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融合金字塔结构与注意力机制的煤矿井下巡检

机器人 PT 目标检测算法
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摘　要：近年来，煤矿机器人已成为现代煤机装备领域的研究热点，多数煤矿的主煤流运输系统基本

实现了连续化、机械化和自动化，因此对主运输巷道内的安全监控与巡检效率提出了更高的要求，

而精准的目标检测是实现煤矿井下智能化安全监控的必要保障，但现有的目标检测算法应用于复杂

恶劣的煤矿井下巷道环境，存在目标检测精度较低的问题。面向井下低照明、环境杂乱的特殊工况

检测需求，制作了井下巷道环境内目标物数据集，完成数据集标注并展开多维度分析；提出一种基

于金字塔结构与注意力机制融合的 PT 目标检测算法，利用注意力机制模块替换金字塔结构中的卷积

模块，在控制特征计算量的同时提高对全局特征的提取能力，实现目标物局部特征与全局特征融合

的提取效果，提高了图像中目标感兴趣区域特征的表达能力。最后，面向煤矿井下巡检机器人应用

场景，将提出的 PT 算法与传统经典的 Faster R-CNN、YOLOv4 算法进行对比分析。结果表明：所提

出的 PT 目标检测算法能够有效识别复杂环境下巷道内目标物，相较于主流的 Faster  R-CNN、

YOLOv4 目标检测网络，PT 算法有更好的综合识别能力，识别煤矿人员的准确率分别提升了 2.90%
和 4.30%，识别井下障碍的准确率分别提升 0.20% 和 4.80%，识别矿井裂缝的准确率分别提升了

4.40% 和 8.60%，识别井下设备的准确率分别提升了 3.00% 和 8.70%。因此，PT 目标检测算法能够

更好地适应井下环境，目标检测算法较其他算法能够获得更高的准确率与检测速度，可为井下巷道

安控系统建设提供理论依据与技术支撑。

关键词：煤矿井下；巡检机器人；目标检测；金字塔结构；注意力机制
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Research on mine underground inspection robot target detection algorithm based
on pyramid structure and attention mechanism coupling
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 （1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2. School of Mechanical and Elec-

trical Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)）

Abstract: In recent years, coal mine robots have become a research hotspot in the field of modern coal machine equipment, and the main
coal flow transportation system of most coal mines has basically realized continuity, mechanization and automation, which also puts for-
ward higher requirements for safety monitoring and inspection efficiency in the main transportation roadway, and accurate target detection
is a necessary guarantee for intelligent safety monitoring in coal mines, but the existing object detection algorithm is applied to complex
and harsh coal  mine underground roadway environment,  and there  is  a  problem of  low target  detection accuracy.  Aiming at  the  special
working condition detection requirements of low lighting and chaotic environment in the downhole, the target data set in the underground
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roadway environment was produced, and the dataset annotation was completed and multi-dimensional analysis was carried out. A PT tar-
get detection algorithm based on the fusion of pyramid structure and attention mechanism is proposed, and the attention mechanism mod-
ule is used to replace the convolution module in the pyramid structure, which improves the extraction ability of global features while con-
trolling the amount of feature calculation, realizes the extraction effect of the fusion of local features and global features of the target, and
improves the  expression ability  of  the  features  of  the  target  area  of  interest  in  the  image.  Finally,  for  the  application scenario  of  under-
ground inspection robot in coal mine, the proposed PT algorithm is compared with the traditional Faster R-CNN and YOLOv4 algorithms.
Compared with the mainstream Faster R-CNN and YOLOv4 target detection networks, the PT algorithm has better comprehensive recog-
nition capabilities, and the accuracy of identifying coal mine personnel is increased by 2.90% and 4.30%, the accuracy of identifying un-
derground obstacles is increased by 0.20% and 4.80%, and the accuracy of identifying mine cracks is increased by 4.40% and 8.60%, re-
spectively. The accuracy rate of identifying downhole equipment was improved by 3.00% and 8.70%, respectively. Therefore, the PT tar-
get detection algorithm can better adapt to the underground environment, and the target detection algorithm can obtain higher accuracy and
detection speed than other algorithms, which can provide theoretical basis and technical support for the construction of underground road-
way security control system.
Key words: underground coal mine； inspection robot； target detection； pyramid structure； attention mechanism

  

0　引　　言

我国是世界煤炭大国，在我国煤矿 250 万从业

人员中，从事井下危险繁重岗位人员占比达 60% 以

上，采用煤矿机器人下井代替矿工作业是我国煤矿

智能化建设的必由之路[1-2]。其中，安控类煤矿机器

人的应用不仅可以减轻巡检工人的劳动强度，而且

对提高巡检质量，结合监控系统实现煤矿井下无死

角、零盲区具有重要意义[3]。然而，目前国内安控类

煤矿机器人的研究进展相对缓慢[4]，其中一个重要的

限制因素是缺乏高效准确的井下巷道目标检测技术。

目标检测距今已有 50 多年的研究历史，国内外

学者提出了各类理论和算法，目前基于深度学习的

目标检测发展较为迅猛[5]。2014 年，Ross Girshick[6]

提出了区域卷积神经网络（Regions with  CNN fea-
tures, RCNN），RCNN 首次使用深度学习进行目标检

测，通过选框建议方法实现目标位置标定和分类，但

因其候选框大量重叠，存在特征提取重复、计算成本

高等问题。2015 年，何凯明 [7] 基于 RCNN 提出了

SPP-Net，该网络对图片只进行一次特征提取，通过

金字塔空间池化提取出各个候选框所对应的特征图，

再利用 SVM 实现目标分类识别。同年，Ross Gir-
shick[8] 在  RCNN 和  SPP-Net 的基础上提出了 Fast-
RCNN，创新性的把目标识别与选框回归集成到卷积

神经网络中。2016 年，Shaoqing Ren 等[9] 提出了 Fater-
RCNN 目标检测框架，Faster-RCNN 首次引入了区域

建议网络 (Region Proposal Network, RPN)，把目标检

测整个流程融入到一个网络中。目前，Faster-RCNN
目标检测框架在多个领域中有着广泛应用[10]。不同

于卷积神经网络，2017 年 VASWANI 等[11] 首次提出

以多头自注意力机制为核心的 Transformer 网络，为

自然语言处理提供全新的网络架构。基于 Trans-

former 算法，DOSOVITSKIY 等[12] 于 2020 年提出了

ViT （Vision Transformer）网络，创造性地将其应用至计

算机视觉领域。ViT 在大数据集上的效果优于 CNN，

但因全局自注意力运算导致其计算量十分庞大[13]。

近几年，基于深度学习的目标检测算法逐步向

煤矿井下发展，单阶段目标检测算法性能的大幅提

升使得煤矿井下智能化巡检成为可能，其中最典型

的是 YOLO 算法 [14]。崔铁军等 [15] 在 Keras 框架下

将 YOLOv4 算法应用到煤矿井下人员佩戴防尘口罩

情况的检测，获得了较好效果。同时众多学者尝试通

过改进 YOLO 算法实现对井下人员的实时检测[16-19]。

针对检测的尺寸存在不平衡现象 YOLOv4 的 3 个尺寸

的预测头可以提高多尺寸目标的识别精度。YOLOv4
的边界框回归的损失函数采用 CIOU_LOSS，综合考

虑边界框宽高比的尺度信息，以及预测框是筛选的

NMS 为 DIOU_NMS，考虑到边界框中心点的位置信

息，使得预测框回归的精度更高一些。此外，YOLOv4
通过引入更多的数据增强技术和正则化方法，提高

了模型的鲁棒性，能够更好的适应矿井下光亮不稳

定、遮挡等复杂工况。由于井下环境复杂，存在光照

低且分布不均、设备人员遮挡特征不完整等导致图

像质量下降的问题，现有目标检测算法难以满足井

下智能巡检的应用需求。

针对以上问题，基于金字塔结构与自注意力机

制提出了 PT(Pyramid Transformer, PT) 目标检测算

法，通过引入自注意力机制模块，增强对全局特征的

提取能力，利用金字塔结构减少大型特征图的计算

量，提高特征提取效率。 

1　PT 目标检测算法原理

介绍基于金字塔结构的 CNN 算法框架和基于

自注意力机制的 ViT 算法框架，针对煤矿井下检测
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对象的特点，结合金字塔结构与自注意力机制，设计

本文 PT 特征提取网络。 

1.1　常见目标检测算法框架

CNN(Convolutional Neural  Network  ) 是深度神

经网络在视觉识别领域中的主要代表，该模型包含

具有特定接受域的卷积核，能够捕捉良好的视觉特

征[20-21]。为提供平移等方差，卷积核的权值在整个

图像空间中被共享，由图 1 可知，随着层数的不断提

高，CNN 在金字塔结构大框架下特征不断减小，目标

特征尺寸不断缩减，尤其是小目标更容易丢失信息

特征，导致检测性能下降，无法满足实际的应用需求。
 
 

Conv4

Conv3

Conv2

Conv1

Input

Output

图 1    CNN 结构框架图

Fig.1    Structural framework of CNN
 

如图 1、图 2 所示，Conv 和 TF-E 分别代表 Con-
volution 和 Transformer encoder。许多 CNN 的主干

使用金字塔结构进行密集的预测任务，如对象检测、

实例和语义分割。最近提出的 ViT 是一个专为图像

分类设计的柱状结构[22]，Transformer 编码器作为目

标检测任务特定的主干部分，其中的核心部分为自

注意力运算模块，虽然一些现有技术也将注意力模

块纳入到 CNN 中，但目前探索一种干净和无卷积的

Transformer 的主干来解决计算机视觉中的预测分类

任务的研究很少。
 
 

TF-E

Input

Output

图 2    Vision Transformer 结构框架

Fig.2    Structural framework of vision transformer 

1.2　PT 特征提取网络设计

目前卷积神经网络在机器视觉领域仍然是研究

的主流，但由于煤矿井下环境恶劣，普通神经网络很

难直接应用于井下环境。为实现井下场景内多目标

高精度巡检目标检测，整合了 CNN 的金字塔结构和

ViT 的自注意力机制，提出基于金字塔结构与自注意

力机制结合的 PT 特征提取网络。

首先利用自注意力机制无需卷积的特性，以

ViT 中 的 Transformer 编 码 器 取 代 CNN 中 Back-
bone 的多卷积层，缩减卷积过程，增强模型对图像特

征的提取能力。虽然 ViT 适用于图像分类，但由于

计算成本较高，很难将其直接应用于目标检测。为

克服 ViT 高计算成本的限制，参考金字塔结构越深

化卷积层越小的特点，将金字塔结构引入 PT 框架，

使需要处理的序列长度变短，大幅减少目标检测过

程中的计算成本。以上即为本文基于金字塔结构与

注意力机制的 PT 特征提取网络的由来，其结构框架

如图 3 所示。
 
 

TF-E4

TF-E3

TF-E2

TF-E1

Input

Output

图 3    PT 特征提取网络结构框架

Fig.3    PT feature extraction network structure framework
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Hi−1
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不同于卷积神经网络的 Backbone，使用不同的

卷积获取特征图，使用一种金字塔缓慢收缩的策略，

通过嵌入层来控制特征图的尺度。如图 4 所示，将

嵌入层大小设置为 Pi。在第 i 阶段，将输入的特征

值 Vali 平均划分为 个值，然后将每个嵌入层进

行扩张并投影到 Ci 维嵌入中。经过线性投影后，嵌

入的 patch 的形状为 ，其高度和宽度

都是 Pi 且比输入小 1 倍。这样，就构造了 PT 特征提

取网络的金字塔结构。

如图 5 所示，Q 代表查询向量，后续会和每一个

K 进行匹配；K 代表键值，后续会被每个 Q 匹配；V
代表特征提取信息。与 MHA(Multi-head attention)
不同，采用的 SRA(Spatial-reduction attention) 在注意
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力操作前降低了 K 和 V 的空间尺度，有利于减少计

算量，可以在有限的资源下处理更大的输入特征映射。
 
 

Multi-head

attention

Q K V

多头注意力机制

Multi-head

attention

Q K V

空间缩减的注意力机制

Spatial

reduction

图 5    MHA 与 SRA 注意力机制对比

Fig.5    Comparison of attention mechanism between

MHA and SRA
 

与目前现有的算法相比，PT 特征提取网络有以

下优点：

1) 不同于卷积神经网络需要较大量的计算和内

存，PT 可以通过逐步缩小金字塔减少大型特征图的

计算量，提高特征提取的工作效率。

2) 为解决井下机器人检测效率的问题，通过引

入自注意力机制，增强全局特征提取能力，减少大量

的卷积过程，提高算法的检测速度。
 

2　PT 目标检测算法框架搭建

如图 6 所示，优化的目标检测算法 PT 算法可以

分为 3 个部分：构建基于金字塔结构与注意力机制

的 PT 特征提取网络，作为本框架的 Backbone；构建

FPN（Feature Pyramid Network）模块进行加强特征提

取，作为本框架的 Neck；利用 YOLO Head 对结果进

行处理预测，作为本框架的 Head。结构 Backbone 部

分主要用于图像特征的提取，通过结合注意力机制

实现检测图像中感兴趣区域的重要特征提取，Neck
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图 4    PT 特征提取模块（PTFEM）示意

Fig.4    Schematic of the PT feature extraction module

 

Inputs

(batch_size,416,416,3)

Conv2D 32×3×3

(batch_size,416,416,32)

PTFEM×3

(batch_size,52,52,256)

PTFEM
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PTFEM
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图 6    目标检测 PT 算法结构

Fig.6    Structure of target detection PT algorithm
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部分主要用于对特征的处理，以实现更好的特征处

理工作，最后 Head 部分用于对提取特征的预测，目

标物体由于尺寸存在不平衡，所以采用大、中、小 3
个预测头以更好的实现目标检测。 

2.1　PT 特征提取网络搭建

第一阶段如图 7 所示，设置大小为 416×416×3
的输入图像，首先将其先卷积为一个 416×416×32 的

特征矩阵，之后将其划分为 (416×416/16) 个 patch，每

个 patch 大小为 4×4×32。再将扁平的 patch 进行线性

投影 Linear，得到大小为 416×416×C1 的嵌入式 patch。

然后，将嵌入的 patch 和位置嵌入通过一层的 Trans-
former 编码器，将输出重构为大小 416×416/16×C1
的特征映射 Val1。同样，使用前一阶段的特征映射

作为输入，得到如下特征映射：Val2、Val3，它们相对

于输入图像的步长分别为 8、16、32 像素。
 
 

输入图像

卷积块

Transformer 编码器

特征映射 Val
i

位置嵌入块

图 7    PT 特征提取网络原理示意

Fig.7    Schematic of PT feature extraction network
  

2.2　FPN 模块构建并预测

在特征提取过程中，FPN 模块围绕金字塔结构

提取 3 个特征层进行目标检测。3 个特征金字塔层

{Val1，Val2，Val3}的大小分别为 (52, 52, 256)、(26 ,26,
512)、(13, 13, 1 024)。如图 8 所示，利用这 3 个特征

层对 FPN 模块进行构建：
 
 

Val1

Conv Head3

Contact

Val2

Val3

Head1

Head2

Upsampling2d

Contact Conv

Upsampling2d

Conv

图 8    FPN 原理示意

Fig.8    Schematic of FPN principle
 

1) 对输出 Val3 特征映射值进行卷积处理，处理

完后直接送入 Head 获得预测结果。

2) 结合输出的 Val3 特征映射值进行卷积处理，

一部分用于进行上采样 UpSampling2d 后，与 FPN 特

征层进行结合，处理完后送入 Head 获得预测结果。

3) 结合输出的 Val2 特征映射值再次进行卷积处

理 ， 一 部 分 用 于 进 行 上 采 样 UpSampling2d 后 ， 与

FPN 特征层进行结合，处理完后送入 Head 获得预测

结果。

文中 PT 算法的 FPN 模块对 3 个特征层进行处

理后，输出特征层大小分别为 (13, 13, 27)，(26, 26,
27)，(52, 52, 27)，对每一个特征点存在 3 个预选框，

利用 YOLO Head 进行处理预测。 

3　煤矿井下巷道场景数据集制作

目前鲜有被公开使用的煤矿井下数据集，而且

受限于井下安全章程，煤矿井下场景不易拍摄。在

神东某矿的视频中截取视频帧，以实现针对井下巡

检机器人的图像数据集的制作与训练。 

3.1　煤矿井下巡检内容分析

主要针对煤矿井下工作人员，煤矿巷道壁裂缝，

煤矿设备，废弃阻碍物进行巡检检测，通过图像处理

技术对以上对象进行分析判定。此次采集工作共获

得 3 000 张图片帧。根据图像内容将巡检机器人在

巷道内的行驶状况主要分为以下 3 类：

1）巷道内的工作人员。在巡检过程中，需要遵

循“机器让人”的原则，同时精确识别工作人员与远

程定位系统形成定位融合冗余。

2）巷道内的裂缝。矿井下支护的可靠性关乎矿

井工作的安全运行，在巡检时，可根据巷道壁的表征

对巷道安全性进行判定，检测识别超出安全范围时，

应立即预警。

3）巷道内的设备与障碍。对于机器人而言，当

前方出现设备与障碍，需要规划路径避开行驶。对

于巷道中的阻碍物，识别过后上传定位信息提醒工

作人员进行清障作业。 

3.2　数据标注与处理

针对确定的图像进行分类，分别为 MKper（煤矿

人员）、MKobs（井下障碍）、MKcre（煤矿裂缝）、MK-
dev（井下设备）。数据集采用 Labelimg 进行人工标

注，示例图为更清楚地对数据进行表达，对目标物

使用 Labelimg 进行了人工标注，部分数据集如图 9
所示。

1）打开煤矿井下巷道图片；

2）利用 Labelimg 对场景内的目标物体进行标注；

3）对一份图片标注完，再将.xml 文件打包至统

一文件。
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×
其中 3 000 张图片包含要素见表 1，为统一标准

数据集，所有图像帧大小均调整为 416 416，最后将

标签文件中数据划分的 train percent 和 test percent
分别设置为 0.8 和 0.2，然后进行随机划分，从数据里

获得 80% 样本的训练集和 20% 样本的测试集，以及

对应的图片也按照标签文件进行相应的划分，最后

在本地生成文件夹将划分好的数据图片和 txt 格式

标签分别进行保存。
 
 

表 1    数据集要素统计

Table 1    Statistics of data set elements

要素 数量/个

MKper（煤矿人员） 1 407

MKobs（井下障碍） 945

MKcre（煤矿裂缝） 1 071

MKdev（井下设备） 1 239
  

4　目标检测试验与结果分析

在制作煤矿井下巷道场景数据集的基础上，通

过修改巡检机器人的目标检测算法尺度、瞄框数量

与置信度对该模型进行试验分析。 

4.1　井下巷道目标检测试验

模型训练开始前，设置初始化动态因子为 0.8，

batch 为 4，以避免陷入最优解。将网络训练的 30 次

迭代的学习率设置为 0.01，后续学习率设置为 1×10−3。
将权重衰减正则项设置为 0.005，以防止出现过拟合

的现象。激活函数为 ReLU 函数，最终确定迭代次

数为 100 次，并利用测试集进行测试。为验证本文

所提出的 PT 算法在井下环境中的目标检测效果，将

其与 Faster R-CNN，YOLOv4 算法以及其他典型算

法进行对比试验分析。目标检测训练的试验配置见

表 2。试验采用的 RTX 3090 显卡，NVIDIA CUDA
Core 核心数为 10 496，加速频率为 1.7 GHz，每秒浮

点运算次数（FLOPS）为 35 686.4 GFLOPS。
 
 

表 2    目标检测试验基本配置

Table 2    Basic configuration of target detection test

区域 项目 内容

软件

图像处理库 OpenCV3.4

开发语言 Python3.7

编程工具 Pycharm2020

深度学习框架 Pytorch1.8

硬件

系统 Ubuntu18.04

处理器 GHz Intel Core i7

内存 32G

GPU NVIDIA GeForce 3090
 

在目标检测算法评价指标中，常用 P（准确率）、

R（召回率）和 mAP（均值平均精度）、FPS（每秒帧数）、
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MKdev MKdev MKdev

MKdev
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MKcre

MKcre
MKcre

MKcre

图 9    数据集图片例图

Fig.9    Screenshot of data set
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准确率 (Accuracy) 来对算法性能进行评价。准确率

表示是在所有结果中，预测结果与真实情况一致所

占的比例，表达式为：

Accuracy =
TP+TN

TP+TN+FP+FN
（1）

式中：TP：预测为正，实际为正；TN：预测为负，实际

为负；FP：预测为正，实际为负；FN：预测为负，实际

为正。 

4.2　试验结果分析

对 比 Faster  R-CNN、YOLOv4 以 及 文 中 PT 三

种算法经 100 次迭代训练进行目标检测预测，训练

过程中，记录算法迭代时的损失值，如图 10 所示。

文中 PT 算法结合金字塔结构与注意力机制，减少了

大 量 卷 积 ， 初 始 的 损 失 值 介 于 Faster-R-CNN 与

YOLO 之间，在经过 20 次迭代后，损失值低于二者，

最终稳定在 0.01 左右，达到了较佳的 loss 效果。
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图 10    模型损失变化对比

Fig.10    Comparison of model loss changes
 

由图 11 可以看出，YOLOv4 在迭代到 25 次左

右准确率上升到 0.6，准确率最终稳定在 0.81 左右，

Faster-R-CNN 与 PT 算法在迭代 15 次左右达到 0.6
的准确率，Faster-R-CNN 准确率在迭代 20 次之后逐

渐达到 0.85 左右。其中，PT 算法的准确率高于其他

两种算法，最终达到 0.88 左右。

对比 Faster R-CNN、YOLOv4 以及本文 PT3 种

算法部分检测效果如图 12 所示，3 种算法在本次目

标检测中的平均准确率结果见表 3。

对比 3 种算法的检测结果数据：煤矿人员准确

率，PT 较 Faster R-CNN 提升 2.90%，较 YOLOv4 提

升了 4.30%；井下障碍准确率，PT 较 Faster R-CNN
提升 0.20%，较 YOLOv4 提升了 4.80%；煤矿裂缝准

确率，PT 较 Faster  R-CNN 提升 4.40%，较 YOLOv4
提 升 了 8.60%； 井 下 设 备 准 确 率 ，PT 较 Faster  R-
CNN 提升 3.00%，较 YOLOv4 提升了 8.70%。所以，

提出的改进算法 PT 针对煤矿井下环境目标检测具

备较强的适应性。 

4.3　结果讨论

论文对 Faster R-CNN、YOLOv4、VFNet、HVR-
Net、Trans VOD 模型的 P、R 和 mAP 数据展开了对

比分析，并增加对推理速度每秒帧数（FPS）的性能测

试。检测结果见表 4，结果表明：提出的 PT 检测算法，

在检测精度和实时性两方面兼备较好的检测性能，

能够满足井下监测的实际应用需求，并极大程度降

低时间成本。

对于网络结构设计计算量控制部分，为克服传

统算法高计算成本的限制，将金字塔结构引入 PT 框

架，使需要处理的序列长度变短，大幅减少目标检测

过 程 中 的 计 算 成 本 。 此 外 ， 如 图 5 所 示 ， 采 用 的

SRA 在注意力操作前降低了 K 和 V 的空间尺度，有

利于减少计算量。Q 代表 query，后续会去和每一个

K 进行匹配；K 代表 key，后续会被每个 Q 匹配；V 代

表特征提取信息。

与 MHA(Multi-head  attention) 相 似 ， 采 用 一 款

SRA(Spatial-reduction attention) 接收查询 Q，键 K 和

值 V 作为输入，并且输出一个重构特征。与 MHA
不同的是，在注意力操作之前，SRA 降低了 K 和 V
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图 11    模型准确率变化对比

Fig.11    Comparison of model accuracy change
 

表 3    模型平均准确率对比

Table 3    Comparison of average accuracy of models

训练网络
模型准确率/%

Faster R-CNN YOLOv4 本文PT算法

MKperson
 （煤矿人员）

88.20 86.80 91.10

MKobstracle
 （井下障碍）

85.70 81.10 85.90

MKcrevice
 （煤矿裂缝）

84.40 80.20 88.80

MKdevice
 （井下设备）

82.60 76.90 85.60
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的空间尺度，这大幅减少了计算。SRA 的具体情况

如下：

SRA(Q,K,V) = Concat(head0, · · · ,headi)Wo （2）

headj = Attention(QWQ
j ,S R(K)Wk

j ,S R(V)WV
j ) （3）

WQ
j WK

j WV
j WO其中： ,  ,  , 以及 为线性投影参数；

Ni 为 Transformeri 注意力层的 head 的数量。因此，

每个 head 的尺寸等于 Ci/Ni。SR( ) 为降低输入序列

空间维数的操作。

SR(x) = Norm
(
Reshape(x,Ri)W s) （4）

式中：x 为输入序列；Ri 在 Tranformer 中减少了注意

力层效率；Reshape( ) 为变形公式，从序列 x 到 W s 的

序列；W s 为一个线性投影，它将输入序列的维数降

至 Ci。Norm( ) 是将一个序列规范化的过程；与最初

的 Transformer 一样，Attention( ) 可以计算为：

Attention(q,k,v) = Softmax
(

qkT

√
dhead

)
v （5）

R2
i

通过这些公式可以发现，注意力所操作的计算

过程 时间比 MHA 低，因此 SRA 可以降低参数量

和显存消耗。对模型的参数量进行了计算，在使用

SRA 模块后，PT 算法没有 SRA 和 PT 算法的参数量

分为别 62.7 M 和 53.4 M，PT 模型算法参数明显下降。

 

(a) Faster R-CNN 目标检测情况

(b) YOLOv4 目标检测情况

(c) 本文 PT 算法目标检测情况

图 12    目标检测算法井下情况效果

Fig.12    Effect of target detection algorithm underground
 

表 4    不同网络模型检测的试验结果

Table 4    Test results of different network model detection

网络结构
Mkper Mkobs Mkdev Mkcre

mAP/% FPS
P R mAP P R mAP P R mAP P R mAP

Faster R-CNN 100 33.33 77.61 84.21 50 74.5 91.89 45.95 63.99 100 40.74 56.43 68.6 15.3

YOLOv4 93.33 70 84.55 88.89 76.19 82.33 84.71 75 80.12 83.87 70.27 74.96 80.3 18.0

VFNet 86.67 78 85.85 82.14 79.31 81.59 90 72.97 73.17 87.88 65.91 70.62 63.4 24.3

HVRNet 92 85.19 84.72 91.3 77.78 83.75 87.5 54.9 72.01 86.27 59.46 68.59 74.8 18.4

TransVOD 83.33 75 88.03 95.24 74.07 84.55 94.59 68.63 76.03 86.67 61.9 71.61 79.5 22.3

PT(本文) 85 89.47 95.49 91.3 84 90.46 95.19 85.19 88.25 91.67 81.48 86.15 89.85 21.0
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综上，结合金字塔结构与自注意力机制的主干

网络的 PT 算法较其他典型算法在性能上获得较大

提升，可以满足煤矿井下环境目标检测的需求。 

5　结　　论

1）构建井下巷道环境内目标物数据集，完成数

据集标注并展开多维度分析，并实现了数据集的训

练集与测试集合理划分构建。

2）提出一种基于金字塔结构与注意力机制的

PT 目标检测算法，将输入特征嵌入层进行扩展并逐

层降维映射，改善对全局特征的提取能力，实现目标

物局部特征与全局特征融合的提取效果，提高了目

标物特征的表达能力及检测精度。

3） 展 开 PT 算 法 与 Faster-R-CNN、 VFNet 和

YOLOv4 等算法对比试验，结果表明，所提出的 PT
目标检测算法在目标检测性能方面具备较大优势，

更加适用于煤矿井下检测。

4）在接下来的研究过程中，为更好地提高检测

效率，在检测的基础上进一步轻量化网络模型以提

高检测速度，并且融合其他传感器提高机器人巡检

的可靠性，进一步提高井下巡检机器人感知信息准

确率。
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