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Research on mine underground inspection robot target detection algorithm based

on pyramid structure and attention mechanism coupling

WANG Maosen', BAO Jiusheng', BAO Zhouyang', YIN Yan', WANG Xiangsai', GE Shirong’
(1.8chool of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2. School of Mechanical and Elec-
trical Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China))
Abstract: In recent years, coal mine robots have become a research hotspot in the field of modern coal machine equipment, and the main
coal flow transportation system of most coal mines has basically realized continuity, mechanization and automation, which also puts for-
ward higher requirements for safety monitoring and inspection efficiency in the main transportation roadway, and accurate target detection
is a necessary guarantee for intelligent safety monitoring in coal mines, but the existing object detection algorithm is applied to complex
and harsh coal mine underground roadway environment, and there is a problem of low target detection accuracy. Aiming at the special

working condition detection requirements of low lighting and chaotic environment in the downhole, the target data set in the underground
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roadway environment was produced, and the dataset annotation was completed and multi-dimensional analysis was carried out. A PT tar-
get detection algorithm based on the fusion of pyramid structure and attention mechanism is proposed, and the attention mechanism mod-
ule is used to replace the convolution module in the pyramid structure, which improves the extraction ability of global features while con-
trolling the amount of feature calculation, realizes the extraction effect of the fusion of local features and global features of the target, and
improves the expression ability of the features of the target area of interest in the image. Finally, for the application scenario of under-
ground inspection robot in coal mine, the proposed PT algorithm is compared with the traditional Faster R-CNN and YOLOv4 algorithms.
Compared with the mainstream Faster R-CNN and YOLOV4 target detection networks, the PT algorithm has better comprehensive recog-
nition capabilities, and the accuracy of identifying coal mine personnel is increased by 2.90% and 4.30%, the accuracy of identifying un-
derground obstacles is increased by 0.20% and 4.80%, and the accuracy of identifying mine cracks is increased by 4.40% and 8.60%, re-
spectively. The accuracy rate of identifying downhole equipment was improved by 3.00% and 8.70%, respectively. Therefore, the PT tar-
get detection algorithm can better adapt to the underground environment, and the target detection algorithm can obtain higher accuracy and

detection speed than other algorithms, which can provide theoretical basis and technical support for the construction of underground road-

way security control system.

Key words: underground coal mine; inspection robot; target detection; pyramid structure; attention mechanism
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LoekE
e LR Pycharm2020
IRIEAE 2 HELE Pytorch1.8
RY Ubuntu18.04
PhELE GHz Intel Core i7
fifi
AT 32G
GPU NVIDIA GeForce 3090

1E BRI Sk PR R bn 5 PORERR) |
ROAEIH) FI mAP(BHEFEIREL) | FPSCREFPINTED) |
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A TP: BU A IE, SEBR A IE ; TN: Fill 4
Sy 7 FP: B A 1E, SEFR A £ FN: #
HMIE
4.2 HWHERSH

%t [t Faster R-CNN, YOLOv4 Dl & 3¢ PT =
PR 2 100 YGEARIIZRIEDT H A i 7, Yl 2k
R SR B A A E, WAL 10 BTR
S PT AL & G T 45 ST 1L, b 1
K &, ¥4 081K {5 A T Faster-R-CNN 5
YOLO 2 [a], #E 24t 20 kARG, BR(EM T 4,
RAFETE 0.01 2247, R8I T HAER loss R .
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Fig.10 Comparison of model loss changes

& 11 7] L L, YOLOv4 %403 25 A8
AERGR TR 0.6, WM R A RUETE 0.81 £47,
Faster-R-CNN 5 PT BEAEZEA 15 IR K% 0.6
ROVERR R, Faster-R-CNN JERRIE AL 20 IRZ J5 &
Wik E) 0.85 Zidr. Hoh, PT S iR R T Hoft
PIRNEE, Bk 0.88 A4

X} [t Faster R-CNN. YOLOv4 DA}z 74 3¢ PT3 F
IR AR A 12 R, 3 RVEEEAR R B
Bz I i (8- Yl e 2 S L3R 3.

X HE 3 b i ARG 0 45 SRR SR B ME T
2, PT # Faster R-CNN #£Ft 2.90%, # YOLOv4 #
T 4.30%; H T BERGHERT 2, PT 4 Faster R-CNN
FETt 0.20%, 35 YOLOV4 $27t T 4.80%; JH47 2 & 1
1%, PT %% Faster R-CNN #£ 7} 4.40%, % YOLOv4
2T T 8.60%; I T 15 7% ME M %, PT ¢ Faster R-
CNN 427} 3.00%, # YOLOv4 4£F+ T 8.70%. FiFLA,
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Table 3 Comparison of average accuracy of models

HERIMER 28/ %
PGS
Faster R-CNN YOLOv4 ACPTHE
MKperson
Perso 88.20 86.80 91.10
Cc2NZD)
MKobstracle 85.70 81.10 85.90
(F T g ) ’ ’ :
MKerevice 84.40 80.20 88.80
(Jr2448%) ’ ’ ’
MKdevice
\ 82.60 76.90 85.60
F i)

P 0 B G PT AF XD I F A58 H ARkl A
AR )38 N
4.3 ZERiTie

W 3CXT Faster R-CNN, YOLOv4, VFNet, HVR-
Net, Trans VOD ##I[¥) P, R il mAP 4 T+ T %F
FE a3 BT, 3G 0T 4 3 B B AP (FPS) F8 P RE T
o RREE IR IR 4, 55500 42000 PT Rl ik,
ARG 00K 8 R SIZ B 44 T4 7 T e A A 1 A 0 A
RE AT T Wl i SR I R R, I Al R R B
RS TR BAS o

XF T 2 A BT R A I A, e dk
G R AR Y BR 1, o 8 IR L5 R 5 PT AE
B0 (AT B AL B Y PP S FE AR A, e H A T
SN SN o N N N (1 1S B A NN O £
SRA TEI B RAERTAL T KA1V B R RUE, A
M T E . QA query, FZaEMb—1
K JEATUCHL; K AR key, 229 BE1 Q UELE; VAR
FRMESRUE B

5 MHA(Multi-head attention) #1121, & F — 3K
SRA(Spatial-reduction attention) U A 1] Q, 5 K Fl
8 VAERS A, I Bt — A\ FEE. 5 MHA
ANF Y 2, TR I #RVEZ 0T, SRAFRIR T KF1 v
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Fig.12 Effect of target detection algorithm underground
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Table 4 Test results of different network model detection

s 2k Mkper Mkobs Mkdev Mkcre AP/ FPS
P R mAP P R mAP P R mAP P R mAP
Faster R-CNN 100 3333  77.61  84.21 50 74.5 91.89 4595  63.99 100 40.74  56.43 68.6 15.3
YOLOv4 93.33 70 84.55  88.89 76.19 8233 8471 75 80.12  83.87 7027 7496 80.3 18.0
VFNet 86.67 78 8585  82.14 7931  81.59 90 7297 7317 8788 6591  70.62 63.4 243
HVRNet 92 85.19  84.72 913 7778  83.75 87.5 549 7201 8627 59.46  68.59 74.8 18.4
TransVOD 83.33 75 88.03 9524 7407 8455 9459 6863 7603 8667 619 7161 79.5 223
PT(A30) 85 89.47  95.49 91.3 84 9046 9519 85.19 8825 91.67 8148 86.15 89.85 21.0

()23 (8] RUBE, 3X KR 1715 . SRA A EAR L
LU
SRA(Q,K,V) = Concat(head,,--- ,head) )W’ (2)
head; = Attention(QW2, S RIK)W,,SR(V)W)')  (3)
Horps W2, W, WY, LI WO R 35 S8
N, K Transformer; {1 & J1 /2 1 head M40 . K I,
A head BIRTAET C/N,. SR() WEEMREA T 51
23 [ AR A
SR(x) = Norm (Re shape (x, R;) W*) (4)
i x A AP, R AE Tranformer H1Jak /> 71 &

TZBEAR; Reshape( ) JAEIL AT, WFS x 2 W Y
JEB; W R — AT, B AT S I AR
% C,o Norm( ) &¥—DIFF MG 55
Y Transformer —#¥, Attention( ) 1] LAT145 4.

\;qdi)v (5)
head

T X RN AT LR B, TR TR R

i FER2 A [H] H MHA I, IR it SRA 7] ARG S 0

AR AR . WA R SH R AT TR, 2R

SRA fH5, PT kB4 SRA 1 PT B kSR

43R 62.7 M il 53.4 M, PT SRV ESEA B T FE,
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Attention(g, k,v) = Soft max(
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