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摘　要：煤矿隐蔽致灾因素是制约矿井安全、高效、绿色、智能化开采的关键地质因素，透明地质是

实现煤矿隐蔽致灾因素探测的重要技术手段，其中地质构造透明化勘查是重中之重。为建立适用于

不同地质条件或煤矿区的地质构造隐蔽致灾因素透明化勘查技术体系，首先在对构造隐蔽致灾因素

分析的基础上，提出了区域构造分析入手，地面、井下联合调查的构造隐蔽致灾因素快速排查技术

体系，高效圈定矿井地质构造异常发育区、分析其分布规律；基于以往地面地质勘查钻孔资料和三

维地震勘探数据初步分析全井田煤层厚度、断裂构造以及顶底板构造起伏形态；采用槽波勘探、定

向钻探、超前物探、随采随掘地震、巷道快速写实等综合技术手段，对采掘工作面的地质构造逐级

透明化；采用理论分析、工程类比、数值模拟、相似材料模拟、现场工程验证等方法，对地质构造

类型、属性特征与煤层厚度、煤岩体结构、瓦斯涌出量、瓦斯压力、顶板矿压的相关性进行分析，

研究在开采条件下采掘工作面过断裂构造不同区内的瓦斯参数、顶板/矿压灾害的响应规律，通过特

征参数阈值选取实现工作面构造隐蔽致灾因素的监测和预警；利用数字化技术实现对不同地质构造

及其灾害属性的数字化表达，通过建模软件实现对构造隐蔽致灾因素的三维透明化显示；构建了区

域构造地质研究、隐蔽致灾因素精细勘查、致灾威胁性科学评价、地质构造透明化 4 个层级的地质

构造隐蔽致灾因素逐级透明化勘查技术体系，并在屯宝煤矿进行了工程实践。研究结果表明：屯宝

煤矿地质构造类型复杂，不仅发育有地堑式、地垒式、雁列式、挠曲等断裂构造样式，同时发育有

小型冲刷带、断层及其破碎带等；复杂地质构造是诱发矿井瓦斯突出、顶板灾害、应力集中以及矿

井冲击地压显现等矿井灾害的关键性地质因素，断层对巷道应力集中的影响范围为 10～15 m，对工

作面的影响范围为 20～30 m；工作面内存在瓦斯富集区，瓦斯含量与瓦斯涌出量的分布具有明显分

带性，且分带性受断层的控制；煤层瓦斯的含量、瓦斯涌出量随着工作面与断层的距离变化呈现对

数相关性，在距离断层 25 m 处出现明显增加，在大于 25 m 区域变化不大，在小于 25 m 区域随着距
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离的减小呈指数型增大。工作面初次来压位置前后 20 m、工作面见方前后 30 m 为中等冲击危险区域，

采空区煤柱影响区、终采线前后 50 m、落差大于 4 m 的断层前后 30 m 等区域为弱冲击危险区域；

冲击地压、顶板和瓦斯等多种矿井灾害的隐蔽致灾因素叠合区域为灾害防治的重点区域。研究成果

实现了构造复杂区域地质构造隐蔽致灾因素与矿井灾害透明化的无缝衔接，为煤矿区传统的地质勘

查向数字化、智能化的发展提供了可行的技术路径。

关键词：煤矿安全；隐蔽致灾因素；地质透明化勘查；地质保障技术；断层；智能开采；透明地质
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Transparent exploration technology for hidden disaster-causing factors of
geological structure：taking Tunbao Coal Mine in Xinjiang as an example

WANG Haijun1, ZHENG Sanlong2, WANG Xiangye1, DONG Mintao1, WU Yan1, MA Liang1,
YANG Wei3, ZHU Yuying1

 （1. CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China; 2. Tunbao Coal Mine of CHN Energy Xinjiang Energy Co., Ltd., Changji

831113, China; 3. CHN Energy Group Xinjiang Energy Co., Ltd., Urumqi 830000, China）

Abstract: Hidden disaster-causing factors in coal mines are key geological factors that restrict the safety, high efficiency, green and intelli-
gent  mining,  and  transparent  geology is  an  important  technical  means  to  realize  the  detection  of  hidden  disaster-causing  factors  in  coal
mines, among them, geological structure transparent exploration is the most important. In order to build a transparent exploration system
for hidden disaster-causing factors of geological structure that applies to different geological conditions or coalfield areas, first, based on
analysis of factors causing hidden structural disasters, technical system of rapid investigation of factors causing structural hidden disasters
is put forward, which is based on the regional structural analysis and the joint investigation of the ground and underground, effectively de-
lineate the mine geological structure anomaly development area and analyze its distribution law. Based on the previous borehole data and
3D seismic data, the coal seam thickness, fault structure and roof and floor structure undulation patterns are analyzed. Comprehensive tech-
nical  means such as  channel  wave exploration,  directional  drilling,  advanced geophysical  prospecting,  earthquake while  mining/driving,
cuttings recording, rapid realistic description of roadway are adopted, further realizing the gradual transparency of the geological structure
of the mining face, adopting the methods of theoretical analysis, engineering analogy, numerical simulation, similar material simulation,
field  engineering  verification.  Correlation  between  geological  structure  types,  attribute  characteristics  and  mine  disasters,  such  as  coal
seam thickness, coal rock mass structure, gas emission, gas pressure, roof strata behavior, is analyzed. Response law of gas parameters and
roof/ground pressure disasters in different areas of the mining face passing through the fault structure under the mining condition is stud-
ied. Monitoring and early-warning of the hidden disaster-causing factors of the face structures are realized by selecting the threshold value
of the characteristic parameters, and the digital expression of the different geological structures and their disaster attributes is realized by
using the digital technology, 3D transparent display of hidden disaster-causing factors is realized by modeling software. The technical sys-
tem of geological structure exploration with 4 levels of regional structure geology research, exploration of hidden disaster-causing factors,
scientific evaluation of disaster-causing threat and geological structure transparency is constructed, and carried out engineering practice in
Tunbao Coal Mine. the results show that the types of geological structures in coal mine are complex, and there are not only graben type,
barrier type, echelon type and flexure type of fault structures, but also small-scale scouring zone, fault and fracture zone. Complex geolo-
gical structure is the key geological factor to induce mine gas outburst, roof disaster, stress concentration and mine rock burst. The influ-
ence of faults on stress concentration of roadway is 10 ～ 15 m, and the influence on working face is 20 ~ 30 m. There are gas enrichment
areas in the working face, the distribution of gas content and gas emission has obvious zonation, and the zonation is controlled by faults.
The content of coal seam gas and the amount of gas emission show logarithmic correlation with the distance between the working face and
the fault, and increase obviously at the distance of 25 m from the fault, and change little in the area of more than 25 m, in the region less
than 25 m, it increases exponentially with the decrease of distance. 20 m before and after the first pressure position and 30 m after the face-
to-face are medium impact danger areas, the coal pillar affected area in goaf, 50 m before and after the final line, and 30 m before and after
the fault with drop greater than 4 m are weak impact risk areas. The overlapping area of hidden disaster-causing factors such as rock burst,
roof and gas, is the key area of disaster prevention and control. The research result realizes seamless connection between the hidden dis-
aster-causing factors of geological structure and the mine disaster, and provides a feasible technical path for the development of traditional
geological exploration in coal mine area to digitalization and intelligentization.
Key words: coal  mine  safety；   hidden  disaster-causing  factors；   geologically  transparent  exploration；   geological  guarantee  technology；
fault； intelligent mining； transparent geology
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0　引　　言

煤矿智能化开采是煤矿企业迈向高质量发展的

必由之路[1-3]，而煤矿隐蔽致灾因素是制约矿井安全、

高效、绿色、智能化开采的关键地质因素[4-6]。透明

地质是实现煤矿隐蔽致灾因素勘查的重要技术手

段[6-7]，其中地质构造透明化勘查是重中之重。地质

构造不仅控制和影响工作面煤层厚度、煤层顶底板

起伏形态，也是矿井水害、顶板/矿压、瓦斯、火灾、

煤尘等多种矿井灾害的隐蔽致灾因素，因此，地质构

造隐蔽致灾因素的透明化勘查是实现煤矿智能开采

的关键技术，尤其是地质构造复杂的矿井。为此，以

地质构造条件复杂的国家能源集团新疆能源有限责

任公司屯宝煤矿为研究背景，以实现矿井高水平级

智能化建设为目标，以制约煤矿安全、高效开采的关

键性地质因素地质构造为切入点开展研究。

屯宝煤矿位于新疆准南煤田硫磺沟矿区，目前

前国内外学者关于新疆准南煤田地质构造的研究多

集中在区域大尺度构造形成机制、演化、控煤及煤层

气富集模式[8-10] 和构造样式、岩浆侵入[11-12] 以及煤

层气富集机理[13-14] 等方面；构造与矿井灾害的研究

主要为断层的导水性、不同属性断层顶板矿压显现

规律、断层的加固与注浆改造、工作面及其巷道过断

层的安全技术措施等；煤矿区地质构造及其异常区

的精细探测主要采用地面二/三维地震技术[15-16]、井

下采煤工作面的槽波勘探[17-20]，工作面回采前的无

线电坑透勘探[21]，采掘工作面的地面、井下瞬变电磁

勘探 [22] 和微动勘探 [23] 以及钻孔窥视等物探方法。

上述勘探技术基本解决了煤矿区地质构造的宏观发

育特征及其采掘工作面地质构造与富水异常的圈定

问题，基本可以保障煤矿的安全开采并为灾害治理

提供靶区。但是，随着近年来智能开采理论和工程

实践的发展，煤矿智能开采对地质构造探测提出了

更高的要求[17,19]，主要体现在对煤层厚度及其顶底板

构造起伏形态的控制达到亚米级别，对小型断裂构

造的探测要求做到超前、精准的控制。为实现工作

面地质透明化，随采地震、随掘地震[24-26]、采掘工作

面的地质雷达[27]、孔中瞬变电磁勘探[21]、孔中地质

雷达[28]、钻孔多参数地球物理测井、孔间电法 CT[29]、

孔间地震波 CT[30]、缪子勘探[31] 等多种地质及其构

造透明化探测技术应用而生，为透明地质[2,6,32-34] 提

供了有效的物探技术支持。但物探的多解性和井下

物探的局限性，导致其无法完全解决所有的问题，还

需以地质分析为背景，进一步结合地质钻探进行精

细地解释。因此，构造地质[35]、沉积环境及其灾害关

系研究[36-39] 等先进的技术被应用于煤矿智能开采地

质保障。此外，常规钻探和井下定向钻探技术被广

泛应用于煤矿井下工作面煤岩界面探查[7,40-41]、孔内

物探工作开展、超前瓦斯治理[42-43]、探放水[1,44]、注

浆防灭火[45]、坚硬顶板超前弱化改造[46]、冲击地压

灾害防治等[46-47] 矿井灾害的探查与防治以及各类隐

蔽致灾因素的专项探查与治理。但上述研究仍缺乏

针对不同地质条件或煤矿区的系统性勘查技术。

为从根本上解决这一问题，提出煤矿地质构造

隐蔽致灾因素透明化勘查的思路，采用区域及矿井

构造分析，智能开采工作面超前物探、钻探、测试化

验等综合探查地质构造特征，结合各类灾害如瓦斯、

顶板、冲击地压等灾害探查成果，分析地质构造与隐

蔽致灾因素的关系，并通过数字化、三维地质建

模[3,6,34,48-49] 实现对智能开采工作面构造隐蔽致灾因

素的逐级透明。 

1　构造地质特征
 

1.1　区域构造地质特征

准南煤田位于准噶尔盆地南缘中段冲断带的齐

古断褶带东部。准噶尔盆地南缘为典型的陆相多旋

回叠合盆地，经历了印支、燕山及喜马拉雅多期强烈

构造运动的叠加改造，构造特征及地层展布极其复

杂[8-9]，形成了现今“东西分段、南北分带”的构造格

局（图 1）。硫磺沟矿区西起三屯河，东至乌鲁木齐河，

北以乌鲁木齐西大断裂为界，南抵柴窝堡盆地。其

构造线展布与天山褶皱带方向基本一致[9]，由一系列

呈北东东方向展布的背向斜、逆冲断裂组成（图 1a）。

区内主要发育喀拉扎背斜、西山逆断层、阿克德向斜、

头屯河向斜、桌子山背斜、小梁子逆断层及郝家沟背

斜。区内中生代盆地受燕山期和喜山期构造运动影

响，地层发生多次强烈隆起和夷平，地层倾角 11°～
34°，局部达 50°～75°。

屯宝井田西山窑组厚度约 225 m，含煤 16 层，含

煤系数约 17.98%。可采煤层 9 层，分别为 4、5、7、9、

10、14−1、14−2、15−1、15−2，可采煤层厚度为 13.16～

74.96 m，平均 37.83 m，可采含煤系数为 16.81%。 

1.2　矿井构造特征

屯宝井田整体为缓倾斜单斜构造，地层走向呈

北东—南西，倾向北西，地层倾角 10°～24°。受背向

斜构造影响，区内断层较发育，以高角度正断层为主，

断层走向以北北西、北西向为主，倾向以北东向为主，

南西向次之（图 1b）。正断层多表现为张性，分布密

集，断层倾角普遍为 70°～80°，断层规模较大。逆断
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层多为压性，断层倾角普遍为 50°～60°（图 1c、图 1d），

破坏作用较强，断层面后期被上覆泥岩充填，表现为

封闭性断层。井田内三维地震解释断层 17 条，其中，

落差 30～50 m 断层共 2 条，落差 10～20 m 断层共

3 条，落差 5～10 m 断层共 7 条，落差 0～5 m 断层

共 5 条。矿井采掘过程中揭露断层（断点）83 条，多

为落差小于 5 m 的正断层。

屯宝煤矿开采 4～5 煤层，经多年的开采揭示，

目前主要矿井灾害隐蔽致灾因素类型为坚硬顶板、

冲击地压、瓦斯富集，上述灾害与构造隐蔽致灾因素

存在密切的关系，制约矿井设计、采掘工程部署以及

煤矿安全、高效、绿色、智能化开采，其中断层是最

主要的构造隐蔽致灾因素[50-53]。屯宝煤矿作为国家

能源集团新疆能源的首批智能化建设示范矿井，其

中瓦斯和矿井冲击地压隐蔽致灾因素的透明化是重

点示范方向。确定研究对象为 WII02040502 智能开

采工作面，其地质构造较为典型，具有示范意义。
 

2　透明化勘查技术体系

透明地质是实现工作面智能开采的前提，而地

质透明化勘查是实现透明地质的关键性技术手段。

因此，需要根据不同煤矿区地质构造条件和煤矿智

能化建设需求，探索并构建一套适应于该区域或矿

井的工作面地质透明化勘查技术体系。针对屯宝煤

矿地质特征和多年的生产实践，归纳总结各类地质

分析、综合勘查工程，综合分析各类技术适用性及其
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图 1    矿井构造特征

Fig.1    Characteristics of mine structure
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有效性。以制约煤矿安全、高效、绿色、智能化开采

的关键性隐蔽致灾因素为切入点，构建面向智能开

采的地质构造透明化勘查技术框架（图 2），在此基础

上详细介绍各类技术及其勘查效果。
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图 2    构造隐蔽致灾因素透明化技术框架

Fig.2    Technical framework of transparent hidden disaster-causing factors of geological structure
 
 

2.1　构造透明化勘查技术 

2.1.1　地震勘探技术

地震勘探技术包括地面的二/三维地震勘探和井

下工作面的槽波勘探技术。其中三维的地震勘探技

术可以实现对 5 m 以上断层的识别、煤层顶底板构

造起伏形态、古河流冲刷带以及煤层厚度的解释；槽

波勘探技术可用于对采煤工作面内部小型地质构造

如断层、冲刷带、挠褶带等进行超前探测，结合地质

及其钻探进行物探异常的地质构造属性解释。槽波

探查发现 WII02040502 工作面内发育多条断裂构造，

显示存在异常区 8 处（图 3）。
 
 

能量衰减倍数

10.00 5.02.5 7.5

图 3    无线电波透视和透射法槽波探查成果

Fig.3    Radio wave perspective and transmission method slot
wave detection results

  

2.1.2　地质钻探技术

利用地面钻探、井下常规超前钻探及井下定向

钻探（图 4a）等地质钻探技术，在钻探过程中对钻井

液消耗量、钻探工艺参数、钻井岩屑的变化进行统计、

分析，可第一时间获取孔内地质构造（如断层、破碎

带等）的特征信息。同时，根据煤岩层及其界面的特

征对煤岩石界面进行定向钻探，配合岩屑编录、钻效

分析、钻孔窥视等技术，可以实现智能工作面煤岩界

面定向钻探识别[7]，并利用三维地质建模技术实现对
 

定向钻孔轨迹

(a) 井下定向钻探技术装备

(b) 基于定向钻孔的工作面三维地质模型

定向钻机
专用定向
工具

随钻测控仪 通缆钻杆

图 4    工作面定向钻探查及三维地质模型

Fig.4    Directional drilling exploration and 3D geological model
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工作面煤层的模型构建（图 4b）。

屯宝煤矿钻遇断层具有憋泵、泥浆消耗量大或

孔内漏失、孔口岩屑返渣变少变大、钻进效率底下、

掉块卡钻等钻探响应特征。 

2.1.3　地质写实

地质写实通过对煤矿井下掘进工作面及巷道和

回采工作面开切眼揭露的剖面进行定期测量和素描

写实，记录煤层厚度、煤层顶底板岩性、煤岩体结构、

煤层及其夹矸、标志层、地层产状以及裂缝等特征的

变化，如图 5 所示。

屯宝煤矿发育的地质构造类型包括正逆断层相

关的地堑（图 5a）、地垒式断裂组合（图 5b）、雁列式

组合（图 5c）和挠曲构造（图 5d）以及煤层厚度的突变

带、断层破碎带等构造形式。WII02040502 工作面

主要发育 8 条断层，断层落差 0.40～5.70 m，以正断

层为主，断面倾角 15°～78°，以高倾角为主。
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图 5    煤矿井下巷道写实编录

Fig.5    Realistic catalog of underground roadways in coal mines
 
 

2.1.4　地球物理测井技术

地球物理测井技术包括地面常规的地球物理测

井技术、井下地球物理多参数测井等技术。井下多

参数地球物理测井技术（图 6a）可以实现对全钻孔段

岩性、裂缝、断层、岩浆倾入等地质构造的可视化成

像，完成对钻孔电视、自然伽马、视电阻率、自然电

位、激发极化电位、孔斜等多参数的孔内地球物理测

井参数的获取，为岩性识别、断层带、顶板富水性等

探查提供定量和定性解释。断层破碎带具有高自然

伽马、高电阻率等特点。 

2.1.5　孔中物探技术

适应于解决地质构造的孔中物探技术包括钻孔

窥视、孔中地质雷达、孔间 CT 等技术。其中钻孔窥

视（图 6b）是地面和井下应用最广泛的技术，可以实

现对超前探测钻孔、定向钻探钻孔地层岩性及其断

层破碎带、裂缝等地质构造的解释和识别（图 6c、
图 6d）。 

2.1.6　随采/随掘探测技术

随采/随掘探测技术通过在工作面回采前方/掘
进巷道后方提前安置地震传感器，利用采煤机、掘进

机截割煤壁时产生的震动信号，实时接收地震波在

遇到断层、陷落柱、采空区等异常时产生的反射波。

随采/随掘地震信号通过光纤环网实时传输到地面处

理中心后，利用专用处理软件开展大规模的并行计

算，动态生成掘进巷道前方地质构造的成像结果，可

以满足快速掘进对超前探测精度、速度要求[22-23]。 

2.2　地质构造与矿井灾害关系分析

采用数值模拟、相似材料模拟、监测监控、理论

分析等多种技术手段对矿井地质构造（如断层、褶皱）

与矿井灾害进行分析，运用数值统计、回归分析、相

关性分析等多种分析方法，综合研究不同类型的地

质构造隐蔽致灾因素与矿井灾害的关系。重点研究

地质构造与应力集中区分布的关系，地质构造带瓦

斯富集特征及其地质构造附近瓦斯异常涌出的规律，

采掘工作面过断裂构造煤层顶板移近和变形以及矿

压显现特征。 

2.2.1　断裂构造与应力集中的关系

WII02040502 工作面通过断层时，在断层破碎带

影响范围内出现煤岩松散、破碎，巷道围岩应力集中，

巷道底鼓，顶板下沉等问题，由此导致断层带 300 m
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范围内两帮移近量超过 1 m，底鼓达 0.50 m，对工作

人员及其设备构成严重威胁。因此，需要在查明构

造的前提下进一步查明断裂构造对应力集中的影响

及其范围。

对工作面过 T2 断层期间巷道不同位置锚杆应力

监测和煤柱侧应力分布规律进行研究，结果表明：

1）PASAT−M 应力探测结果（图 7）显示，受 T2

断层影响，围岩应力在距断层 20～30 m 范围内出现

应力集中区域，将其划分为中等危险区域，运输巷一

侧的影响范围较回风巷一侧大。

2）回风巷与运输巷煤柱侧锚杆应力变化趋势基

本相似，距离工作面越远越小；受断层的影响两巷道

锚杆应力峰值出现明显的差异性，表现为运输巷应

力峰值出现在超前工作面 10～15 m，工作面回风巷

为 5～10 m。

因此，断层对工作面巷道的影响在 10～15 m 出

现应力峰值，工作面过断层 20～30 m 范围出现的应

力集中区是冲击地压灾害防治重点区域。
 

2.2.2　断裂构造与瓦斯富集的关系

对工作面瓦斯含量、瓦斯涌出量、钻孔窥视、裂

缝统计、采样点与断层面的距离等参数进行统计和

分析。工作面瓦斯分布特征如图 8 所示，断层附近

瓦斯参数变化规律如图 9 所示。结果发现：

1）工作面煤层瓦斯含量为 2.10～2.86 m3/t，在正

常区域瓦斯含量为 2.10～2.30 m3/t；工作面瓦斯涌出

量为 6.39～14.39 m3/min，工作面存在瓦斯富集区。

2）工作面瓦斯含量与瓦斯涌出量的分布具有明

显分带性，表现为在 F1～F2 断层、开切眼与 F6 断层

间的瓦斯含量相对低，而在 F3～F7 断层间为瓦斯富

集带。瓦斯含量与瓦斯涌出量呈明显的正相关性

 （图 9a）。

3）工作面瓦斯的含量、涌出量受断层的控制，其
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图 6    地球物理测井技术及孔中物探成果

Fig.6    Geophysics logging techniques and geophysical results in holes
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中 F3 断层带、F4～F5 断层带间存在 2 个相对较高富

集区，因此，该区域是瓦斯突出防治的重点区域。

4）通过对工作面断层及其裂缝的统计、分型分

维度与瓦斯含量关系分析，工作面瓦斯的含量或涌

出量与断裂构造的分型维数呈对数关系，相关性显

著（图 9b）。

5）煤层瓦斯的含量、瓦斯涌出量随着工作面与

断层的距离变化呈现对数相关性，相关性显著（图 9c、
图 9d）；瓦斯的含量、瓦斯的涌出量在距离断层 25 m
处出现明显的增加，在大于 25 m 区域变化不大，在

小于 25 m 区域随着距离的减小呈指数型增大。这

一结论与前述的断层对应力集中的影响是一致的，

因此，距离断层 25 m 区域是顶板冒落和瓦斯突出灾

害的隐蔽致灾因素叠合区域，为重点防治区域。 

2.2.3　断裂构造与矿压显现的关系

断层对煤岩层的物质结构和构造应力场分布的

影响程度取决于断层性质（包括断层倾角、断层充填

情况，断层面形态等）、断层围岩性质（断层面的抗剪

强度和岩体的抗拉强度）以及地应力状态。断层面

上的剪应力等于断层面的抗剪强度时，断层就处于

临界不稳定状态，此时轻微的扰动就可能引发断层

活化，甚至导致强烈的冲击地压。断层极大地扰乱

了地应力场的分布，这种对地应力的扰乱只是发生

在断层附近有限范围内，超过一定距离，地应力分布

恢复正常状态，因此，查明这一范围对冲击地压的探

测防治具有指导意义。通过现场监测、数值模拟与

相似材料模拟等多种方式综合研究表明：

1）针对应力集中区的围岩运动宏微观监测，结
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Fig.7    Stress state near fault
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果显示在距离工作面前方 3～15 m 是压力升高区，

其中 5 m 是峰值区，随后降低，孔内裂缝的密度明

显增加；在开采扰动条件下工作面过断层及其破

碎带煤岩体应力与变形加剧断层的活化，容易形成

工作面片帮和大面积冒顶以及冲击地压的显现

 （图 10a）。

2）由于断层破坏了煤岩层的连续性，采动应力

演化规律变得异常复杂。当工作面逐渐靠近断层

时，超前支承压力的正常前移受阻，使得采场覆岩压

力大部分作用在采煤工作面和断层面之间的煤体

上，导致该部分煤体支承压力大幅度增加（图 10b—

图 10d）。

3） 从 对 断 层 附 近 采 掘 活 动 的 数 值 模 拟 分 析

 （图 11a、图 11b）可以看出，当工作面在断层一侧向

断层推进时，工作面前方的垂直应力和水平应力均

有明显的集中现象，由于构造区域存在地质构造应

力场，通常使煤岩体的构造应力尤其是水平构造应

力增加。在支承压力异常和构造应力异常的双重影

响下，断层带附近煤岩发生压力型冲击的可能性将

会加大。

4）相似材料模拟（图 11c）、数值模拟与工作面回

采矿压监测、巷道变形、锚索应力应变等结果具有高

度的相同性，表明数值模拟参数及模型选择合理，相

似材料模拟配比及开挖方法得当，可以揭示工作面

过断层矿压及冲击地压显现的机理。

因此，工作面初次来压位置前后 20 m 和工作面

见方前后 30 m 为中等冲击危险区域，采空区煤柱影

响区、停采线区域前后 50 m、落差大于 4 m 的断层

前后 30 m 等为弱冲击危险区域[52]。 

2.3　地质构造隐蔽致灾因素勘查技术体系

通过对上述各技术的分析结合煤矿多年的生

产实践和应用效果检验，形成了适应于屯宝煤矿

的地质构造隐蔽致灾因素勘查技术体系，如图 12
所示。

构建的智能开采工作面的构造隐蔽致灾地质

因素勘查技术体系可分为 4 个层级：①区域构造

地质研究。②隐蔽致灾因素的勘查，隐蔽致灾因

素勘查重点针对矿井智能开采工作面而开展，以

历史资料分析快速圈定工作面地质构造类型及其

潜在的隐蔽致灾异因素，在此基础上针对地质构

造和隐蔽致灾因素类型，选择合适的物探技术（如

槽波、坑透、随采随掘探测、测井或孔中物探等）
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图 9    断层附近瓦斯参数变化规律

Fig.9    Variation of gas parameters near faults
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进一步确定物探的异常区和隐蔽致灾因素的特征；

在物探圈定的基础上开展钻探验证（如定向钻探

的超前探测、采样测试等），获取隐蔽致灾因素评

价或探测治理的关键性数，保障巷道快速掘进及

工作面的快速回采；在生产过程中根据生产揭露

和监测监控资料及数据，动态调整隐蔽致灾因素

范围及其评价参数。③在探测和获取参数后采用

理论分析、数值模拟、相似材料模拟、工程类比等

方式，进行地质构造隐蔽致灾因素评价，根据评价

结果提出针对性探查防治措施和工程治理方案。

④最终，通过相关性分析、数字化技术、数据融合

以及三维地质建模技术，将隐蔽致灾因素调查、分

析、评价的成果三维呈现，实现构造隐蔽致灾因素

的透明化。
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图 10    工作面过断层矿压显现现场监测特征[53]

Fig.10    On-site monitoring characteristics of ground pressure behavior in working face passing fault[53]
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Fig.11    Movement law of overburden structure of working surface over fault roof plate[52]

2024 年第 9 期 　煤  炭  科  学  技  术 第 52 卷

182



3　构造隐蔽致灾因素透明化技术
 

3.1　多源数据融合 

3.1.1　数据源分析

屯宝煤矿 WII02040502 工作面先后采用了三维

地震、无线电波透视、槽波勘探、井下钻探、巷道写

实编录等技术手段对工作面断层进行精细探查。但

技术手段不同导致成果数据类型多样、格式不统一，

探测工程空间范围不同，解释成果的精度也有所差

别。本次三维地质建模数据来源主要包括：钻孔数

据，如钻孔名称、孔口坐标、终孔深度、孔斜数据、分

层数据等，巷道写实、超前探煤孔写实等地质写实数

据均以钻孔数据进行处理；通过轨迹测井计算得到

的各煤层分界面、煤层厚度等资料；三维地震数据，

如导入的已解释好的地震数据，其格式为 SEGY，加

载前经时深转换处理；槽波数据，如断层、褶皱等地

质地质构造发育情况；生产数据，如矿压监测数据、

瓦斯参数测试数据、邻近工作面地质构造及隐蔽致

灾因素特征等。 

3.1.2　数据综合

数据融合的基础是数据的集成与综合，即将不

同的数据源通过坐标转换、数据投影等方法进行数

据归一化处理。以工作面地理坐标为约束，将三维
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图 12    地质构造隐蔽致灾因素勘查技术体系

Fig.12    Technology system of geological structure hidden disaster-casuing factor exploration
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地震成果、槽波勘探、井下钻探数据成果转换为工作

面绝对坐标，为数据处理做好准备。

数据集成后，对多源数据进行选取、位移、化简

等操作，将其统一在同一比例尺上。 

3.1.3　数据融合分析

不同的物探、钻探、实测手段针对同一地质构造

可解释出不同的成果，即便是同一技术手段，也会解

释出不同的结果，处理这一矛盾是数据融合主要解

决的问题。本次三维地质建模以矿井高精度三维地

震解释成果为基础，以地面钻孔资料进行地质地震

标定，以巷道写实数据、探煤厚钻孔数据为约束，对

三维地震数据、槽波数据和无线电波透视数据进行

校正。数据流经过以上 3 个层次顺序处理，最终形

成三维建模数据。 

3.2　复杂断层三维可视化建模 

3.2.1　断层建模

1）生成断面：将断层建模数据通过一定的空间

插值方法进行计算，生成断层面。断面生成过程需

控制断面垂向延伸长度，生成的断面根据该断面钻

孔断点进行校正（图 13a）。

2）断面校正：为保证计算生成的断面与实际断

层展布规律一致，对生成的断面进行人工校正。编

辑断面形态，使之与巷道揭露信息一致。根据断层

复杂接触关系及多期次断层与地层切割关系，修正

断层发育情况（图 13b）。 

3.2.2　地层模型

关键层面模型：工作面模型以煤层为关键层面

进行建模，采用多点统计学方法进行煤层形态空间

插值建模，通过计算机多种曲面插值算法，计算地层

面，根据钻孔分层点校正地层面，设置地层接触关系

等，进而建立地层格架模型（图 14）。确定工作面地

层起伏、煤层厚度变化信息，与断层展布模型切割相

交，对交线平滑处理后形成工作面静态三维地质模

型（图 15）。

三维地层体模型：断层模型与关键层面模型

 （图 15、图 16）建立后，对层面进行纵向网格剖分，内

插形成多个地层网格，垂向网格结合平面网格进行

三维网格化，最终建立地层模型。
 

3.3　构造隐蔽致灾因素透明化

采用数字化技术将上述隐蔽致灾因素进行数字

化表达，如断层导致的应力集中区在断层分布的 20 m
范围内，瓦斯含量及其涌出量异常区分布在断层面

25 m 附近，断层导致的巷道变形、工作面回采应力、

应变等矿压显现在 30 m 范围等阈值指标进行危险

区的圈定；同时，结合地质构造引发的如煤层厚度的

 

(a) 断层三维地震体

各层断面

(b) 断层三维地质建模

图 13    三维地震体及其断层建模

Fig.13    3D modeling of seismic body and its fault
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图 14    地层格架三维地质模型

Fig.14    3D geological model of stratigraphic lattice
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变化突变带、应力集中区、挠褶带等隐蔽致灾因素进

行三维灾害属性建模。

最终，将地质模型（如地层、构造、煤层厚度及其

顶底板起伏）与构造隐蔽致灾因素属性模型进行融

合，建立 WII02040502 工作面构造隐蔽致灾因素三

维透明化模型（图 17）。
 
 

厚煤带 薄煤带

断层
挠曲带

应力集中区

应力集中区 瓦斯富集区

图 17    三维地质构造隐蔽致灾因素分布

Fig.17    Distribution map of hidden disaster-causing factors in 3D geological structures
 

由图 17 可知，WII02040502 工作面存在的构造

隐蔽致灾因素包括由 8 条断层构造导致的应力集中

区、煤层厚度突变带、瓦斯富集区、挠褶带等类型。

上述各类因素的叠加区域为高危险区，单一因素区

为中等危险区，其他区域为低危险区。煤矿存在因

断层而诱发矿井冲击地压显现、瓦斯突出、采掘工作

面过断层顶板冒顶、应力集中等矿井灾害风险。
 

4　结　　论

1）构建了煤矿智能开采工作面构造隐蔽致灾因

素透化勘查技术体系，以屯宝煤矿为研究对象、以

WII02040502 智能开采工作面为工程背景，实现了对

该工作面隐蔽致灾因素的快速调查、多手段综合勘

查、多方法的分析与评价，最终，采用数字化、相关性

分析技术、三维建模实现了对构造隐蔽致灾因素的

三维透明化展示，形成了区域构造地质研究、隐蔽致

灾因素精细勘查、致灾威胁性科学评价、地质构造透

明化的 4 个层级的逐级地质构造隐蔽致灾因素透明

化勘查技术体系。

2）查明了屯宝煤矿总体构造形态为单斜构造背

景上发育有断层、挠褶皱及其低幅度的褶曲构造，其

中以断裂构造为主，断裂构造的发育严重的制约着

 

0 100 m亚关键层
煤层

主关键层

逆断层 正断层

图 15    断层及关键层面三维静态地质模型

Fig.15    3D static geological model of faults and critical layers
 

煤层正断层逆断层

0 100 m

图 16    工作面煤层及断层三维地层体模型

Fig.16    3D stratigraphic model of coal seam and fault in working face
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矿井采掘工程面的设计和部署，同时威胁着煤矿的

安全、高效、绿色、智能化开采。

3）屯宝煤矿与地质构造相关的隐蔽致灾因素包

括断层诱发的地应力集中、煤层厚度突变、煤层瓦斯

富集、煤岩体结构特征变化、巷道掘进冒顶、工作面

回采强矿压显现、顶板冲击地压显现等矿井灾害致

灾因素，其中冲击地压和瓦斯突出是主要的矿井灾

害类型。

4）研究成果对新疆自治区矿井智能化建设、隐

蔽致灾因素透明化勘查具有借鉴意义。此外，上述

研究成果为屯宝煤矿智能化建设和煤矿隐蔽致灾因

素勘查治理的初步成果，后续将隐蔽致灾因素透明

化与灾害的监测预警相融合，实现煤矿隐蔽致灾因

素透明化与预警联动。
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