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Effect of coal mining on net primary productivity of vegetation in
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Abstract: Coal mining in Shendong Mining area has an important impact on the local ecological environment, especially the growth of ve-
getation. In order to describe this effect quantitatively, this study uses a regional evapotranspiration model to calculate the Potential Net
Primary Productivity (Pyp,) of the Shendong mining area. MODIS17A3 dataset (2001—2022) was used to characterize the Actual Net

Primary Productivity (Pyp,), and combined with the monthly net primary productivity raster dataset of terrestrial ecosystems in China
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(Pyp.ai, 1988—2015), using GWR model construction correction method to correct Py, to obtain 1988—2000 Py, data, and using the dif-
ference between the two Pyp, to characterize the impact of coal mining. The effect of coal mining on vegetation Py, in Shendong mining
area was evaluated. The results show that: (D the accuracy of Py». data corrected by GWR model is about 0.76, and the corrected Py, data
has a strong spatial correlation with the MODIS17A3 dataset, which indicates the reliability of the accuracy of the corrected model; @ The
overall Pyp, and Py, of Shendong mining area showed a trend of decreasing first and then recovering gradually, but the Py, of vegetation
did not recover to the pre-mining level. The mean values of Py, before mining and Py, after mining are 21.50 g/m” and —60.20 g/m?, re-
spectively. Pyp,<0 indicates that Py, vegetation growth in mining areas is disturbed by mining activities, and the degraded mines are
mainly distributed in high-intensity mining areas (calculated in C, the same below). (3 The change of Py, value in Shendong mining area
from 1996 to 2022 is mainly influenced by climate change and human activities. The proportion of human activities and climate change to
ecological degradation is 35.7% and 8.2%, respectively. The Irc from 1996 to 2015 is mainly about 0.5, indicating that coal mining plays
a leading role in vegetation degradation. After 2016, the impact of photovoltaic power plant construction on Py, showed a promoting ef-
fect. This study is helpful to understand the impact of coal mining on the dynamic change of net primary productivity of vegetation, and
provides scientific basis for vegetation restoration and high-quality development in Shendong mining area.

Key words: ecological environment in mining areas; net primary productivity; mining activities; environmental effects of solar panel;

contribution rate index; geographically weighted regression model
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