Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines
-
摘要:
煤炭是我国的主体能源,是国家电力供应安全稳定和经济社会发展的重要保障,但煤炭燃烧发电过程会产生大量的粉煤灰固体废弃物,长期堆放会严重污染土壤、水源、大气等生态环境,但粉煤灰也可作为原材料应用于矿井煤自燃灾害的防治。然而,现阶段粉煤灰在矿井防灭火领域的应用存在少量分散利用、技术含量和附加值较低等不足,当前对于粉煤灰的无害化预处理及防灭火利用规模仍无法满足国家“双碳”目标下对固废资源化利用与绿色矿山建设的相关要求。为进一步推动粉煤灰在矿井煤自燃防治领域的高效、高值及规模化利用,实现以粉煤灰为原料的防灭火材料及技术的快速发展,较全面地总结了粉煤灰浆液、粉煤灰凝胶、粉煤灰泡沫等防灭火技术的原理、分类、最新发展及应用效果;从粉煤灰预处理前端、浆液管路运输中端、防灭火利用末端等方面为出发点,凝练了粉煤灰固废物中有害物质和有价组分的分离、高浓度粉煤灰浆液长距离输送时的沉淀堵管、粉煤灰基防灭火材料在采空区的渗流堆积规律等3个亟待解决的关键问题。为提高粉煤灰固废物对矿井煤自燃的防治效果,满足“双碳”目标下国家对绿色矿山及智能化矿井建设的要求,提出粉煤灰固废在防灭火技术领域“长效防火—协同固碳—智能调控”的发展方向,未来重点围绕低成本长效防灭火的粉煤灰固废基材料、矿化封存CO2与防灭火一体化的粉煤灰防灭火技术、智能化粉煤灰防灭火材料制备及应用系统等方面开展研究,有助于推进粉煤灰工业固废在矿井防灭火领域的高价值、规模化再利用,提高矿井煤自燃的防控能力,保障矿井的安全高效开采。
Abstract:Coal is the main energy source in China, which is also an important guarantee for the safety and stability of the national power supply as well as economic development. However, the coal combustion process for power generation will produce a large amount of fly ash, and the long-term piling of fly ash solid waste will seriously pollute the soil, water, atmosphere, and ecological environment, on the contrary, the fly ash can be used as a raw material for the prevention and control of coal spontaneous combustion disasters in mines. However, the current application of fly ash in the field of mine fire prevention was certainly limited, such as small amount of scattered utilization, low technical content, low added value, etc. The current scale of harmless pre-treatment and fire prevention and utilization of fly ash is still unable to meet the requirements of the national “carbon peaking and carbon neutrality” target for solid waste resource utilization and green mine construction. For further promote the efficient, high-value, and large-scale utilization of fly ash to realize the rapid development of fly ash-based fire prevention materials and technologies, this paper summarizes the principle, classification, latest development, and application effects of fly ash slurry, fly ash gel, fly ash foam and other fire prevention technologies. Based on the above analysis, this paper condenses three key problems that need to be solved, such as the separation of hazardous substances and valuable components in fly ash solid waste, the precipitation and plugging of pipes during long-distance transportation of highly concentrated fly ash slurry, and the law of seepage and accumulation of fly ash-based fire prevention materials in the goaf. In order to improve the effectiveness of fly ash solid waste in preventing spontaneous combustion of coal and to meet the national requirements for green mines as well as intelligent mine construction under the “carbon neutrality and emission peak” target, this paper proposes the development direction of “Long-lasting for fire prevention-Synergistic carbon sequestration – Intelligent control” for fly ash solid waste in the field of fire prevention technology. Future research will focus on the low-cost and long-lasting fire prevention fly ash solid waste-based materials, integrated fly ash fire prevention technology with mineralized CO2 sequestration and fire prevention, and intelligent fly ash fire prevention material application systems, which will promote the high-value and large-scale reuse of fly ash waste in the field of fire prevention, finally improving the efficiency of preventing and controlling of spontaneous combustion disasters in coal mines, and ensuring the safe and efficient mining.
-
Keywords:
- fly ash /
- fire preventing and extinguishing /
- slurry /
- foam /
- carbon sequestration
-
-
-
[1] LI Quansheng. The view of technological innovation in coal industry under the vision of carbon neutralization[J]. International Journal of Coal Science & Technology,2021,8(6):1197−1207.
[2] 方 圆,张万益,曹佳文. 我国能源资源现状与发展趋势[J]. 矿产保护与利用,2018(4):34−42, 47. FANG Yuan,ZAHNG Wanyi,CAO Jiawen,et al. Analysis on the current situation and development trend of energy resources in China[J]. Conservation and Utilization of Mineral Resources,2018(4):34−42, 47.
[3] 武 强,涂 坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636. WU Qiang,TU Shen,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Joural of China Coal Society,2019,44(6):1625−1636.
[4] HANNUN R M, RAZZAQ A H A. Air pollution resulted from coal, oil and gas firing in thermal power plants and treatment: a review[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2022, 1002(1): 012008.
[5] GHAZI F. Electricity development and opportunities to reduce carbon dioxide emissions in Morocco[J]. International Journal of Energy Economics and Policy, 2021.
[6] 吴元锋,仪桂云,刘全润,等. 粉煤灰综合利用现状[J]. 洁净煤技术,2013,19(6):100−104. doi: 10.13226/j.issn.1006-6772.2004.03.018 WU Yuanfeng,YI Guiyun,LIU Quanrun,et al. Current situation of comprehensive utilization of fly ash[J]. Clean Coal Technology,2013,19(6):100−104. doi: 10.13226/j.issn.1006-6772.2004.03.018
[7] WANG J,YANG Z,QIN S,et al. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants[J]. Fuel,2019,258:116062,2021.
[8] 孙俊民,韩德馨. 粉煤灰的形成和特性及其应用前景[J]. 煤炭转化,1999(1):13−17. SUN Junming,HAN Dexin. Forming mechanismsnand properties and properties and utilization[J]. Coal Conversion,1999(1):13−17.
[9] 孟宪彬,李明君,丁国光,等. 燃煤电厂粉煤灰综合利用分析[J]. 电力科技与环保,2017,33(4):50−52. doi: 10.3969/j.issn.1674-8069.2017.04.015 MENG Xianbin,LI Mingjun,DING Guoguang,et al. Analysis of ash and slags comprehensive utilization of coal - fired power plant[J]. Electric Power Technology and Environmental Protection,2017,33(4):50−52. doi: 10.3969/j.issn.1674-8069.2017.04.015
[10] 王丽萍,李 超. 粉煤灰资源化技术开发与利用研究进展[J]. 矿产保护与利用,2019,39(4):38−45. WANG Lipin,LI Chao. Research progress on the development and utilization of fly ash resource technology[J]. Conservation and Utilization of Mineral Resources,2019,39(4):38−45.
[11] 鲁 敏,熊祖鸿,房科靖,等. 粉煤灰基催化材料的研究进展[J]. 环境化学,2019,38(2):297−305. LU Ming,XIONG Zuhong,LI Jiqin,et al. Coal fly ash based catalytic materials: A review[J]. Eco-Environmental Knowledge Web,2019,38(2):297−305.
[12] 关于加快推动工业资源综合利用的实施方案[J]. 中国信息化, 2022(2): 12-15. Implementation plan on accelerating the promotion of comprehensive utilization of industrial resources[J]. China Informatization, 2022(2): 12-15.
[13] 吕 晓. 明标定向, 政策推动, 再生资源产业园区化集聚促进低碳发展[J]. 资源再生, 2022(2): 18-21. LU Xiao, et al. Explicit standard orientation, policy promotion, industrial park agglomeration of renewable resources to promote low-carbon development [J]. Resource Regeneration, 2022(2): 1 8-21.
[14] SHI Quanlin,QIN Bobtao,HAO Yinhao,et al. Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire[J]. Energy,2022,247:123484. doi: 10.1016/j.energy.2022.123484
[15] SWARUP Biswal,SHANTI,AMIT Kumar Gorai. Analyzing the role of in situ coal fire in greenhouse gases emission in a coalfield using remote sensing data and their dispersion and source apportionment study[J]. Environmental Monitoring and Assessment,2022,194(6):1−15.
[16] ONIFADE,MOSHOOD,BEKIR Genc. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology,2020,30(3):303−311.
[17] 秦波涛,仲晓星,王德明,等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术,2021,49(1):66−99. QIN Botao,ZHONG Xiaoxin,WANG Deming,et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Coal Science and Technology,2021,49(1):66−99.
[18] 邓 军,白祖锦,肖 旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118−125. doi: 10.13347/j.cnki.mkaq.2020.10.018 DENG Jun,BAI Zujin,XIAO Shang,et al. Present situation and challenge of coal spontaneous combustion disasters preventionand control technology[J]. Safe in Coal Mines,2020,51(10):118−125. doi: 10.13347/j.cnki.mkaq.2020.10.018
[19] 常纪文,杜根杰,石晓莉,等. 大宗工业固废综合利用, 政策和科技创新要跟上[J]. 环境经济,2021(12):38−41. CHANG Jiwen,DU Gengjie,SHI Xiaoli,et al. Comprehensive utilization of bulk industrial solid waste, policy and technological innovation to keep up[J]. Environmental Economics,2021(12):38−41.
[20] 马淑杰, 张英健, 罗恩华, 等. 双碳背景下“十四五”大宗固废综合利用建议[J]. 中国投资(中英文), 2021(Z8): 22-25. MA Shujie, ZHANG Yinjian, LUO Enhua, et al. Comprehensive utilization of bulk solid waste in the 14th Five-Year Plan in the context of double carbon[J] China Investment, 2021(Z8): 22-25.
[21] VASSILEVA S V,VASSILEVA C G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour[J]. Fuel,2007,86(10-11):1490−1512. doi: 10.1016/j.fuel.2006.11.020
[22] SHAHEEN S M,HOODA P S,TSADILAS C D. Opportunities and challenges in the use of coal fly ash for soil improvements–a review[J]. Journal of Environmental Management,2014,145:249−267. doi: 10.1016/j.jenvman.2014.07.005
[23] 周小平,魏建成,田少冲,等. 宁东地区粉煤灰中主量元素和稀有元素的成分分析[J]. 中国资源综合利用,2022,40(9):26−28. ZHOU Xiaopin,WEI Jiamcheng,TIAN Sshaochong,et al. Composition analysis of major elements and rare elements in fly ash in eastern ningxia area[J]. China Resources Comprehensive Utilization,2022,40(9):26−28.
[24] 黄 谦. 国内外粉煤灰综合利用现状及发展前景分析[J]. 中国井矿盐,2011,42(4):41−43. doi: 10.3969/j.issn.1001-0335.2011.04.015 HUANG Qian,et al. Analysis of development prospects and status quo of comprehensive utilization of fly ash at home and abroad[J]. China Well and Rock Salt,2011,42(4):41−43. doi: 10.3969/j.issn.1001-0335.2011.04.015
[25] 庆承松,任升莲,宋传中. 电厂粉煤灰的特征及其综合利用[J]. 合肥工业大学学报(自然科学版),2003(04):529−533. QIN Chensong,REN Shenglian,SONG Chuanzhong. Features and utilization of fly ash in power station[J]. Journal of Hefei University of Technoogy,2003(04):529−533.
[26] 夏立全,陈贵锋,李文博. 粉煤灰掺杂MnO2催化处理高盐废水中的化学需氧量研究[J]. 煤炭科学技术,2021,49(7):208−215. XIA Liquan,CHEN Guifeng,LI Wenbo. Catalytic ozonation of COD in high-salt coal chemical wastewater by fly ash doped with MnO2[J]. Coal Science and Technology,2021,49(7):208−215.
[27] AKIN,DURATE Magalhaes,FEYZA Kazanc. A study on the effects of various combustion parameters on the mineral composition of Tunçbilek fly ash[J]. Fuel,2020,275:117881.
[28] WANG Nannan,SUN Xiyu,ZHAO Qiang,et al. Leachability and adverse effects of coal fly ash: A review[J]. Journal of hazardous materials,2020,396:122725. doi: 10.1016/j.jhazmat.2020.122725
[29] SIRIRUANG C,TOOCHINDA P,JULNIPITAWONG P,et al. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete[J]. Journal of Environmental Management,2016,170:70−78.
[30] MATSUMOTO S,OGATA S,SHIMADA H,et al. Application of coal ash to postmine land for prevention of soil erosion in coal mine in Indonesia: utilization of fly ash and bottom ash[J]. Advances in Materials Science and Engineering,2016:2016.
[31] MA Lingyun,ZHANG Yulong,WANG Jie,et al. Fire-Prevention Characteristics of an Active Colloid Prepared from Stimulated Fly Ash Component[J]. ACS omega,2022,7(2):1639−1647. doi: 10.1021/acsomega.1c03299
[32] CAVUSOGLU I,YILMAZ E,YILMAZ A O. Sodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfill[J]. Powder Technology,2021,384:17−28. doi: 10.1016/j.powtec.2021.02.013
[33] LUO Yang,WU Yinghong,MA Shuhua,et al. Utilization of coal fly ash in China: a mini-review on challenges and future directions[J]. Environmental Science and Pollution Research,2021,28(15):18727−18740. doi: 10.1007/s11356-020-08864-4
[34] 何光耀,王 兵,史鹏程,等. 粉煤灰基沸石分子筛的合成及应用进展[J]. 洁净煤技术,2021,27(3):48−60. HE Guangyao,WANG Bing,SHI Pengcheng,et al. Progress in the synthesis and application of fly ash-based zeolite molecular sieves[J]. Clean Coal Technology,2021,27(3):48−60.
[35] 黄兆龙,湛渊源. 粉煤灰的物理和化学性质[J]. 粉煤灰综合利用,2003(4):3−8. doi: 10.3969/j.issn.1005-8249.2003.04.001 HUANG Zhaolong,SHENG Yuanyuan. Physical and chemical properties of fly ash[J]. Fly Ash Comprehensive Utilization,2003(4):3−8. doi: 10.3969/j.issn.1005-8249.2003.04.001
[36] GAFFNEY J S,MARLEY N A. The impacts of combustion emissions on air quality and climate–From coal to biofuels and beyond[J]. Atmospheric Environment,2009,43(1):23−36. doi: 10.1016/j.atmosenv.2008.09.016
[37] BINAL A,BAS B,KARAMUT O R. Improvement of the strength of Ankara clay with self-cementing high alkaline fly ash[J]. Procedia engineering,2016,161:374−379. doi: 10.1016/j.proeng.2016.08.577
[38] RAMME B W, THARANIYIL M P. Coal combustion products utilization handbook[J]. 2004.
[39] KOLBE J L, LEE L S, JAFVERT C T, et al. Use of alkaline coal ash for reclamation of a former strip mine[C]//World of Coal Ash (WOCA) Conference, USA. 2011: 1-15.
[40] 邵启胤. 粉煤灰用于煤矿井下注浆灭火试验[J]. 煤矿安全技术,1983(4):1−14. SHAO Qiyin. Fly ash for underground coal mine grouting fire fighting test[J]. Mining Safety and Environmental Protection,1983(4):1−14.
[41] 姜希印. 济宁二号煤矿稠化粉煤灰防灭火技术研究[D]. 西安: 西安科技大学, 2006. JIANG Xiyin, Study on technology of fire extinguishing and preventing with the denseness fly ash in JiNing NO·2 coal mine[D]. Xi’an: Xi’an University of science and Technology, 2006.
[42] 何 毅. 矿井粉煤灰浆液固化充填技术研究[D]. 西安: 西安科技大学, 2014. HE Yi. Research on fly ash slurry seriflux solidify filling technique in coal mine[D]. Xi’an: Xi’an University of Science and Technology, 2014.
[43] 李 波. 粉煤灰无机固化充填材料性能研究[D]. 西安: 西安科技大学, 2015. LI Bo. Inorganic solidified fly ash filling material performance research[D]. Xi’an: Xi’an University of Science and Technology, 2015.
[44] 刘 鑫,肖 旸,邓 军,等. 粉煤灰灌浆防灭火材料性能研究与应用[J]. 煤炭工程,2011(5):119−121. doi: 10.3969/j.issn.1671-0959.2011.05.045 LIU Xin,XIAO Shang,DENG Jun,et al. Research and application on fire prevention and control performances of fly ash grouting[J]. Coal Engineering,2011(5):119−121. doi: 10.3969/j.issn.1671-0959.2011.05.045
[45] 邓 军,刘 磊,任晓东,等. 粉煤灰动压灌浆防灭火技术[J]. 煤矿安全,2013,44(8):64−66, 72. DENG Jun,LIU Lei,REN Xiaodong,et al. The technology of fire preventing and extinguishing of fly ash dynamic pressure grouting[J]. Safe in Coal Mines,2013,44(8):64−66, 72.
[46] 金永飞,赵大龙,岳宁芳,等. 矿用新型无机固化膨胀充填材料特性试验研究[J]. 煤炭技术,2014,33(7):255−257. JIN Yongfei,ZAHO Dalong,YUE Ningfang,et al. Research on property experiment of new type inorganic curing inflation filling material in mine[J]. Coal Technology,2014,33(7):255−257.
[47] 黄白泉,黄翰文,陈尚华,等. 凝胶防灭火技术在刘家桥煤矿的应用[J]. 煤矿安全,1993(5):9−10, 16. HUANG Baiquan,HUANG Hanwen,CHENG Shanghau,et al. Application of gel fire prevention technology in Liujiaqiao coal mine[J]. Safe in Coal Mines,1993(5):9−10, 16.
[48] 徐精彩,邓 军. 凝胶防灭火技术在南屯矿综放面的应用[J]. 焦作矿业学院学报,1995(4):43−48. XU Jincai,DENG Jun. The technlque of fire fighting with gel applied in NanTun coal mine[J]. Journal of Henan Polytechnic University(Natural Science),1995(4):43−48.
[49] 鲍庆国,解本旭. 凝胶防灭火技术在柴里煤矿的应用[J]. 煤炭科学技术,1995(12):19−21. BAO Qinguo,JIE Benxu. Application of gel fire prevention technology in Chaili coal mine[J]. Coal Science and Technology,1995(12):19−21.
[50] 徐精彩,文 虎,邓 军,等. 凝胶防灭火技术在煤层内因火灾防治中的应用[J]. 中国煤炭,1997(5):28−30, 59. XU Jincai,WEN Hu,DENG Jun,et al. Application of gel fire prevention and suppression technology in the control of endogenous fires in coal seams[J]. China Coal,1997(5):28−30, 59.
[51] 吴吉南, 冯学武, 曹大成. 综放面开放采空区无氨胶体泥浆防灭火的机理与应用[J]. 安全, 2000(5): 28-31. WU Jinan, FENG Xuewu, CAO Dacheng, Mechanism and application of ammonia-free colloidal slurry for fire prevention in open mining areas at header faces[J]. Safety and Security, 2000(5): 28-31.
[52] 张培友,刘祥来. 凝胶在防灭火中的应用[J]. 煤矿安全,2002(12):16−17. doi: 10.3969/j.issn.1003-496X.2002.12.006 ZHANG Peiyou,LIU Xianglai. Application of gels in fire prevention[J]. Safety in Coal Mines,2002(12):16−17. doi: 10.3969/j.issn.1003-496X.2002.12.006
[53] 刘 杰,窦国兰,赵云锋,等. 矿用复合防灭火凝胶的制备与特性研究[J]. 煤矿安全,2022,53(9):177−185. doi: 10.13347/j.cnki.mkaq.2022.09.025 LIU Jie,DOU Guolan,ZHAO Yunfeng,et al. Study on preparation and properties of composite fire prevention gel for mine[J]. Safety in Coal Mines,2022,53(9):177−185. doi: 10.13347/j.cnki.mkaq.2022.09.025
[54] 索 航. 新型煤层巷道充填胶体防灭火材料研究与应用[D]. 廊坊: 华北科技学院, 2016. SUO Hang. Research and application of new filling gel on fire prevention and extinguishment at the coal drift[D]. Langfang: North China Institute of Science and Technology, 2016.
[55] 张振乾. 矿用防灭火活化粉煤灰胶体的制备及特性研究[D]. 太原: 太原理工大学, 2020. ZHANG Zhenqian. Study on preparation and characterization of mine fire activated fly ash colloid[D] Taiyuan: Taiyuan University of Technology, 2020.
[56] 王 楠. 煤自然发火胶体防灭火材料性能实验研究[D]. 西安: 西安科技大学, 2011 WANG Nan. Experimental research on the properties of gel for extinguishing and preventing coal seam spontaneous combustion[D]. Xi’an: Xi’an University of Science and Technology, 2011.
[57] 文 虎,徐精彩,邓 军,等. 煤层自燃多功能灌浆注胶防灭火系统及其应用[J]. 煤炭工程,2004(5):4−6. WEN Hu,XU Jingcai,DENG Jun,et al. Multifunctional grouting and gluing fire prevention system for spontaneous combustion of coal seams and its application[J]. Coal Engineering,2004(5):4−6.
[58] 杨 平,梁国栋,于贵生,等. 粉煤灰胶体隔离控制技术在花山矿复杂火区中的应用[J]. 煤矿安全,2020,51(8):82−86. YANG Pin,LIANG Guodong,YU Guisheng,et al. Application of fly ash colloid isolation control technology in complex fire area of huashan mine[J]. Safety in Coal Mines,2020,51(8):82−86.
[59] 刘继勇,张辛亥,徐精彩,等. 阳泉矿区胶体防灭火技术实践及发展[J]. 矿业安全与环保,2004(5):39−41+75. doi: 10.3969/j.issn.1008-4495.2004.05.015 LIU Jiyong,ZHANG Xinhai,XU Jincai,et al. Research on coal bed gas emission and emission intensity in Working faces[J]. Mining Safety and Environmental Protection,2004(5):39−41+75. doi: 10.3969/j.issn.1008-4495.2004.05.015
[60] 左希希. 粉煤灰三相泡沫的制备与性能研究[D]. 淮南: 安徽理工大学, 2021. ZUO Xixi. Preparation and study on performance of three-phase fly ash foam[D]. Huainan: Anhui University of Science and Technology, 2021.
[61] 朱红青,胡 超,周全涛,等. 响应曲面法优化矿井三相泡沫防灭火材料配方研究[J]. 煤炭科学技术,2019,47(4):120−126. ZHU Hongqing,HU Chao,ZHOU Quantao,et al. Study on formula of three - phase foam fire prevention and control material optimized by response surface methodology[J]. Coal Science and Technology,2019,47(4):120−126.
[62] WANG Tengfei,FAN Haiming,YANG Weipeng,et al. Stabilization mechanism of fly ash three-phase foam and its sealing capacity on fractured reservoirs[J]. Fuel,2020,264:116832. doi: 10.1016/j.fuel.2019.116832
[63] QIN Botao,Lu Yi,Li Yong,et al. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control[J]. Advanced Powder Technology,2014,25(5):1527−1533. doi: 10.1016/j.apt.2014.04.010
[64] 靳 磊. 无机固化泡沫防灭火材料及特性研究[D]. 北京: 煤炭科学研究总院, 2020. QI Lei. Study on inorganic solidified foam fire-fighting materials and properties[D]. Beijing: China Coal Research Institute, 2020.
[65] 张辛亥,李勋广,张国伟,等. 新型矿用无机固化泡沫防灭火材料性能研究[J]. 煤矿安全,2021,52(1):58−63. ZHANG Xinhai,et al. Study on properties of a new type of inorganic solidified foam extinguishing material for mine[J]. Safety in Coal Mines,2021,52(1):58−63.
[66] WEN Hu,ZHANG Duo,YU Zhijin,et al. Experimental study and application of inorganic solidified foam filling material for coal mines[J]. Advances in Materials Science and Engineering,2017:2017.
[67] QIN Botao,LU Yi,LI Fanglei,et al. Preparation and stability of inorganic solidified foam for preventing coal fires[J]. Advances in Materials Science and Engineering,2014:2014.
[68] QIN Botao,LU Yi. Experimental research on inorganic solidified foam for sealing air leakage in coal mines[J]. International Journal of Mining Science and Technology,2013,23(1):151−155. doi: 10.1016/j.ijmst.2013.03.006
[69] LU Yi,QIN Botao. Experimental investigation of closed porosity of inorganic solidified foam designed to prevent coal fires[J]. Advances in Materials Science and Engineering,2015:2015.
[70] LU Y,QIN Botao,JIA Yuwei,et al. Thermal insulation and setting property of inorganic solidified foam[J]. Advances in Cement Research,2015,27(6):352−363. doi: 10.1680/adcr.14.00013
[71] LU Yi,QIN Botao. Mechanical properties of inorganic solidified foam for mining rock fracture filling[J]. Materials Express,2015,5(4):291−299. doi: 10.1166/mex.2015.1244
[72] 鲁 义. 防治煤炭自燃的无机固化泡沫及特性研究[D]. 北京: 中国矿业大学, 2015. LU Yi. Study on the inorganic solidified foam and its characteristics for preventing and controlling spontaneous combustion of coal[D]. Beijing: China University of Mining and Technology, 2015.
[73] ZHOU Fubao,REN Wanxin,WANG Deming,et al. Application of three-phase foam to fight an extraordinarily serious coal mine fire[J]. International Journal of Coal Geology,2006,67(1-2):95−100. doi: 10.1016/j.coal.2005.09.006