post-peak compaction be-
havior of high-stressed coal within horizontal borehole. The loading-unloading disturbance at constant amplitude plays a cyclic reinforce-
ment effect on the mechanical properties of elastic high-stressed coal, and its strength is increased by 18.0%−27.0% with significant post-
peak dilatancy.  Due to  the  greater  influence of  unloading on coal  deformation,  the  irreversible  compaction strain  (ΔεH,  Δεv and Δεh)  in-
creases with the increasing loading times, and manifests as strain hardening with the compression trend in all directions, which is contrary
to the fatigue damage induced by cyclic loading-unloading on rock. The research results can provide reference for major engineering is-
sues such as deep high-energy coal seam risk solving, three-dimensional fracture network reconstruction and seepage assessment.
Key words: gas-bearing coal； deep high stress； disturbance； dilatancy； compaction

  

0　引　　言

在相当长一段时间内我国以煤炭为主的能源格

局不会改变[1]。当前，深部煤炭资源开发已成为常态。

深部煤层处于高应力和循环加卸载扰动作用下，强

动力灾害、瓦斯难抽采、围岩大变形等棘手问题频

发[2-5]。为此，应对深部煤层进行力学性能改造，常

见手段有煤层注水[6] 和卸压钻孔[7] 等。学者们对循

环荷载作用下煤岩体的变形、强度、损伤演化和能量

耗散进行了广泛研究。段敏克等[3] 开展了低最小主

应力 σ3（σ3=6，8，10 MPa）下的分级循环扰动试验，得

出煤岩耗散能呈指数增大。FENG等[8] 对硬岩（花岗

岩、大理石和砂岩）进行了真三轴循环加卸载试验，

研究了岩石力学特性随累积损伤的变化规律。魏明

尧等 [9] 研究了微扰动（轴压变化 3 MPa→1 MPa→
3 MPa）对围岩损伤的影响，认为循环扰动随着埋深

增加，加剧了围岩损伤程度和范围，也有可能破坏后

进入塑性损伤状态。上述循环荷载对岩石的损伤劣

化作用主要集中在屈服变形阶段。CHEN等[10] 开展

了砂岩、混凝土等试件在弹性变形阶段的循环荷载

试验，得出前 100次循环扰动对试件起到了力学性

能强化作用。以上述为代表的岩石循环扰动力学特

性研究较少涉及深部高应力煤体，需要对其进行深

入研究。对于深部含孔煤体：一方面，钻孔卸压是防

冲重要手段[7]；另一方面，深部煤层抽采钻孔塌孔失

稳问题严重阻碍了瓦斯高效开发[11]。张学博等[11] 研

究了深煤层抽采钻孔变形失稳机制，得出地应力是

其失稳变形的主控因素。包凯等 [12] 采用 Monte
Carlo方法生成煤层钻孔周围随机裂隙，认为随机裂

隙的存在加大了破碎煤层段井筒周围塑性范围，孔

壁呈剪切破坏模式。姚向荣等[13] 利用 FLAC3D 对抽

采钻孔进行数值模拟，得出钻孔径向位移和围岩塑

性区半径随着侧压系数增大而增大，而钻孔稳定性

随之降低。此外，煤层注水作为防冲防尘的另一常

见手段，蒋长宝等[6] 对不同含水率原煤进行了渗流

力学试验，得出煤样强度和变形模量均随含水率增

大呈减小趋势， 而径向应变、体积应变及侧向膨胀

率呈增大趋势。毛彦军等[14] 采用 CT扫描技术，通

过重构三维煤岩孔隙结构，得出煤样孔隙率、损伤单

元数等随着注水压力增大而递增。刘超等[15] 通过对

高压注水作用下完整原煤呈的破坏模式与中间主应

力相关。同样，以上述为代表的含孔煤体/高压注水

煤体变形特性的研究也较少涉及试验角度下的深部

高应力煤体，需要对其进行深入研究。

综上所述，深部高应力作用下煤层对外界环境

刺激的力学响应由弹脆性向黏弹塑性转变[16]。不同

刺激作用下，煤体强度变化规律、高应力扩容行为和

塑性大变形发生机制等需要深入研究。进一步，由

于地质构造活动和采动应力效应使得煤层的主应力

呈真三轴应力状态（σ1>σ2>σ3）
[17]，不同主应力对煤体

的变形作用不同，常规三轴加卸载路径不能区分水

平向真实应变。由此基于真三轴流固耦合试验平台

开展多种扰动模式（高压注水、泄压孔和循环加卸载）

下高应力含瓦斯煤体加载破坏试验，以期为深部煤

炭资源安全高效开发提供参考。 

1　试验装置及方案
 

1.1　试验装置

试验平台为重庆大学自主研发的多功能真三轴

流固耦合试验系统[17]，如图 1所示。该装置压力室

内 6个加载板可独立控制。以 100 mm立方体受力

煤岩试样为例，最大水平主应力方向（H向）和垂向应

力方向（v向）能够提供最大 600 MPa的应力，最小水

平主应力方向（h向）可提供最大 400 MPa的应力，还

可提供最大 60 MPa的流体压力。加载模式有“力控

制”“位移控制”等多种模式，可以实现复杂应力路

径下煤岩流固耦合特性的多物理场真三轴试验研究。

图 2为该装置流体注入示意。 
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1.2　煤样

试验用煤样取自川煤集团白皎煤矿 2461工作

面。现场采取原煤大块，并用保鲜膜包裹防止风化。

然后运至实验室，经过钻取、切割、打磨、烘干等工

序，形成 100 mm×100 mm×100 mm的立方体试件。

试件误差标准满足相对端面间不平行度误差小于

0.02 mm。加工成型的原煤试件及扫描电镜（SEM）

下微观结构如图 3所示。原煤试件的基本力学参数

见表 1。
 
 

(a) 宏观尺度煤样 (b) 微观尺度煤结构

20 μm

图 3    立方体煤样及其微观结构

Fig.3    Cubic coal specimen and its microstructure
 
 

表 1    煤样单轴抗压强度（UCS）、弹性模量（E）、抗拉强度（σt）

和抗剪强度（τ）
Table 1    Uniaxial compressive strength (UCS), elastic modu-

lus (E), tensile strength (σt), and shear strength (τ) of coal

方向 UCS/MPa E/GPa σt /MPa τ/MPa

垂直层理面 26.79 2.85 2.55 6.29

平行面割理 23.82 3.19 2.27 5.69

平行端割理 18.19 3.20 1.92 5.01
  

1.3　试验方案

深部煤层趋于静水应力环境。首先以力控制模

式 ，将各向主应力以 0.05 MPa/s的速率加载至

60 MPa静水压力。待各向位移传感器示数稳定后，

通过流体（甲烷 CH4 和水）进口端和出口端，向完整

或 含 孔 （孔 径 10 mm、 孔 深 50 mm）煤 样 内 注 入

4 MPa CH4，待示数稳定后，对原煤进行不同扰动刺

激作用下的力学行为研究。

方案 1：保持水平应力（σH 和 σh）不变，垂向（v向，

图 1）切换至位移控制模式，加载垂向应力（σv）至完

整立方体煤样破坏。目的是研究气体压力对原煤变

形特性的影响（图 2a）。
方案 2：保持水平应力不变，打开出口端阀门，待

 

压力室

σv σh

σH

图 1    多功能真三轴流固耦合试验系统[2]

Fig.1    Multi-functional true triaxial fluid-solid coupling experiment system[2]
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瓦斯压力降至大气压（0.1 MPa）后，在出口端进行增

压注水 8 MPa，待示数稳定后，垂向以位移控制方式

将完整原煤加载至破坏。目的是研究深部原位注水

对原煤变形特性的影响（图 2b）。
方案 3：保持水平应力不变，将装置加载室内钻

孔轴线与垂向应力平行或垂直的高瓦斯原煤试样加

载至破坏。目的是研究钻孔位置对原煤变形特性的

影响（图 2a）。
方案 4：保持最小水平应力（σh）和垂向应力（σv）

不变，对最大水平应力（σH）进行低幅和高幅的循环加

卸 载 ， 幅 度 分 别 为 60 MPa→45 MPa→60 MPa和

60 MPa→20 MPa→60 MPa，次数为 40次。循环扰动

结束后，保持 60 MPa水平应力不变，将完整煤样加

载至破坏。目的是研究扰动幅度对深部高应力原煤

变形特性的影响（图 2a）。
对照组：直接将完整原煤加载至 60 MPa静水压

力，然后垂向应力加载至煤体破坏。此过程不通气、

不注水、无循环加卸载扰动及未钻孔。 

2　高应力煤体力学行为

煤体在不同扰动刺激模式下的破裂形貌、变形

行为和强度特性见表 2、图 4和图 5。一方面，静水

压力加载至 10 MPa的过程中，煤体内大部分孔隙裂

隙快速闭合，表现为图 4中加载初始段的上凹型曲

线；静水压力由 10 MPa加载至 60 MPa的过程中，煤

体基本上处于线弹性应力状态。另一方面，煤样在

高围压下的加载段并没有明显的弹塑性区分。煤样

在高应力状态下的加载破坏具有以下特点。
 
 

表 2    高应力原煤破裂形貌

Table 2    Fracture morphology of coal subjected to high stress

破裂形貌

刺 激 模 式

通气+破坏 通气+注水+破坏
等幅度循环加卸载扰动 钻孔布置

大幅度循环+破坏 小幅度循环+破坏 水平钻孔+破坏 竖直钻孔+破坏

竖
直
向
观
测

宏观
裂隙 钻孔

水
平
向
观
测

钻孔
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1） 大幅度循环扰动作用下，煤体以拉伸破坏为

主（表 2）。基于单屈服面和双屈服面模型的分岔理

论可知[18]，σ1=σ2>σ3 且（σ1−σ3）较大是岩土体最容易形

成膨胀变形带和拉伸破坏的轴向拉伸环境，因此煤

体在 60 MPa→20 MPa→60 MPa的循环扰动下可能

会以拉伸型破坏为主。含水平孔煤体在峰值应力前

抵抗变形能力最弱，随着应力加载，整个煤体呈不断

被压实的变形特性，最后在峰后出现了钻孔塌陷和

闭合，未出现明显的宏观裂隙。含水平孔煤体的这

种变形破坏模式与“峰前剪胀扩容、峰后应变软化”

的脆性断裂模式明显不同[19]，研究其扩容与压实行

为成为关键。其他刺激模式下，煤体宏观裂隙与最

大主应力呈一定角度，以剪切破坏模式为主。

2） 不同环境作用下，高应力煤体表现出明显的

强度和变形差异，出现了峰后扩容（峰前也未出现明

显扩容）和压实这 2种力学机制完全不同的变形行

为，同时也没有出现类似于脆性砂岩[20]、浅部低围压

受力煤体破坏时的显著应力跌落现象（包括煤样在

围压 15 MPa下的破坏，如图 4和表 3所示）[21]。多

孔岩石在峰值应力后出现明显的应力降特性为典型

的脆性断裂特征[19]，高地应力状态使深部岩体由弹

脆性趋向于黏弹塑性转变[16]，试验所用煤样在高应

力作用下表现出较大的延性潜力。不同作用方式下，

煤体脆性指数 B 见表 3。其中，B=(σp−σr)/σp；σp 为峰

值强度；σr 为残余强度。由于没有显著的脆性跌落，

B 很小。
 
 

表 3    高应力原煤在不同刺激模式下的力学行为

Table 3    Mechanical behavior of coal subjected to high stress under different stimulation modes

刺激方式（σ2=σ3=60 MPa） 力学行为

通气
（4 MPa）

注水
（8 MPa）

扰动 泄压孔
峰值应力
σv /MPa

应力
跌落

脆性
指数[22]

变形特性

小幅度 大幅度
竖直孔
（∥σv）

水平孔
（⊥σv）

峰值应力前 峰值应力后

× × × × × × 117.5 轻微 0.064 轻微扩容 压实

√ × × × × × 123.9 无 ≈0 扩容 扩容

√ √ × × × × 112.7 轻微 0.049 扩容 扩容

√ × √ × × × 149.2 轻微 0.059 扩容 扩容

√ × × √ × × 138.7 轻微 0.075 扩容 扩容

√ × × × √ × 117.5 轻微 0.027 扩容 轻微扩容转压实

√ × × × × √ 83.3 轻微 0.073 体积几乎不变 压实

 

3） 深部煤体处于高地应力、高孔隙压力及强开

采扰动环境中，发生强动力灾害、瓦斯难抽采和围岩

大变形等工程难题的可能性明显增大[4-5]。在不同刺

激作用下，含水平孔高应力煤体强度最小，其次是含

气注水煤体。相比煤体在 60 MPa围压下的纯力学

破坏，其强度分别下降了 29.1% 和 4.1%，起到了有效

的释能解危效果。这由图 4中应力−应变所围面积

可知，与煤层防冲、防突进行卸压钻孔和高压注水作

业，从而降低煤层强度、释放较高弹性势能的目的一

致。然而，在高应力作用下，深部煤层可能会出现塑

性大变形[23]，图 5中含水平孔煤体出现了峰后体应

变一直增大、体积不断压实的试验现象，其背后的力

学机制和形成的可能性将在后文分析。

4） 不同于应力循环加卸载导致煤岩体损伤劣化，

实验采取的峰前等幅度循环加卸载扰动对高应力煤

体起到了显著的力学性能提升作用，强度提高了

18.0%～27.0%。在进行循环加卸载扰动破煤时，尤

其是对于频繁微扰动[9]，存在强度大幅增大的可能性，

对此应重点关注。深部高应力−高孔隙压力环境下，

煤岩强度增大有利于结构稳定性，但增大过程中，需

要考虑煤体变形及裂隙扩展对渗流的影响，以及强

度−变形−渗流行为对煤与瓦斯安全共采的平衡

关系。 

3　注水条件下高应力含气煤体变形

εv εH εh

εii εh

εH εii εv

对各向异性主应变采取归一化处理，即：以

σH=σv=σh=60 MPa下的各向主应变为基点，对 σv≥

60 MPa范围内的应变进行归一化处理。其中，各向

异性归一化主应变分别表示为 、 和 ，归一化体

应变为 。图 6为含气煤体在增压水作用前后 、

、 和垂向应力 σv 随 的变化情况。整体上，含

气煤样和含气注水煤样的应变变化趋势一致，即随

着垂向应力的加载，煤样在 H向上始终膨胀；在 h向

上，煤体在峰值应力前处于膨胀状态，在峰值应力后
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转为压缩，这是由边界条件为力控制所致。也就是，

煤样在破坏瞬间，由于 H向上煤体膨胀量大，而 h向

在力控制边界条件下，为了保持应力不变，不断在 h
向上压缩煤样。此外，两者均呈剪切破坏模式（表 2），
水压愈高，越利于抵消裂隙面的法向应力[24]，相比含

高压瓦斯煤体，高水压进一步减小了煤体发生剪切破

坏所需的应力，含气注水煤样侧向膨胀量更大，导致

其强度降低。试验所用高瓦斯煤样的破坏强度相比

纯力学破坏条件下的煤样出现了小幅增大，但在正

常误差范围内，可以认为这是由煤样之间的结构离

散性造成的。煤层注水作为一种常见的防突手段，应

重点研究其对煤层能量的分配机制及耗散规律[6]。
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4　高应力煤体等幅扰动变形
 

4.1　煤体破裂及各向主变形特性

弹性区等幅循环加卸载作用下，高应力煤体的

破裂形貌见表 2。可知，煤体在小幅度和大幅度循环

作用下，分别形成了以剪切为主和以拉伸为主的破

裂，均属于准脆性破裂。在循环荷载作用期间，煤体

呈现出压实特性，可用不可恢复变形程度（ΔεH-j、Δεv-j、

Δεh-j 和 Δεii-j）表征其压实过程，如第 j 次循环加卸载

至 σH=60 MPa时 ， ΔεH-j=εH-j−εH1， Δεv-j=εv-j−εv1， Δεh-j=
εh-j−εh1，Δεii-j=εii-j−εii1（图 7）。图 8为不可恢复各向异

性主应变和体应变随加载次数 N 的变化情况。由图

可知，ΔεH、Δεv、Δεh 和 Δεii 随 N 增加呈增大趋势，表

现为煤体处于压实状态，并未出现煤体随着循环加

卸载次数增加而力学参数劣化的现象。最终在不同

幅度循环加卸载下，煤体强度均出现明显增加（表 2），
CHEN等[10] 在单轴压缩条件下，对砂岩进行循环加

卸载时也得出了类似的结论。因煤岩自身结构的各

向异性特性，ΔεH 并未因 σH（垂直于层理面）的循环加

卸载而造成最大不可恢复量。此外，从破坏形貌上

看（表 2中小幅度水平向视图），煤体在小幅度扰动
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下激活了以割理为代表的天然闭合裂隙（在高应力

下被掩盖），它们“均匀”地分布于煤体，而不是聚集

在宏观剪切破断面附近，且煤体脆性指数也在小幅

度循环加卸载后增大，这些特性有利于体积压裂，使

煤层形成复杂缝网。然而，煤体在循环加卸载弹性

压实后，渗流通道部分闭合，渗流路径的迂曲状况也

更加复杂。多孔介质平均迂曲度计算式[25] 为

δ =
1
2
+

√
1−φ
4
+

√
1−φ

√√ 1√
1−φ

−1

2

+
1
4

2
(
1−

√
1−φ

) （1）

式 中 ： δ 和 φ 分 别 为 煤 体 的 迂 曲 度 和 孔 隙 率 ，

dφ=dV/V≈dV/V0=dεii
[26]；V0 为煤体初始体积，m3；V 为

煤体当前应力状态下体积，m3。

图 9为煤体迂曲度随加载次数的变化情况。可

知：① 循环加卸载次数的增加同样导致了煤体渗流

路径迂曲度 δ 增大，不利于瓦斯抽采；② 大幅度和小

幅度循环扰动期间 δ 分别增大了 6.9% 和 1.4%，其增

量有限。因此，需要注意弹性循环加卸载阶段的力

学强化、压实变形效应和迂曲度增大对深部难抽软

煤层的立体缝网改造压裂、渗透性能提升与煤层稳

定性之间的平衡关系。
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4.2　应变硬化行为

以小幅度循环加卸载模式为例，选取图 7中第

26和 28次加卸载进行应变行为分析，得到如图 10所

示的煤体真三轴各向应变变化情况，具有如下特性：

① σH 在每一循环加卸载过程中，εH 和 εii 增大，煤体

在 H向（垂直层理方向）上处于压缩状态；在泊松作

用下，εh 和 εv 减小，煤体在 v向和 h向上膨胀。每一

次循环加卸载均形成封闭的滞回环，表明煤体已经

产生了不可恢复的侧向变形，造成了损伤[10]（图 11a），
但弱于煤体力学性能的循环压实强化。② 随着循环

加载次数增加，εH、εv、εh 和 εii 均增大，滞回环右移，

煤样在各向上均处于压缩状态（图 8）。εh 和 εv 增大

的原因为 σH 由 45 MPa加载至 60 MPa过程中煤体

侧向（v向和 h向）因泊松效应引起的膨胀程度弱于

σH 由 60 MPa卸载至 45 MPa过程中煤体侧向的收缩

效应，即煤体变形表现出卸荷强化效应，引起滞回环

右移，图 11中出现的“脚趾”形证明了上述观点。
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进一步，以第 26次循环加卸载为例，弹性煤体

εH 随 σH 加载呈良好的线性关系。由于强卸荷效应

产生了“脚趾”形，使得 εH 在 σH 卸载末端与其具有

较弱的线性关系。在对煤岩进行扰动刺激中，扰动

应力方向垂直于层理面， HOL等[27] 认为大多数微裂

隙沿着层理结构发育，可认为扰动应力相当于煤岩

内大部分受力裂隙的法向应力，可利用 Bandis-Bar-
ton（B-B）模型对深部高应力煤体在趋于压实过程中

所伴的应变硬化行为进行合理的应力−应变关系量

化[28]。 

4.3　深部扩容型高应力煤体变形行为

εii εv对于深部扩容型高应力煤体，可知 与 在整个
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加载阶段（峰值应力前后用星标区分）大致呈线性关

系（图 12），这表明其在峰值应力后并未出现非线性

体积快速膨胀现象，这与浅部低围压作用下破裂煤

体的变形行为不同，整体上呈深部“弱脆性、强延性”

的力学特性；此外，这种峰后归一化体应变的线性变

化行为可能只受高应力状态控制，而与高压注水和

等幅循环扰动等刺激作用无关。 

5　含孔高应力煤体变形
 

5.1　含孔高应力煤体破裂及各向异性变形

WONG等[19] 认为岩石脆性与延性之间的重要

区别是宏观尺度上是否能够承受大量的永久应变而

不发生宏观破裂。由表 2可知，含水平孔煤样（简称

H−煤体）钻孔坍塌，未见明显的宏观破坏裂隙；含竖

直孔煤样（简称 v−煤体）钻孔形状保持较好，呈剪切

破坏。图 13为含孔高应力煤体的归一化各向主应

变和体应变随垂向应力（σv）加载的变化情况。一方

面，结合图 6可知，高压注水和含水平孔模式下煤体

强度下降的力学和变形本质不相同。由于通气注水

煤体内部随着加载产生了裂隙，引起侧向膨胀[29]，进
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εH

εh

εH εh

而诱发扩容失稳导致强度降低；由于含水平孔煤体

钻孔塌陷引起垂向始终呈压缩状态，导致其不断压

实变形，最终使煤体失去承载能力。由于压缩行为

未出现突变，类似于软煤流变特性，煤体在达到峰值

强度前应力起伏，缓慢增大。另一方面，2种布孔形

式下，其各向变形均表现出明显的各向异性特性；相

比 v−煤体，H−煤体在达到峰值应力时的归一化 εv 更
大（横坐标数值），表现为垂向上产生了更大的变形

量，即压实潜力更大。在水平主应变上，H−煤体 整

体上缓慢增大，试样在 H向呈压缩状态； 呈先减小

后增大趋势，试样在 h向上先膨胀后压实。v−煤体

和 整体减小，即在泊松效应下，试样水平向呈膨

胀变形。上述变形特性受煤体自身各向异性结构特

性、布孔位置和泊松效应的叠加控制所致。
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5.2　H−煤体变形

在致密和多孔岩石中，剪胀通常被视为脆性断

裂的前兆，而碎裂压实流动的破坏可能伴随着正或

负的体积变化[19]。ISSEN等[18] 认为在合适的非弹

性材料参数（包括剪胀系数和摩擦因数）下，轴对称

压缩路径（σ2=σ3 保持不变，σ1 增大）更有利于形成岩

石压实带。剪胀系数为塑性体积应变增量与塑性剪

切应变增量之比[30]，计算式为

β = −
dεpii
dγp

（2）

dεpii dγp

dεpii dγp
其中，β 为剪胀系数； 为塑性体应变增量；

为塑性剪应变增量。 和 的计算式为

dεpii = dε
p
1+dε

p
2+dε

p
3 （3）

dγp
=

√
2
3
depi jdepi j （4）

depi j塑性偏应变 的计算式为

depi j = dε
p
i j−

1
3
δi jdεpV （5）

dεp1 dεp2 dεp3式中： 、 和 分别为最大、中间和最小塑性主

应变；δij 为克罗内克符号。

摩擦因数可由破断角（或破坏角）给出[31]：

µ =

2
√

3sin
(
1
4
π− θ

)
3− sin

(
1
4
π− θ

) （6）

式中：μ 为摩擦因数；θ 为煤岩破坏面与最大主应力

间的夹角，（°）。
煤体在塑性区的各向主应变由弹性应变分量和

塑性应变分量组成。为求解煤体在峰值应力处的弹

性应变，认为图 14a中阴影部分近似为煤体的弹性

受力阶段。基于此，在弹性区对各向异性主应变等

距取点得到图 14b所示的线性拟合关系，其拟合效

果良好，相关系数 R2>0.97。在此基础上，预测煤体

在峰值应力处的各向弹性主应变和各向塑性主应变。

最后通过式（2）得到含水平孔煤体在峰值应力处的

剪胀系数 β=−1.524<0，表明其随着垂向应力加载产

生了压实变形响应。将 θ=90°代入式（6），得到煤体

摩擦参数 μ=−0.661。
局部化分岔理论可用于深部煤岩变形带演化趋

势预测，利用单屈服面模型解释含水平孔原煤出现

压实行为的合理性[18]，其压缩带、剪切带和膨胀带的

控制范围分别为

β+µ ⩽ −3(N1+ νN2)
1+ ν

（7）

−3(N1+ νN2)
1+ ν

⩽ β+µ ⩽ −3(N3+ νN2)
1+ ν

（8）

β+µ ⩾ −3(N3+ νN2)
1+ ν

（9）

由此得到 β−μ 平面上，受载煤岩材料出现压缩
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带、剪切带与膨胀带的边界方程分别为

β1 = −µ−
3(N1+ νN2)

1+ ν
（10）

β2 = −µ−
3(N3+ νN2)

1+ ν
（11）

β3 =

1
3
µ

(
1
√

1− ν
− 1
√

2

)
− 1
√

2
N2

1
3

(
1
√

1− ν
+

1
√

2

) （12）

β4 =
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3
µ

(
1
√

1− ν
+

1
√

2

)
+

1
√

2
N2

1
3

(
1
√
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− 1
√

2

) （13）

β5 =

−1
3
µN3+

1− ν
1+ ν

(
1− 3

4
N2

3

)
+

1
4

N2
3

1
3

N3−
4
9
µ

（14）

N1,3 = −
1
2

N2±
1
2

√
4−3N2

2 （15）

τm =

√
1
6

[
(σ1−σ2)2+ (σ1−σ3)2+ (σ2−σ3)2

]
（16）

ν

其中，β1～β5 为煤岩材料局部变形带的剪胀边界

线；Nk=Sk/τm；k=1，2，3为应力状态；Sk =σk−σm，为主偏

应力，MPa；σk 为各向异性主应力，MPa；σm 为平均主

应力，MPa；τm 为Mises等效剪应力，MPa； 为泊松比，

取 0.3。含水平钻孔高应力煤体在峰值应力处的应

力参数见表 4。
将表 4中的数据代入式（10）—式（14）得到如图 15

所示的剪胀系数 β 与摩擦因数 μ 空间关系（μ-β）。图

中，AOG 和 BOH 为可能出现的压实区域；AOJD 和

BOIC 为可能出现的剪胀区域；DJE 和 CIF 为可能出

现的膨胀变形带。对于某一固定变形带，可能因应

力路径不同产生不同的 μ 和 β，如直线 LK 上的点 M
和 N。由试验计算得到的 μ 与 β，结合单屈服面模型

可知，含水平孔高应力煤体出现局部压实带是合理

的，即图 15中“★”标记所在的位置，处于压实带预

测区域内。v−煤体变形与强度特性类似于其他刺激

模式的力学行为，不再分析。
 
 

表 4    应力参数

Table 4    Stress parameters

主应力/MPa 主偏应力/MPa 剪应力
τm/MPa

应力状态参数

σ1 σ2 σ3 S1 S2 S3 N1 N2 N3

83.3 60 60 15.53 −7.77 −7.77 13.45 0.577 0.577 −1.155
 
 

6　讨　　论

1） 在高应力煤体处于弹性状态下进行循环加卸

载试验，当煤体接近或处于亚临界稳定状态时，由于

岩石抗压不抗拉特性，小幅度扰动（或微扰动）可能

会使煤体内天然裂缝（或其他孔洞缺陷，图 3）边缘形
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图 14    含水平孔煤体各向主应变与最大主应力之间的关系及拟合

Fig.14    Relationship and fitting between anisotropic strain and major stress of coal containing parallel borehole
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成更多拉伸裂纹，以及激活更多天然闭合裂隙[32]，并

不断相互左右形成剪切破坏带，最终造成其失稳破

坏。因此，煤体弹塑性在各阶段的扰动响应需进一

步厘清，尤其是扰动引起的不可恢复变形或流变效

应造成的煤体压实与扩容。此外，真三轴应力路径

下，煤岩在弹性阶段的非等幅循环加卸载（如逐级形

式）及在塑性区的应力循环作用也需要研究。

2） 弹脆性煤体在进入塑性阶段后，由于裂纹萌

生、扩展和相互作用，渗透率因剪胀扩容而随着应力

进一步加载出现止跌回升，这一现象已得到广泛的

试验验证[21]。塑延性煤体由弹性受力状态进入塑性

阶段和峰后大变形阶段时，体应变始终增大，煤体体

积不断被压实。压实带形成过程中伴随着孔隙率不

断减小，渗透率也会出现不同程度降低。由于试验

方案和装置的限制，研究无法在应力加载破坏煤样

过程中采集渗透率数据。然而 ，刘玉冰等 [33]、

WANG等[34] 对取自同一地区不同煤层的试样进行

低水平应力条件下渗流试验时，发现煤样体积也出

现了塑性区和峰后再压实现象，由此导致了渗透率

（由达西定律确定）降低（图 16），认为这是由剪切颗

粒堵塞渗流通道所致。在深部高应力赋存环境下，

颗粒粉碎或剥落、孔隙坍塌的宏观现象很有可能意

味着原煤压实变形带的形成，而压实变形区的形成

意味着孔隙率减小，同样也会造成渗透率减小，不利

于瓦斯抽采。因此，如何有效识别煤层在外界刺激

下的压实变形带成为关键，尤其是煤体渗透率演化

过程与低角度剪切破坏密切相关时更应注意（图 15
中直线 LK）。此外，压实变形区内的煤体渗流特性

改造也很重要。
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Fig.16    Coal permeability decreases with volumetric compac-
tion in plastic zone

  

7　结　　论

1） 在不同扰动刺激模式下，高应力煤体的脆性

指数较小，未出现典型的峰后脆性跌落现象，表现出

深部软煤力学特性。不同作用模式下，煤体破裂形

貌呈现剪切型、拉伸型和压实型，这与其所处应力环

境（如轴对称拉伸和轴对称压缩）和各向异性变形特

性有关。

2） 水平钻孔和高压注水可降低高应力含瓦斯煤

体的强度，有利于高能煤体释能解危。两者对煤体

强度的劣化机制不同，前者是由垂向位移连续增加

和钻孔塌陷闭合所致，最终以压实变形方式减小了

承载力；后者则是由于水平向扩容膨胀导致煤体突

然破坏失稳所致。

3） 通过含水平孔煤体在峰值应力处的弹性应变

和塑性应变，解出剪胀系数 β<0（=−1.524）和摩擦因

数 μ（=−0.661），并基于单屈服面模型，得到含水平孔

深部煤体的 β、μ 有可能出现在压实区，验证了卸压

钻孔作用下高应力煤体出现峰后压实行为的合理性。

4） 等幅度循环扰动对深部高应力煤体承载能力

起着强化作用，循环扰动期间煤体各向变形因泊松

效应产生的膨胀滞回环对其力学劣化作用甚微，但

增大了煤体内裂隙的平均迂曲度。由于煤体变形对

卸荷响应更敏感，随着循环加卸载次数增加，各向变

形均呈压缩特性、各向不可恢复变形量增大，表现为

应变硬化行为。
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