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Abstract: In response to the challenges posed by significant deformation and maintenance difficulties in the surrounding rock of deep gob-
side entries. This study focuses on the 7312 head entry as the research background. The deformation and failure characteristics of the sur-
rounding rock in deep gob-side entries and their underlying causes were analyzed through a combination of field research, theoretical ana-
lysis, numerical simulations, and engineering practices. By employing the Mohr stress circle model, the stress distribution and evolution
process of the surrounding rock in a deep gob-side entry during the service period were examined. The primary factors contributing to the
deformation and failure of the surrounding rock in deep gob-side entries were identified. Furthermore, the principle of three-dimensional
pressure relief and prevention in deep gob-side entries was elucidated and its effectiveness was validated. A three-dimensional pressure re-

lief and prevention technology system for deep gob-side entries, with as the core, was proposed. The study findings suggest that: (D Key
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factors leading to the deformation and failure of the surrounding rock in deep gob-side entries encompass high static loads, mining-in-

duced stresses, rotation of rock block B, support strength for the roadway, mechanical properties of the surrounding rock, and the efficacy

of rock pressure relief. (2) The optimal timing for implementing the three-dimensional stress relief and control system in deep gob-side

entries should be after supporting the gob-side entry or during phases unaffected by mining activities. The implementation targets include

rock block B, the hard roof above the solid coal, and stress-concentrated areas in the solid coal. 3 Field engineering applications have

demonstrated that the three-dimensional pressure relief and prevention technology system for deep gob-side entries can mitigate stress

transmission between rock block B and gob-side entry, reduce the impact of mining stress, transfer concentrated stress from the surround-

ing rock.

Key words: deep coal mine; gob-side entry; surrounding rock; pressure relief; control
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Fig.10 Vertical stress distribution of surrounding rock in gob-side entry with and without pressure relief
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