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Abstract: In response to the challenging problem of deformation and failure of surrounding rock and support structures in roadways under
rock burst, a comprehensive research approach involving numerical calculations, field measurements, and laboratory experiments was em-
ployed. The study analyzed the characteristics of deformation and failure of surrounding rock and support structures in roadways under
strong impact load, investigated the influence of impact load and mining-induced stress on the dynamic mechanical response of surround-
ing rock and support structures, developed impact-resistant support materials, and proposed a support-unloading coordination control tech-
nology, and selected typical rockburst mines for application. The research findings indicate that when the roadway roof is impacted, the
maximum particle velocities of the roof, sidewalls, and floor are 1.41 m/s, 0.63 m/s, and 0.25 m/s, respectively. The surrounding rock on
the advancing side of the roadway is most affected by the impact, followed by the lateral side, with the retreating side being the least af-
fected. The combined effect of mining-induced stress and impact load results in a larger range of roadway damage, with the plastic zone
area reaching 2.1 times the original rock stress. With increasing impact energy, the deformation and peak particle vibration velocities of the
roadway increase sharply, and there is noticeable fluctuation in the force on the bolts (cables). Blast destressing has little effect on the an-
choring force of the roadway sidewall bolts but significantly affects the anchoring force of the anchor cables, with an average reduction of
26.7% in anchoring force of the anchor cables. The yield strength of high impact toughness anchor rod is 800 MPa, the elongation at break
is 20%, and the impact absorption energy is 150 J; The maximum force extension rate of the high elongation anchor cable is 8%, and the
tensile strength is 1 770 MPa. The coordination control technology was field-tested in a Kuangou coal mine, where the forces on the side-
wall bolts ranged from 53 to 84 kN, and the forces on the roof anchor cables ranged from 122 to 219 kN, all within the safe allowable
range. The shallow and deep separation layers of the roof have not occurred, and even in the event of a large energy microseismic event,
the support system remained stable.

Key words: roadway support; rock burst; impact load; energy absorption support; regional pressure relief
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Monitoring curve of roof separation near the roof fall area
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Fig.10 Vibrational velocity curve of top plate mass point of the roadway under different impact loads under condition of original

rock stress
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