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基于 CFS-YOLO 算法的复杂工况环境下

煤矸图像识别方法
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摘　要：针对煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂工况环境因素导致煤矸识别存

在误检、漏检以及检测精度低的问题，提出一种基于 CFS-YOLO 算法的煤矸智能识别模型。采用

ConvNeXt V2（Convolutional Neural Network with NeXt Units Version 2）特征提取模块替换主干网络末

端的 2 个 C3（Cross Stage Partial Bottle Neck Mudule）模块，通过将掩码自动编码器（Masked Autoen-
coders, MAE）和全局响应归一化（Global Response Normalization, GRN）层添加到 ConvNeXt 架构中，

有效缓解特征崩溃问题以及保持特征在网络传递过程中的多样性；采用 Focal-EIOU（Focal and Effi-
cient Intersection Over Union）损失函数替换原 CIOU（Computer Intersection Over Union）损失函数，通

过其 Focal-Loss 机制和调整样本权重的方式优化边界框回归任务中的样本不平衡问题，提高模型的

收敛速度和定位精度；添加无参注意力机制（Simple Attention Mechanism, SimAM）于主干网络每个

C3 模块的后端，凭借其注意力权重自适应调整策略，提升模型对尺度变化较大或低分辨率煤矸目标

关键特征的提取能力。通过消融试验和对比试验验证所提 CFS-YOLO 模型的有效性与优越性。试验

结果表明：CFS-YOLO 模型对于煤矸在煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂环

境下的检测效果均得到有效提高，模型的平均精度均值达到 90.2%，相较于原 YOLOv5s 模型的平均

精度均值提高了 3.7%，平均检测速度达到 90.09 FPS，可充分满足煤矸实时检测的需求。同时与

YOLOv5s、YOLOv7-tiny 与 YOLOv8n 等 6 种 YOLO 系列算法相比，CFS-YOLO 模型对煤矿复杂环

境的适应性最强且综合检测性能最佳，可为煤矸的智能高效分选提供技术支持。

关键词：YOLOv5s；煤矸识别；特征提取；损失函数；注意力机制
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Image recognition method of coal gangue in complex working
conditions based on CES-YOLO algorithm
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Abstract: Aiming at the complex working conditions environmental factors such as high noise, low illumination, motion blur and mass
gangue mixing in coal mines, which lead to the problems of misdetection, omission and low detection accuracy in gangue recognition, a
gangue  recognition  model  based  on  CFS-YOLO algorithm  is  proposed.  The  ConvNeXt  V2（Convolutional  Neural  Network  with  NeXt
Units Version 2）feature extraction module is adopted to replace the two C3（Cross stage partial bottle neck mudule）modules at the end of
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the backbone network, which effectively mitigates the feature collapse problem as well as maintains the diversity of the features in the net-
work delivery process by adding Masked Autoencoder and Global Response Normalization layers to the ConvNeXt architecture. The Focal-
EIOU (Focal  and Efficient  Intersection Over Union) loss function is  adopted to replace the original  CIOU (Computer  Intersection Over
Union) loss function to optimize the sample imbalance problem in the bounding box regression task by means of its Focal-Loss mechan-
ism and adjusting the sample weights, which improves the convergence speed and localization accuracy of the model. The parameter-free
attention mechanism （Simple Attention Mechanism, SimAM） is added to the back-end of each C3 module of the backbone network to en-
hance the model's ability of extracting key features of coal gangue targets with large scale variation or low resolution by virtue of its atten-
tion weight adaptive adjustment strategy. The effectiveness and superiority of the proposed CFS-YOLO model is verified by ablation and
comparison experiments.  The experimental  results  show that  the CFS-YOLO model can effectively improve the detection effect  of coal
gangue under the complex environment of high noise, low illumination, motion blur and large amount of mixed coal gangue in coal mines.
The mean Average Presicion (mAP) of the model reaches 90.2%, which is 3.7% higher than the mean Average Presicion (mAP) of the ori-
ginal YOLOv5s model, and the average detection speed reaches 90.09 FPS (Frames Per Second), which can fully satisfy the demand of
real-time detection of coal gangue. Meanwhile, compared with six YOLO algorithms such as YOLOv5s, YOLOv7-tiny and YOLOv8n, the
CFS-YOLO model has the strongest adaptability to the complex environment of coal mines and the best comprehensive detection perform-
ance, which can provide technical support for intelligent and efficient sorting of coal gangue.
Key words: YOLOv5s； coal gangue recognition； feature extraction； loss function； attention mechanism

  

0　引　　言

煤炭是当前社会的主体能源，是可以清洁高效

利用的最经济安全的能源，而煤矿智能化是煤炭高

质量发展的必由之路[1-3]。原煤在开采过程中混有大

量矸石，这不仅会提高选煤和筛煤的成本，而且燃烧

排放的有害气体会污染环境，因此亟需将矸石从原

煤中分选出来[4-5]。随着人工智能技术的快速发展，

我国选煤行业正向工艺简单化、设备智能化、分选精

细化的方向发展[6-7]，煤矸智能分选的研究已成为煤

矸分选的重要课题，其中煤矸的精准快速识别是实

现煤矸分选的首要任务。近年来，国内外专家学者

针对煤矸识别已经做出了大量的研究，煤矸识别常

用 的 方 法 主 要 有 红 外 热 成 像 识 别 [8-9]、 多 光 谱 识

别[10-11]、射线识别[12-13] 和图像识别[14] 等，红外热成

像识别、多光谱识别和射线识别都存在一定局限性，

未能大规模推广使用。而随着计算机视觉技术的显

著进步，目前图像法[15-16] 因其具有非接触式识别、高

效性、准确性和多样性的优点，在煤矸识别领域的应

用更为广泛，其中基于深度学习[17-18] 的图像法具有

无需特征选择、特征表达能力强、检测速度快、检测

精度高等优势，从而逐渐成为了研究热点。徐志强

等[19] 基于 ResNet 等经典网络与 SqueezeNet 等先进

轻量级网络建立了煤矸图像识别模型，分析了各模

型的训练收敛情况，实现了模型的压缩。郭永存等[20]

提出一种基于 TW-RN 优化深度卷积神经网络（CNN）

的煤矸识别模型，通过迁移权重和简化神经元模型

优化方法对 4 种模型进行改进，依据每种模型取不

同超参数时的训练结果，进而确定每种网络的最优

超参数，最终得到效果最好的 Im-AlexNet 煤矸识别

模型。XUE 等[21] 提出一种基于 ResNet18-YOLO 的

煤矸石检测算法，通过特征尺度缩减和非结构化剪

枝，在保持检测精度的同时进一步提高其轻量级和

实时性。韦小龙等[22] 提出一种基于 CSPNet-YOLOv7
的煤矸检测模型，通过在 YOLOv7 主干网络引入跨

阶段部分模块和颈部引入递归特征金字塔与可切换

卷积，以提高煤矸的识别精度。WANG 等[23] 提出一

种多目标煤矸石图像检测模型 SSD-BSP，通过将

BSP 模型与 SSD 模型相结合，可以实现煤矸石快速

准确检测。曹现刚等[24] 利用迁移学习改进 AlexNet
特 征 提 取 网 络 ， 并 结 合 RPN（Region Proposal  Net-
work）网络获取煤和矸石的分类信息和像素坐标，检

测精度达到 90% 以上。

综上所述，不少专家学者对煤矸识别做了深入

研究，但是煤矿实际工况环境复杂，基于深度学习的

无监督视频 AI 识别关键技术及理论方面尚不成熟，

在识别精度和速度方面均达不到煤炭工业现场实际

应用需求[25]。针对煤矿高噪声、低照度、运动模糊

与大批量煤矸混杂等恶劣环境导致煤矸识别存在误

检、漏检以及识别精度低的问题，提出一种 CFS-YOLO
煤矸识别模型，可实现煤矿高噪声、低照度、运动模

糊与大批量煤矸混杂等复杂工况下煤矸精准实时检

测任务，从而为煤矸的智能高效分选提供技术支持。 

1　CFS-YOLO 模型
 

1.1　ConvNeXt V2 模块

掩码自动编码器 MAE（Masked Autoencoders）[26]

是一种用于计算机视觉领域的自监督学习方法，在
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预训练过程中会随机屏蔽部分像素，其中，编码器仅

处理可见像素，解码器使用编码像素和掩码标记重

建图像。预训练结束后，解码器停止工作，编码器处

理未处理的图像，并将其学习到的关键特征用于识

别图像。掩码自动编码器的整体结构如图 1 所示，

它由一个基于稀疏卷积的 ConvNeXt（Convolutional
Neural Network with NeXt Units）编码器和一个轻量

级的 ConvNeXt 解码器组成，以构建一个非对称的编

码器−解码器结构。
 
 

分层编码器 普通解码器

输入

稀
疏
卷
积

输出

图 1    掩码自动编码器结构

Fig.1    Masked autoencoder structure
 

采用 ConvNeXt V2 特征提取模块[26]，该模块是

将掩码自动编码器 MAE 和全局响应归一化 GRN
 （ Global  Response  Normalization） 层 添 加 到 Con-
vNeXt 架 构 中 ， 以 增 强 通 道 间 的 特 征 竞 争 。Con-
vNeXt V1 和 ConvNeXt V2 模块的结构如图 2 所示，

通过在维度扩展 MLP 层之后添加全局响应归一化

GRN 层，并删除 LayerScale[27]，以提高纯 ConvNets
在煤矸识别基准上的性能。
 
 

−LayerScale

LN

+GRN

1×1, 384 1×1, 384

96−d 96−d

LN

GELU
GELU

+ +

d7×7, 96 d7×7, 96

1×1, 96 1×1, 96

(a) ConvNeXt V1 模块 (b) ConvNeXt V2 模块

图 2    ConvNeXt V1 和 ConvNeXt V2 结构

Fig.2    ConvNeXt V1 and ConvNeXt V2 structures
  

1.2　Focal-EIOU 损失函数

目 前 YOLOv5 采 用 CIOU（ Computer  Intersec-
tion Over Union）[28] 作为边界框的定位损失函数，它

综合考虑了 3 个重要的几何因素：重叠面积、中心点

距离和纵横比。CIOU 损失函数虽然充分考虑到预

测框的纵横比，解决了预测框形状与真实框不一致

问题，但是其惩罚项并不完全对应于边界框宽度和

高度与其置信度之间的真实差值，导致收敛到预测

框和真实框宽度和高度之间的线对线比率时，惩罚

项会增加相似预测框和真实框间的损失，从而限制

了模型对两框相似性的有效优化。

因此，采用 Focal-EIOU（Focal and Efficient Inter-
section Over Union）[29] 作为边界框的损失函数，Focal-
EIOU 综合了 Focal Loss 和 EIOU（Efficient Intersec-
tion Over Union）的优势，在 CIOU 的基础上将纵横

比拆开，并加入 Focal 聚类优质的锚框，其计算公式

如式（1）、式（2）所示：

LossEIOU = 1− IOU+
ρ2(b,bgt)

C2
+

ρ2(w,wgt)
C2

w
+
ρ2(h,hgt)

C2
h

（1）

LossFocal−EIOU = IOUγ ×LossEIOU （2）

γ Cw

Ch

式中： 为控制异常值抑制程度的参数，一般为 3；

和 为最小外接矩形框的宽度和高度。

Focal-EIOU 损失函数引入 Focal-Loss 优化了边

界框回归任务中的样本不平衡问题，同时，引入

EIOU 使得预测框与真实框的宽度和高度差异最小

化，从而进一步提高模型的收敛速度和定位精度。 

1.3　SimAM 无参注意力机制

注意力机制可以使神经网络更加关注煤矸自身

的特征信息，忽略背景等非重要信息。由于通道注

意力机制生成的一维权重和空间注意力机制生成的

二维权重对于每个通道或位置中神经元的关注较为

均衡，从而限制模型学习更具区分性线索的能力。

而 SimAM（Simple Attention Mechanism）无参注意力

机制[30] 是具有全三维权重的注意力机制，通过发掘

每个神经元的重要性来计算注意力权重，从而更好

的细化特征，其整体结构如图 3 所示，图中 X 为特征

向量，C 为通道数，W 为宽度，H 为高度。
 
 

融合

C
W

X
H

3-D 权重

生成 扩充

C
W

H

图 3    SimAM 无参注意力机制结构

Fig.3    SimAM parameter-free attention mechanism structure
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SimAM 无参注意力机制主要是基于视觉神经

科学理论设计一种能量函数，表现出明显空间抑制

效应的神经元应该被给予更高的优先级，通过度量

目标神经元和其他神经元之间的线性可分性，以寻

找重要神经元。同时能量越低，神经元与周围神经

元的区别越大，重要性越高。 

1.4　CFS-YOLO 模型结构

CFS-YOLO 模型主要是在 YOLOv5s 模型的基

础上进行改进，其网络结构如图 4 所示，模型主要由

输入端（Input）、主干网络（Backbone）、颈部（Neck）

和头部（Head） 4 部分组成。

主干网络部分采用 ConvNeXt V2 特征提取模块

来 替 换 YOLOv5s 主 干 网 络 末 端 的 2 个 C3 模 块 ，

ConvNeXt V2 特征提取模块采用多分支结构和空间

变换网络，多分支结构可以同时学习多种尺度和方

向的特征，从而减少噪声的影响，提高特征提取的稳

定性和准确性；空间变换网络可以对输入图像进行

准确的空间变换，从而提高对运动模糊的鲁棒性。

同时，在主干网络每个 C3 模块的后端嵌入 Sim-
AM 无参注意力机制，在高噪声环境中，由于噪声的

影响，图像中有效信息较少，而 SimAM 无参注意力

机制通过自适应关注相似度较高的区域特征，从而

提高特征提取的准确性。在低照度环境中，Sim-
AM 无参注意力机制通过计算特征图中的相似度，对

于特别黑暗的部分给予更大的注意力权重，以帮助

网络更好地还原低照度图像的细节。
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注:Conv−卷积操作；Concat−特征融合；BN−批归一化操作；SiLU−损失函数；SPPF−空间金字塔池化结构；Maxpool−最大池化处理；

BottlenNeck−残差结构；Upsample−上采样处理

图 4    CFS-YOLO 网络模型结构

Fig.4    CFS-YOLO network model structure
 

颈部部分主要采用特征金字塔（Feature Pyramid
Network，FPN）结构和路径聚合网络（Path Aggrega-
tion Network，PANet），通过特征金字塔结构提供多

尺度的特征表达使模型获取更加丰富的特征信息，

通过路径聚合网络聚合不同特征层间的信息路径从

而实现特征的有效融合以及保持特征的完整性和
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多样性。

头部部分采用 3 个不同大小的卷积模块作为检

测层，然后应用锚框输出目标的置信度、类别和预测

帧位置，最后采用 Focal-EIOU 损失函数替换原 CIOU
损失函数作为锚框的损失函数，其通过 Focal-Loss 优

化边界框回归任务中的样本不平衡问题，通过 EIOU
使得预测框与真实框的宽度和高度差异最小化，以

提高模型的收敛速度和定位精度。 

2　数据采集与处理
 

2.1　煤矸识别分拣装置

在实验室搭建煤矸识别装置如图 5 所示，该试

验装置主要包括振动给料机、输送机、CMOS 工业

面阵相机、可调光源、照度计、调速装置、计算机和

光源控制器。利用该装置的图像采集系统采集煤矸

图像，CMOS 工业面阵相机型号为 Havel VisionM-
VCA050-11 UM/UC，数据采集帧数为 35FPS，分辨率

为 2 448×2 048。通过调节光源控制器外加 2 条 LED
灯条作为辅助光源可将采集区域光强稳定在（3 600
±20）Lux。采集系统与相机之间采用 USB3.0 接口通

信，实时显示采集画面并保存煤矸图像。 

2.2　数据采集与预处理

采集数据集分为 2 种，分别是井下工作面煤矸

数据集和实验室自制煤矸数据集。井下工作面煤矸

数据集采样于安徽省淮南市张集煤矿某工作面，共

采集煤矸图像 1 200 张。实验室采集的煤矸样本来

源于安徽省淮南市张集煤矿，通过调节光源照度、改

变煤和矸石摆放位置、不同大小、输送带速度等组合

采集煤矸图像 1 532 张。由于实际现场环境复杂，存

在多因素干扰，通过图像增强软件 ImgAug3.2 对采

集到的所有煤矸图像进行高斯模糊、运动模糊、高斯

噪声、椒盐噪声和亮度调节等操作，模拟煤矿高噪声、

低照度与运动模糊等实际情况，最终将数据集扩充

为 11 856 张，图像变换效果对比如图 6 所示。
 
 

给

煤

矸石

煤

矸石
给料机

输送机

调速装置

计算机
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照度计

煤矸样本

煤

矸石

试验物料

图 5    煤矸识别装置

Fig.5    Coal gangue identification device
 
 
 

(a) 原图 (b) 噪声 (c) 模糊 (d) 黑暗

图 6    图像变换效果对比

Fig.6    Comparison of image transformation effect
 

将获取到的 11 856 张图片采用 LabelImg 图像

标注工具进行手工标注，并采用“Coal”和“Gangue”
作为煤和矸石 2 类检测目标的标签。11 856 张图片

经过标注后共得到 125 976 个标签，其中包括 65 116

个煤和 60 860 个矸石。将标注好的数据集保存为

Pascal VOC 格式的 XML 文件，最后将标注完成的数

据集按 8∶2 的比例随机划分为训练集和验证集，并

从额外拍摄的图像中选取未经任何处理的 300 张图
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像作为测试集，用于测试 CFS-YOLO 模型的检测

性能。 

3　试验与结果分析
 

3.1　模型训练

试验所有算法的训练以及测试均基于 AutoDL
云服务器平台进行，网络模型训练环境具体配置见

表 1。
 
 

表 1    网络模型训练环境

Table 1    Network model training environment

配置参数 类型

中央处理器CPU Intel(R) Xeon(R) Platinum 8255c

图形处理器GPU NVIDIA GeForce RTX 3 090（24 GB）

加速环境 CUDA11.3

语言环境 Python3.8

深度学习框架 PyTorch1.11.0
 

网络模型训练之前，优化模型配置文件中的相

关参数，以获取最优训练模型。图像输入尺寸设置

为 640×640；训练批量大小设置为 32；线程数设置为

16；初始学习率设置为 0.01；训练迭代次数设置为

300。 

3.2　模型评价指标

在该试验中，主要评估指标[31] 为：精确率（Preci-
sion）、召回率（Recall）、精度均值（Average Precision）、

平均精度均值（Mean Average Presicion）平均检测速

度（Average Detection Speed）和 F1 值（F1 score），部分

评价指标公式如下：

P =
TP

Npred
=

TP
TP+FP

（3）

R =
TP
NGT
=

TP
TP+FN

（4）

AP =
w 1

0
P(r)dr （5）

mAP =
1
n

n∑
i=1

AP(i) （6）

FPS =
Nf

Tt
（7）

F1 =
2PR
P+R

×100% （8）

Npred NGT

Nf Tt

式中：TP（True Positive）为将正样本预测为正确的数

量；FP（False Positive）为将负样本预测为正确的数量；

FN（False Negative）为将正样本预测为错误的数量；

为预测出的所有检测框的数量； 为所有真实

框的数量； 为检测到的图像总数量； 为总检测

时间。 

3.3　不同主干网络试验结果

为验证 ConvNeXt V2 特征提取模块的优势，同

时引入 Swim Transformer、DenseNet、ConvNeXt V2
三种特征提取模块对原 YOLOv5s 模型进行改进和

训练，并将训练的结果进行分析，验证 ConvNeXt V2
特征提取模块的可行性，试验结果见表 2。

由表 2 可知，当采用 ConvNeXt V2 特征提取模

块时，模型的平均精度均值相较于原 YOLOv5s 提高

1.1%，在参数量增加 39 040 的情况下，其平均检测速

度仅降低了 7.69 FPS。而当采用 Swim Transformer
和 DenseNet 特征提取模块时，模型的平均精度均值

相较于原 YOLOv5s 分别降低 1.0% 与 1.3% 参数量

分别增加 239 636 和 650 368，平均检测速度分别降

低 19.23  FPS 和 37.63  FPS，效果不佳。综上可见，

ConvNeXt V2 特征提取模块的综合性能最佳。
 
 

表 2    不同特征提取模块结果对比

Table 2    Comparison of results of different feature extraction modules

模型 层数 参数量 浮点运算次数 平均检测速度/FPS 平均精度均值/%

YOLOv5s 270 7 025 023 16.0 101.15 86.5

Swim Transformer 296 7 264 659 84.8 76.92 85.5

DenseNet 405 7 675 391 18.3 58.52 85.2

ConvNeXt V2 258 7 064 063 16.0 93.46 87.6
 
 

3.4　不同损失函数试验结果

原 YOLOv5s 模型采用的是 CIOU 作为预测框

和真实框之间的损失函数，但由于 CIOU 损失函数

在训练过程中没有分别考虑边界框宽度和高度与其

置信度的真实差异，从而导致收敛速度缓慢。因此

本试验通过对比不同的 IOU 损失函数，分析各损失

函数对模型性能的影响，试验结果见表 3，不同损失

函数在训练集上的定位损失曲线和总损失曲线如

图 7a 和图 7b 所示。

由表 3 可知，SIOU 损失函数和 Alpha-IOU 损失
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函数相较于 CIOU 损失函数平均精度均值保持不变

为 86.5%，而 EIOU 损失函数和 Focal-EIOU 损失函

数相较于 CIOU 损失函数平均精度均值由 86.5% 提

高到了 87.0%，层数和权重分别为 270 和 13.7，均保

持不变。由图 7a 和图 7b 可知，Focal-EIOU 损失函

数在定位损失和总损失上整体波动较小，相较于

CIOU、EIOU、SIOU 和 Alpha-IOU 四种损失函数，其

损失下降更快且拥有更小的收敛损失。综上可见，

Focal-EIOU 损失函数的收敛效果最好，具有更快的

收敛速度和更高的定位精度。在目标检测任务中，

通常会有 2 种类型的错误：漏检和错检。漏检是指

模型没有检测到真实存在的目标，错检是指模型错

误地将背景或其他不是目标的物体识别为目标。而

Focal-EIOU 损失函数通过 Focal 权重对错误进行加

权处理，当预测错误时，Focal 权重会增大以放大错

误的影响，当预测正确时，Focal 权重会减小以降低

正确预测的影响，从而使得模型更加关注难以检测

的目标，并减轻背景对于误检的影响。通过平衡漏

检和错检之间的权衡，模型可以更好地进行目标检

测任务。
  

表 3    不同 IOU 损失函数试验结果对比

Table 3    Comparison of experimental results with different
IOU loss functions

损失函数
精度均值/%

F1 平均精度均值/%
煤 矸石

CIOU 87.2 85.7 0.83 86.5

EIOU 87.7 86.2 0.82 87.0

SIOU 87.6 85.4 0.82 86.5

Alpha-IOU 86.8 86.1 0.82 86.5

Focal-EIOU 87.9 86.1 0.83 87.0
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图 7    不同 IOU 损失函数曲线

Fig.7    Loss function curves for different IOU
 
 

3.5　添加注意力机制试验结果

通过在主干网络每个 C3 模块的后端嵌入 Sim-
AM 无参注意力机制，凭借其注意力权重自适应调整

策略，提升模型对尺度变化较大或低分辨率煤矸目

标关键特征的提取能力。为了验证 SimAM 无参注

意力机制的性能，在模型主干网络的相同位置处还

分别加入了 CA 注意力机制、CBAM 注意力机制、

SE 注意力机制和 ECA 注意力机制进行对比试验，试

验结果见表 4。从试验结果可以看出，SimAM 无参

注意力机制在保持较低参数量和层数的同时，其平

均精度均值最高达 88.7%。因此，添加 SimAM 无参

注意力机制后模型效果最优。
 
 

表 4    不同注意力机制对比试验

Table 4    Comparative experiments of different attention mechanisms

注意力机制
精度均值/%

参数量 浮点运算次数 层数 平均精度均值/%
煤 矸石

CA 89.0 88.2 8 074 303 17.6 270 88.5

CBAM 89.1 87.8 7 721 735 17.1 314 88.5

SE 88.3 87.9 7 721 343 16.5 294 88.1

ECA 87.8 86.1 7 025 027 16.0 286 86.9

SimAM 89.2 88.1 7 025 023 16.0 278 88.7
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同时，为更加直观地展现添加不同注意力机制

的 区 别 ， 采 用 Grad-CAM（ Gradient-weighted  Class
Activation Mapping）分别获取模型在最后 3 层的热

力图，分别对应最终的检测层。Grad-CAM 是神经网

络可视化工具，可以根据不同部位的权重生成热力

图，从而更为具体地描述模型的检测效果，其热力图

检测效果如图 8 所示。

热力图中红色部分越深表示该区域对于最终预

测结果的贡献越大，黄色部分关注度次之，蓝色部分

影响最小。由图 8 可知，YOLOv5s 模型和使用 ECA
注意力机制的模型对于煤矸图像的背景也给予了较

大的权重，从而导致识别结果出错造成误检，而使用

CA 注意力机制、CBAM 注意力机制、SE 注意力机

制和 SimAM 无参注意力机制的模型更加关注于煤

炭区域的特征提取，对于其他部分则较少关注。但

其对比发现，使用 SimAM 无参注意力机制的模型

效果最优，进而证明了 SimAM 无参注意力机制的有

效性。
 
 

(a) YOLOv5s (b) CA (c) CBAM (d) SE (e) ECA (f) SimAM

图 8    加入不同注意力机制热力图

Fig.8    Heat maps of different attention mechanisms added
 
 

3.6　消融试验

为了进一步提高 YOLOv5s 模型在煤矿复杂工

况中的检测性能，主要采用 ConvNeXt V2 特征提取

模块、Focal-EIOU 损失函数和 SimAM 无参注意力

机制 3 种改进策略。为了验证各项改进策略的有效

性，通过消融试验分析了各项改进策略对 YOLOv5s
模型检测性能的影响，其试验结果如图 9 和表 5
所示。

模型 A 是无任何改进策略的 YOLOv5s 模型，其

平均精度均值为 86.5%，平均检测速度达到 103.15
FPS。模型 B 至模型 D 是分别加入 ConvNeXt V2 特

征提取模块、Focal-EIOU 损失函数和 SimAM 无参

注意力机制的模型，其平均精度均值相较于模型 A
分别提高了 1.1%、0.5% 和 2.2%，平均检测速度模

型 C 最高达 101.01 FPS。模型 E 至模型 G 是依次加

入两种改进策略的模型，其平均精度均值相较于模

 

Base+ConvNeXtV2
Base+Focal-EIOU
Base+SimAM
Base+ConvNeXtV2+Focal-EIOU
Base+ConvNeXtV2+SimAM
Base+Focal-EIOU+SimAM
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图 9    消融试验 mAP 曲线

Fig.9    Ablation experiment mAP curve
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型 A 分别提高了 0.9%、3.1% 和 1.5%。平均检测速

度相较于模型 A 均有所下降。模型 H 是同时加入

3 种改进策略的模型，其平均精度均值相较于模型

A 提高了 3.7%，效果最佳，平均检测速度为 90.09
FPS，仍满足实时检测的需求。 

3.7　对比试验

为了客观评估提出的 CFS-YOLO 煤矸检测模型

的综合检测性能，基于同一煤矸检测数据集和网络

模型训练环境，将 CFS-YOLO 模型与其他经典检测

模型（YOLO 系列模型、Faster R-CNN 模型、SSD 模

型和 CenterNet 模型）进行训练和测试，其测试结果

见表 6。

在表 6 中，分别从平均精度均值、模型复杂程度

和平均检测速度 3 个方面对 7 种模型进行对比，具

体分析如下：

1）平均精度均值：CFS-YOLO 模型的平均精度

均值为 90.2%，在 7 种模型中最高，相较于 YOLOv5s、
YOLOv7-tiny 和 YOLOv8s 分别高出 3.7%、2.1% 与

1.5%。 相 较 于 Faster  R-CNN、SSD 和 CenterNet 分

别高出 10.2%、4.1% 与 3.2%。上述结果表明所提出

的 CFS-YOLO 模型对检测精度提升效果最为明显。

2）模型复杂程度：CFS-YOLO 模型的参数量高

于 YOLOv5s 和 YOLOv7-tiny，但远低于 YOLOv8s、
Faster R-CNN、SSD 和 CenterNet。相对适中的模型

复杂程度可以在维持较高平均检测精度的同时不急

剧降低其平均检测速度，更加适用于煤矿井下的煤

矸精准实时检测任务。

3）平均检测速度：CFS-YOLO 模型的平均检测

速度为 90.09 FPS，与YOLOv5s、YOLOv7-tiny 和 SSD
相比分别低于 13.06、25.56、2.13 FPS，与 YOLOv8s、
Faster  R-CNN 和 CenterNet 相 比 分 别 高 出 12.57、

62.68、4.01 FPS。但参考实际检测速度标准（60 FPS），

但仍充分满足煤矸实时检测的需求，此外，虽然其他

3 种模型的平均检测速度较快，但相应的平均精度均

值低于 CFS-YOLO 模型。 

3.8　检测结果对比

为了验证 CFS-YOLO 模型对煤矸在煤矿复杂环

境中的检测效果，选取运动模糊、高噪声、低照度和

大批量煤矸 4 种煤矿实际场景对传统 YOLOv5s 和

CFS-YOLO 进行对比检测，测试结果如图 10 所示。

 

表 5    消融试验结果比较

Table 5    Comparison of results of ablation experiments

模型
方法 精度均值/%

精确率/% 召回率/% F1

平均检测
速度/FPS

平均精度
均值/%ConvNeXt V2 Focal—EIOU SimAM 煤 矸石

A — — — 87.2 85.7 86.1 79.7 0.82 103.15 86.5

B √ — — 88.0 87.3 86.7 80.0 0.83 93.46 87.6

C — √ — 87.9 86.1 86.3 79.8 0.83 101.01 87.0

D — — √ 89.2 88.1 86.6 80.9 0.83 83.33 88.7

E √ √ — 87.7 87.2 86.4 79.8 0.83 90.91 87.4

F √ — √ 90.1 89.0 87.8 82.1 0.84 86.96 89.6

G — √ √ 88.6 87.4 87.0 81.1 0.83 86.26 88.0

H √ √ √ 90.8 89.5 88.8 83.2 0.85 90.09 90.2

 

表 6    不同算法对比试验

Table 6    Comparative Experiments of Different Algorithms

模型
精度均值/%

精确率/% 召回率/% F1 参数量 浮点运算次数 平均检测速度/FPS 平均精度均值/%
煤 矸石

YOLOv5s 87.2 85.7 86.1 79.7 0.82 7 025 023 16.0 103.15 86.5

YOLOv7-tiny 89.3 87.0 85.1 80.0 0.82 6 017 694 13.2 115.65 88.1

YOLOv8s 88.8 88.6 87.6 81.4 0.84 11 136 374 28.6 77.52 88.7

Faster R-CNN 81.2 78.9 70.7 78.5 0.74 28 286 000 940.0 27.41 80.0

SSD 86.7 85.5 81.7 78.6 0.80 23 745 000 60.0 92.22 86.1

CenterNet 88.0 86.0 88.2 70.2 0.84 32 665 000 70.0 86.08 87.0

CFS-YOLO 90.8 89.5 88.8 83.2 0.85 7 064 063 16.0 90.09 90.2
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图中，A1-A8 为 CFS-YOLO 的检测结果，B1-B8 为传

统 YOLOv5s 的检测结果，其中图 A1-A2、B1-B2 为

运动模糊场景，图 A3-A4、B3-B4 为高噪声场景，图

A5-A6、B5-B6 为低照度场景，图 A7-A8、B7-B8 为

大批量煤矸场景。CFS-YOLO 在不同场景下均能够

准确识别出煤和矸石，未出现煤和矸石误检和漏检

的情况，而传统 YOLOv5s 出现了较多的漏检和误检

问题。因此，所提出的 CFS-YOLO 模型具有较高的

鲁棒性和优良的检测性能。

 
 
 

(a) 运动模糊 (b) 高噪声

(c) 低照度 (d) 大批量煤矸

A1 A2 A3 A4

A5 A6 A7 A8

B1 B2 B3 B4

B5 B6 B7 B8

图 10    CFS-YOLO 与 YOLOv5s 检测结果对比

Fig.10    Comparison of CFS-YOLO and YOLOv5s test results
 
 

4　结　　论

1）提出了一种 CFS-YOLO 目标检测模型，试验

结果表明，其平均检测精度达 90.09%，检测速度为

90.09 FPS，该模型能够快速准确的对煤矸进行识别，

满足实时识别要求。

2）采用 ConvNeXt V2 特征提取模块替换主干网

络末端的 2 个 C3 模块，构建 Focal-EIOU 损失函数

替换原 CIOU 损失函数，同时添加无参注意力机制，

改进后的 CFS-YOLO 模型相较于原 YOLOv5s 模型

提升了 3.7 个百分点，网络参数体积和识别速度基本

保持不变。与其他算法相比，综合性能表现最佳。

3）提出的 CFS-YOLO 目标检测模型对于煤矸在

煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等

复杂工况环境下的检测效果均得到有效提高，为复

杂工况条件下煤矸智能识别提供了技术支撑。
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