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Image recognition method of coal gangue in complex working

conditions based on CES-YOLO algorithm
LI Deyong'?, WANG Guofa'*?, GUO Yongcun'?, WANG Shuang'?, YANG Yuhao'?

(1.State Key Laboratory of Deep Coal Mining Response and Disaster Prevention and Control, Anhui University of Science and Technology, Huainan
232001, China; 2. Collaborative Innovation Center for Mining Intelligent Technology and Equipment, Huainan 232001, China; 3. China Coal
Technology & Engineering Group, Beijing 100013, China)

Abstract: Aiming at the complex working conditions environmental factors such as high noise, low illumination, motion blur and mass
gangue mixing in coal mines, which lead to the problems of misdetection, omission and low detection accuracy in gangue recognition, a
gangue recognition model based on CFS-YOLO algorithm is proposed. The ConvNeXt V2( Convolutional Neural Network with NeXt

Units Version 2) feature extraction module is adopted to replace the two C3(Cross stage partial bottle neck mudule) modules at the end of
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the backbone network, which effectively mitigates the feature collapse problem as well as maintains the diversity of the features in the net-
work delivery process by adding Masked Autoencoder and Global Response Normalization layers to the ConvNeXt architecture. The Focal-
EIOU (Focal and Efficient Intersection Over Union) loss function is adopted to replace the original CIOU (Computer Intersection Over
Union) loss function to optimize the sample imbalance problem in the bounding box regression task by means of its Focal-Loss mechan-
ism and adjusting the sample weights, which improves the convergence speed and localization accuracy of the model. The parameter-free
attention mechanism (Simple Attention Mechanism, SimAM) is added to the back-end of each C3 module of the backbone network to en-
hance the model's ability of extracting key features of coal gangue targets with large scale variation or low resolution by virtue of its atten-
tion weight adaptive adjustment strategy. The effectiveness and superiority of the proposed CFS-YOLO model is verified by ablation and
comparison experiments. The experimental results show that the CFS-YOLO model can effectively improve the detection effect of coal
gangue under the complex environment of high noise, low illumination, motion blur and large amount of mixed coal gangue in coal mines.
The mean Average Presicion (mAP) of the model reaches 90.2%, which is 3.7% higher than the mean Average Presicion (mAP) of the ori-
ginal YOLOVSs model, and the average detection speed reaches 90.09 FPS (Frames Per Second), which can fully satisfy the demand of
real-time detection of coal gangue. Meanwhile, compared with six YOLO algorithms such as YOLOvSs, YOLOv7-tiny and YOLOv8n, the

CFS-YOLO model has the strongest adaptability to the complex environment of coal mines and the best comprehensive detection perform-

ance, which can provide technical support for intelligent and efficient sorting of coal gangue.

Key words: YOLOVSs; coal gangue recognition; feature extraction; loss function; attention mechanism
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DenseNet 405 7675391 18.3 58.52 85.2
ConvNeXt V2 258 7064 063 16.0 93.46 87.6

3.4 AEARKEHIRGELEFR

Ji YOLOVSs £ 8 R F () J& CIOU 1y T I A
FIECSCHE 22 0] i 5 2% pRERC, {HLER T CIOU #512k R 4K
FEVNZrad R A 430 25 B RE i S A e S
EEENAESLES, NN SBURSGEEZE . Hit

ARG 56 38 5 % FE AN [ 69 10U 512k R 8, 4B &5 41 2k
PRIFIOG AR RV BB (4 5% i, B0 45 R UL 3, R TRl AR
BRI ESCAE I R A b 1 o7 408 2 i £ R0 S48 O it 2 4
P 7a A& 76 iR .
HH 2% 3 A%, SIOU #6155 pR %A Alpha-1I0U $ii 2%
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PRECFH R T CIOU $ 2k sR BT Y500 B S4B DR AN
1 86.5%, Tiii EIOU #5i 2k bR %4 il Focal-EIOU #3i 2k pRi
BT CIOU i 2k sRECE- YAE BEX (i 86.5% 44
F 2T 87.0%, JEECHELEE 4351k 270 Fi1 13.7, #4%
FARAs . fi &l 7a #1E 7b AT %1, Focal-EIOU i 2k bR
BOAE 8 AR ML R SR s /N, T
CIOU, EIOU, SIOU FI Alpha-IOU PUF{5 2k p& %, H
PR R HLA A /NI Sk o 25 BT,
Focal-EIOU $ 2 R 5 (4 WA SIS B -, HA SR
WA SR B R ) RS B . A E AR RIAE: 55
WH A 2 PR AR AR . Tk T
R VA A6 0 38 B S A7 AR 1 bR, A A FR A AL A
R S A A BARR MRS H s, i
Focal-EIOU i 4k bR 40H i3 Focal A H X &R IEA TN
FUAL B, 22 T B 1R, Focal A HE 2348 K LA K 4
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DRI IR, 4 T TE A IR, Focal AXEE 2398/ )s LA
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B H AR, FF 8T S0 TR AR o Gl 1P T
RS AN AL 2 [1] AR , AR m] LB G st AT F Bp A
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&3 AE 10U Rk mHI L RIS L

Table 3 Comparison of experimental results with different
IOU loss functions

Hh R (E/ %
TP F, SEIRE RERIE %
H A
cIou 872 85.7 0.83 86.5
EIOU 87.7 86.2 0.82 87.0
SIOU 87.6 85.4 0.82 86.5
Alpha-IOU 86.8 86.1 0.82 86.5
Focal-EIOU 87.9 86.1 0.83 87.0
030
— CIOU — EIOU — SIOU
0.28 1 — Alpha-IOU — Focal-EIOU
0.26
0.135
0.24
g 0.130 7
0221
2020
018 F
0.16
0.14 |
0.12

0 50 100 150 200 250 300
LI/
(b) WIFRER R 2L

H7 R I0U 4 %k & % th &
Fig.7 Loss function curves for different IOU

3.5 AmEFrEANHKELER

W TE T MG C3 MY 5 It A Sim-
AM TCSE R P, e T A [ 3 N R
SR, $E ARG R AR b e R sl I o R AT H
Pr REERHIE A AR ILAE J) o o0 T 50 3E SimAM L& 1F
B B PEBE, AERR 3 X 4% B9 AH R 7 B AL IR

SAIMAT CA EZ JIHLE . CBAM V& 1 HLiH |
SE VER IALHI A ECA 1R I HL A 7T a5, ik
aE R IR 40 RIS R AT LIA H, SimAM T
T B IALEIE AR B R S 280 R, P
YOG YR ik 88.7%. I, s SimAM &
TR E BRI e

F4 AEEBDNHIX X LE

Table4 Comparative experiments of different attention mechanisms

_— R/ % - 2
ERHLH SHd TERUB KK E PR/ %
HE it

CA 89.0 88.2 8074303 17.6 270 88.5

CBAM 89.1 87.8 7721735 17.1 314 88.5

SE 88.3 87.9 7721343 16.5 294 88.1

ECA 87.8 86.1 7025027 16.0 286 86.9

SimAM 89.2 88.1 7025023 16.0 278 88.7
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(] FsF, Ay S J00 5 X0 b 2 AR AN () 3 2 T AL
B X 5, R Grad-CAM( Gradient-weighted Class
Activation Mapping) 73 51| AR HUR R 7F £ J5 3 )2 i 4
FIEL, 53 5% B 2 RG2S .- Grad-CAM S fifi 28 ()
Ze AT AL TR, AT DARR 4 AN [R] 07 i A B A 1 T
PET, DA T 5 Ay Ll AR ABE A8 ) A S8R, AR [
KRNl 8 i o

WA S AR RSy S N AR O I S 4 S ]
BRSNS N (R NG 5 3 - B i R N5

i/, K 8 Al YOLOvSs HRIFIE ] ECA
TR I HLE RS TR EUR A T et B T T4
KAGRLEE, DT S B0 45 0 B s s AG:, i i P
CA FER IHLH] . CBAM 7E & SHLH . SE FER 1AL
il AN SImAM 624 2 F1 ML AR R B fip 56 1 T4
2 DX R R AR A B, 0 T At R 4 I e b O . (H
HXF & B, 4 SimAM T2 i 5 AL i s
OB, HETHIER] T SimAM o203 25 HLk A
B

(a) YOLOvSs (b) CA (c) CBAM
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B8 A AR EE A HLH A

Fig.8 Heat maps of different attention mechanisms added

3.6 HELKIE

T 2 4EE YOLOVSs BRI IE D 4 26 T
B B ARSI PR RE, E 2R A ConvNeXt V2 RRAEHEHL
BEHL | Focal-EIOU #612k PR FI SimAM LS HE )
ML 3 Flode I S o A T S0 F 45 I et 5 s 17 &
P, 33 T RIS S AT T4 I SR B X YOLOVSs
LAY WP e s e, IR g5 SR A & 9 Fk S
FiR.

AT A JETCATAT ISR YOLOVSs By, L
YRS BE X ME A 86.5%, - ¥R I 3 B 15 F] 103.15
FPS. % B 248 D 253N A ConvNeXt V2 4
fEHRE BUBLER | Focal-EIOU 1 2% BREURT SimAM &2
TR IHLHI AR, O Yo B2 S E A3 TR A
AR T 1.1%, 0.5% 1 2.2%, ~F- 2446 1) 5 FiE 45
A C figfmik 101.01 FPS, #5278 E EHIR G 24K
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Fig.9 Ablation experiment mAP curve
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Table 5 Comparison of results of ablation experiments
o G e T P . B
ConvNeXtV2  Focal—EIOU  SimAM 1t ive] WPE/EPS K%

A — — — 87.2 85.7 86.1 79.7 0.82 103.15 86.5
B J — — 88.0 87.3 86.7 80.0 0.83 93.46 87.6
C — v — 87.9 86.1 86.3 79.8 0.83 101.01 87.0
D — — % 89.2 88.1 86.6 80.9 0.83 83.33 88.7
E 3 J — 87.7 87.2 86.4 79.8 0.83 90.91 87.4
F \ — v 90.1 89.0 87.8 82.1 0.84 86.96 89.6
G — % 88.6 87.4 87.0 81.1 0.83 86.26 88.0
H \ v 90.8 89.5 88.8 83.2 0.85 90.09 90.2

AR T 0.9%. 3.1% F1 1.5%., -2k 3
BEMATFRIRL A Y94 B R R, BRI H O A
3 PO SR AR AR, T SAPHG R 4 R A T AR A
AFER T 3.7%, SOCR A, 4RI 5 B A 90.09
FPS, 747 2 SR AR5 oK
3.7 Xtbbikie

J T EWIEAE R A CES-YOLO Jh 46 s 4
() 255 Rar 4 R, 5 T ) — A A 00 45 i £ 0 o £
RSN 253055, 4% CFS-YOLO A7 55 Ho Al 25 st
B (YOLO A B4 | Faster R-CNN 7 | SSD fid
HUFN CenterNet £ 5 ) FE 4711 5 AN i, ik 485 SR
W3k 6,

TEZE 6 W, 73 B P BIRS BE X | AR A e B
AP 246 I 58 B2 3 A D7 T 7 MRS RLBEAT XS L, B

PRAHTANT

1) - 45 B2 {4 . CFS-YOLO H5 5 1) - H4 i
BIEHR 90.2%, 78 7 AL b i g, AHEET YOLOVSs.,
YOLOv7-tiny Fll YOLOvS8s 43 1 &5t 3.7%. 2.1% 5
1.5%. FH%Z T Faster R-CNN. SSD #lI CenterNet 43

1) CFS-YOLO A B Xof A6 PKS B T+ 50K fe M BH i
2) FEE I 5 ZR P E . CFS-YOLO BB () 2 50t
F YOLOVSs #il YOLOv7-tiny, {HZE ik T YOLOVSs.
Faster R-CNN. SSD #11 CenterNet, AH Xt & A [ 45 Al
2 2R B P ATE e 55 e - YRS B (%) [R) B AS 2
il R o ol B YE-SN5 W) I B I i € X A ol NP
AR Y SIS IAT: 55
3) S KA ARG 3 ) : CFS-YOLO A5 R (1) S 447 46
HEEH 90.09 FPS, 5 YOLOvS5s, YOLOv7-tiny 1 SSD
A SIME T 13.06. 25.56., 2.13 FPS, 5 YOLOVSs,
Faster R-CNN #l1 CenterNet £H v 43 7] & H 12.57.
62.68. 4.01 FPS, {HZ5 S FrAiiill i B 471 (60 FPS),
EATS 7 43T L ST S ARSI A 75 2R, ek, B AR A
3 FBEAY 14 - KA I S AP, (EURE R %) - YR E 1
{H 1% T CFS-YOLO %!,
3.8 HMZERITEE
T B8IE CFS-YOLO ffi?*”w%ﬁfrr PR 5 2R
Berb R ISR, e HGE SRR | e M | R EE RN
KA IR 4 ﬁl‘ﬁﬂ%ﬁ%ﬁ-ﬂﬂ?éﬁ YOLOVS5s il

BIEGH 10.2%. 4.1% 5 3.2%, RZEHEFR T CFS-YOLO #EA7 X FeAG I, 3045 2R an &l 10 firs
*6 AREEITLIRI
Table 6 Comparative Experiments of Different Algorithms
. K BEYI{E % . o 5 .
el W W%  HEE% F, SRt TS PRI /FPS R/ %
V2

YOLOvSs 87.2 85.7 86.1 79.7 0.82 7025023 16.0 103.15 86.5
YOLOvV7-tiny 89.3 87.0 85.1 80.0 0.82 6017 694 13.2 115.65 88.1
YOLOv8s 88.8 88.6 87.6 81.4 0.84 11136374 28.6 77.52 88.7
Faster R-CNN 81.2 78.9 70.7 78.5 0.74 28286000 940.0 27.41 80.0
SSD 86.7 85.5 81.7 78.6 0.80 23745000 60.0 92.22 86.1
CenterNet 88.0 86.0 88.2 70.2 0.84 32665000 70.0 86.08 87.0
CFS-YOLO 90.8 89.5 88.8 83.2 0.85 7064 063 16.0 90.09 90.2
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Fig.10 Comparison of CFS-YOLO and YOLOVSs test results
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