Study on risk assessment model of coal mine water accident induced by flood disaster
-
摘要:
煤矿作为承灾体,面对洪水灾害的冲击威胁,脆弱性凸显。洪水不仅会直接导致淹井事故、工业广场破坏等,还会间接诱发井下涌水异常、突水、透水、地下水污染等链生灾害事故。为了定量评估洪水灾害诱发煤矿水害事故风险大小,加强煤矿洪水灾害防治工作,基于灾害风险科学致灾因子、孕灾环境、承灾体三要素经典理论和煤矿洪水灾害防治现状,构建了煤矿洪水灾害设防情况调查指标体系,建立了洪水灾害诱发煤矿水害事故风险评估模型,并在遵义市桐梓县某煤矿进行了应用验证。研究结果表明:洪水诱发煤矿水害事故风险评估涵盖了致灾因子危险性、孕灾环境稳定性(敏感性)、承灾体脆弱性等灾害风险关键要素。其中,致灾因子危险性评价主要考虑致灾因子的时间分布、空间分布和强度等;孕灾环境稳定性评价主要考虑地形、水系等因素评价孕灾环境对致灾因子的敏感性;承灾体脆弱性主要2两方面因素决定:①承灾体对洪水灾害的设防水平,设防水平越高,承灾体脆弱性越低;②在孕灾环境中暴露于致灾因子的人员、资产数量,数量越大,承灾体脆弱性越高。通过对该煤矿应用所提出的风险评估模型,得出该煤矿洪水诱发煤矿水害事故的风险等级为低风险。风险评估模型的建立为定量评估洪水诱发煤矿水害事故风险提供了方法,为煤矿做好洪水灾害防治工作提供了新参考。
Abstract:As a disaster-bearing body, coal mines are vulnerable to the threats of flood disasters and are prone to serious impacts of floods. Floods will not only directly lead to flooding accidents and industrial square destruction, but also indirectly induce abnormal water gushing underground, water permeability, groundwater pollution and other chain disasters. In order to quantitatively assess the risk of coal mine flood accidents caused by flood disasters and strengthen the prevention and control of coal mine flood disasters. Based on the classic theory of three elements of disaster risk science: disaster-causing factors, disaster-pregnant environment, and disaster-bearing body, and the current situation of coal mine flood disaster prevention and control, the investigation index system of flood disaster prevention in coal mine is constructed, and the risk assessment model for flood disaster-induced coal mine water disaster accidents was established, and the application was verified in a coal mine in Tongzi County of Zunyi City. The research shows that the risk assessment of flood-induced coal mine water disasters is a comprehensive assessment of the system risk based on the assessment of the risk of disaster-causing factors, the stability or sensitivity of disaster-pregnant environment and the vulnerability of disaster-bearing body. The time distribution, spatial distribution and intensity of disaster-causing factors are considered in the hazard evaluation of disaster-causing factors. The stability evaluation of disaster-pregnant environment is to evaluate the sensitivity of disaster-pregnant environment to disaster-inducing factors by considering terrain, water system and other factors. The vulnerability of hazard-affected body is determined by two factors and one is the level of flood disaster prevention. The higher the level of prevention is, the lower the vulnerability of hazard-affected body is. The other is the number of people and assets exposed to the disaster-causing factors in the disaster-pregnant environment. And the greater the number is, the higher the vulnerability of the disaster-affected body is. Through the application of the proposed risk assessment model in this Coal Mine, it can be concluded that the risk level of flood-induced coal mine water disasters and accidents in this Coal Mine is low risk. In this paper, the establishment of risk assessment model provides a method for quantitatively evaluating the risk of coal mine water disaster caused by floods. It can provide a new reference for the prevention and control of flood disasters in coal mines.
-
Keywords:
- flood disaster /
- disaster bearing body /
- coal mine water accident /
- risk assessment model /
- AHP
-
-
表 1 煤矿洪水灾害承灾体调查
Table 1 Survey of hazard-affected bodies of coal mine flood disasters
类型 调查内容 煤矿基础信息 A 核定产能 A1/万t 水文地质类型 A2 煤矿是否位于地表河流、湖泊、山洪部位、水库等附近 A3 煤矿是否位于低洼地带 A4 洪水设防水平(重现期) A5 煤矿所在地洪水灾害历史发生次数A6 单班最大在岗人数 A7/人 固定资产净值 A8/亿元 洪水设防达标情况 B 地面
工程 B1煤矿井田范围或井田附近地面河道是否被挤占 B11 井口标高是否高于当地历年最高洪水位B12 堤防工程是否有专项设计和报批程序 B13 地面变电所是否按防洪标准采取防护措施 B14 采矿塌陷区、地裂缝区是否及时回填、压实 B15 是否对采矿塌陷区、地裂缝区的积水情况进行监测 B16 工业场地是否选择在岩溶发育、火烧区、采空区和火成岩侵入区 B17 矿井
工程 B2主排水系统排水能力富裕系数是否大于1.2 B21 是否配置具有独立供电系统且排水能力不小于最大涌水量的潜水泵(抗灾排水系统) B22 报废立井、斜井、平硐是否及时封堵 B23 报废立井、斜井、平硐是否在井口设置排水沟 B24 雨季期间是否加强矿井涌水量监测 B25 煤层露头防隔水煤柱宽度是否根据导水裂隙带宽度确定 B26 通风机房是否按防洪标准采取防护措施 B27 孔口低于当地历史最高洪水位的孔口管,是否采取防洪措施 B28 表 2 洪水诱发煤矿水害事故风险等级
Table 2 Risk level of flood-induced coal mine water disaster
风险等级 R值 直接判定条件 高风险 52≤R≤64 煤矿位于地表河流、湖泊、山洪部位、水库等附近且位于低洼地带且井口标高低于当地历年最高洪水位 中风险 32≤R<52 — 一般风险 12≤R<32 — 低风险 1≤R<12 煤矿远离地表河流、湖泊、山洪部位、水库等附近且不位于低洼地带且井口标高高于当地历年最高洪水位 表 3 致灾因子危险性(H)等级值
Table 3 Hazard grade value of disaster causing factor
洪水风险等级 致灾因子危险性等级值 极高 4 高 3 中 2 低 1 表 4 孕灾环境稳定性(S)等级值
Table 4 Stability grade value of disaster pregnant environment
地形、水系 孕灾环境稳定性等级值 煤矿位于地表河流、湖泊、山洪部位、
水库等附近且位于低洼地带4 煤矿位于地表河流、湖泊、山洪部位、
水库等附近但不位于低洼地带3 煤矿不位于地表河流、湖泊、山洪部位、
水库等附近但位于低洼地带2 煤矿不位于地表河流、湖泊、山洪部位、
水库等附近且不位于低洼地带1 表 5 判断矩阵标度含义
Table 5 Judgment matrix scale meaning
标度 含义 1 2个因素相比,具有相同重要性 3 2个因素相比,前者比后者稍重要 5 2个因素相比,前者比后者明显重要 7 2个因素相比,前者比后者强烈重要 9 2个因素相比,前者比后者极端重要 2,4,6,8 上述相邻判断的中间值 倒数 i与j的重要性之比为aij,aji=1/aij 表 6 随机一致性指标
$ R_{\rm{I}}$ Table 6 Random consistency index
$ R_{\rm{I}}$ n 1 2 3 4 5 6 7 8 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 表 7 判断矩阵一致性检验结果
Table 7 Consistency test results of judgment matrix
判断矩阵 一致性比率CR X 0 Y1 0.0282 Y2 0.0462 表 8 权重计算结果
Table 8 Weight calculation results
最高层 中间层及权重 最低层及权重 赋分 洪水设防达标情况 地面工程B1,0.5 B11 0.1590 16 B12 0.1236 12 B13 0.0205 2 B14 0.0406 4 B15 0.0985 10 B16 0.0367 4 B17 0.0211 2 矿井工程B2,0.5 B21 0.0449 5 B22 0.0330 3 B23 0.1328 13 B24 0.0595 6 B25 0.0215 2 B26 0.1264 12 B27 0.0243 3 B28 0.0575 6 表 9 洪水设防水平等级值
Table 9 Level value of flood fortification level
洪水设防水平分值 洪水设防水平等级值 [0, 60) 4 [60, 75) 3 [75, 90) 2 [90, 100] 1 表 10 人员、资产暴露度等级值
Table 10 Exposure level value of personnel and assets
分级 人员、资产暴露度等级值 单班最大在岗人数≥600人或
固定资产净值≥10亿元4 400≤单班最大在岗人数<600人或
2亿元≤固定资产净值<10亿元3 200≤单班最大在岗人数<400人或
0.5亿元≤固定资产净值<2亿元2 单班最大在岗人数<200人或
固定资产净值<0.5亿元1 表 11 承灾体脆弱性评价等级值
Table 11 Vulnerability evaluation grade value of disaster bearing body
承灾体脆弱性等级值 人员、资产暴露度等级值 1 2 3 4 设防水平等级值 1 1 1 2 2 2 1 2 2 3 3 2 2 3 4 4 2 3 4 4 表 12 煤矿洪水灾害承灾体调查
Table 12 Survey of flood disaster bearing body in coal mine
调查内容 调查结果 核定产能/万t 60 水文地质类型 复杂 煤矿是否位于地表河流、湖泊、山洪部位、水库等附近 否 煤矿是否位于低洼地带 是 洪水设防水平(重现期)/a 100 煤矿所在地洪水灾害历史发生次数 0 单班最大在岗人数/人 180 固定资产净值/亿元 6.5 煤矿井田范围或井田附近地面河道是否被挤占 否 井口标高是否高于当地历年最高洪水位 是 堤防工程是否有专项设计和报批程序 是 地面变电所是否按防洪标准采取防护措施 是 采矿塌陷区、地裂缝区是否及时回填、压实 无 是否对采矿塌陷区、地裂缝区的积水情况进行监测 无 工业场地是否选择在岩溶发育、火烧区、采空区和火成岩侵入区 否 主排水系统排水能力富裕系数是否大于1.2 是 是否有抗灾排水系统 否 报废立井、斜井、平硐是否及时封堵 是 报废立井、斜井、平硐是否在井口设置排水沟 是 雨季期间是否加强矿井涌水量监测 是 煤层露头防隔水煤柱宽度是否根据导水裂隙带宽度确定 否 通风机房是否按防洪标准采取防护措施 是 孔口低于当地历史最高洪水位的孔口管,是否采取防洪措施 是 -
[1] 郑国光. 深入学习贯彻习近平总书记防灾减灾救灾重要论述, 全面提高我国自然灾害防治能力[EB/OL]. (2020-06-05)[2022-02-05]. http://dangjian.people.com.cn/n1/2020/0620/c117092-31753835.html?from=groupmessage&isappinstalled=0. [2] 习近平主持召开中央财经委员会第三次会议[EB/OL]. (2018-10-08)[2022-05-02]. http://www.gov.cn/xinwen/2018-10/10/content_5329292.htm. [3] 王 润,姜 彤,Lorenz King,等. 20世纪重大自然灾害评析[J]. 自然灾害学报,2000,9(4):9−15. doi: 10.3969/j.issn.1004-4574.2000.04.002 WANG Run,JIANG Tong,Lorenz King,et al. Review on global natural catastrophes in the 20th century[J]. Journal of Natural Disasters,2000,9(4):9−15. doi: 10.3969/j.issn.1004-4574.2000.04.002
[4] IPCC. Managing the risks of extreme events and disasters to Advance climate change adaptation: a special report of working groups I and II of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2012.
[5] 张 瑞,邓红卫,黄永红,等. 矿山水害链构建及孕源断链减灾途径研究[J]. 安全与环境学报,2011,11(3):218−222. doi: 10.3969/j.issn.1009-6094.2011.03.053 ZHANG Rui,DENG Hongwei,HUANG Yonghong,et al. Study on construction of mine water hazard disaster chain and countermeasures of chain-cutting mitigation from gestation source[J]. Journal of Safety and Environment,2011,11(3):218−222. doi: 10.3969/j.issn.1009-6094.2011.03.053
[6] Ana Maria Cruz, Laura J Steinberg, Ana Lisa Vetere‐Arellano. emerging issues for natech disaster risk management in Europe[J]. Journal of Risk Research, 2006, 9(5): 483-501.
[7] 盖程程,翁文国,袁宏永. Natech事件风险评估研究进展[J]. 灾害学,2011,26(2):125−129. doi: 10.3969/j.issn.1000-811X.2011.02.024 GAI Chengcheng,WENG Wenguo,YUAN Hongyong. Development of Natech disaster risk assessment[J]. Journal of Catastrophology,2011,26(2):125−129. doi: 10.3969/j.issn.1000-811X.2011.02.024
[8] 国家安全生产监督管理总局 国家煤矿安全监察局关于预防暴雨洪水引发煤矿事故灾难的指导意见[EB/OL]. http://www.mem.gov.cn/gk/gwgg/agwzlfl/yj_01/200804/t20080402_242140.shtml, 2008-04-06. [9] 史培军. 灾害风险科学[M]. 北京: 北京师范大学出版集团, 2016. [10] 史培军. 五论灾害系统研究的理论与实践[J]. 自然灾害学报,2009,18(5):1−9. doi: 10.3969/j.issn.1004-4574.2009.05.001 SHI Peijun. Theory and practice on disaster system research in a fifth time[J]. Journal of Natural Disasters,2009,18(5):1−9. doi: 10.3969/j.issn.1004-4574.2009.05.001
[11] 史培军,孔 锋,叶 谦,等. 灾害风险科学发展与科技减灾[J]. 地球科学进展,2014,29(11):1205−1211. doi: 10.11867/j.issn.1001-8166.2014.11.1205 SHI Peijun,KONG Feng,YE Qian,et al. Disaster risk science development and disaster risk reduction using science and technology[J]. Advances in Earth Science,2014,29(11):1205−1211. doi: 10.11867/j.issn.1001-8166.2014.11.1205
[12] DAVIDSON Rachel A,LAMBERT Kelly B. Comparing the hurricane disaster risk of U. S. coastal counties[J]. Natural Hazards Review,2001,2(3):132−142. doi: 10.1061/(ASCE)1527-6988(2001)2:3(132)
[13] HU Shanshan,CHENG Xiangjun,ZHOU Demin,et al. GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing[J]. Natural Hazards,2017,87(3):1525−1543. doi: 10.1007/s11069-017-2828-0
[14] XIAO Yangfan,YI Shanzhen,TANG Zhongqian. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference[J]. Science of the Total Environment,2017,599-600:1034−1046. doi: 10.1016/j.scitotenv.2017.04.218
[15] 刘媛媛,王绍强,王小博,等. 基于AHP-熵权法的孟印缅地区洪水灾害风险评估[J]. 地理研究,2020,39(8):1892−1906. LIU Yuanyuan,WANG Shaoqiang,WANG Xiaobo,et al. Flood risk assessment in Bangladesh, India and Myanmar based on the AHP weight method and entropy weight method[J]. Geographical Research,2020,39(8):1892−1906.
[16] 张子为. 洪水对化工园区危害风险评估研究[J]. 煤炭与化工,2020,43(4):157−160. doi: 10.19286/j.cnki.cci.2020.04.049 ZHANG Ziwei. Study on hazard risk assessment of flood to chemical industry park[J]. Coal and Chemical Industry,2020,43(4):157−160. doi: 10.19286/j.cnki.cci.2020.04.049
[17] 王 煜. 洪水灾害下卧式储罐可靠性分析与风险评估研究[D]. 广州: 华南理工大学, 2016. WANG Yu. Research on reliability analysis and risk assessment of horizontal tank under flood disaster[D]. Guangzhou: South China University of Technology, 2016.
[18] 曹梦凡. 洪水作用下化工园区基础设施风险分析[D]. 北京: 首都经济贸易大学, 2019. CAO Mengfan. Risk analysis of infrastructure in chemical Industry park under the action of flood[D]. Beijing: Capital University of Economics and Business, 2019.
[19] 孔祥北,罗艾民,魏利军. 化工园区防洪水及次生灾害设计标准现状研究[J]. 中国安全生产科学技术,2019,15(7):142−148. doi: 10.11731/j.issn.1673-193x.2019.07.023 KONG Xiangbei,LUO Aimin,WEI Lijun. Study on current situation of design standards for flood and secondary disasters prevention in chemical industrial park[J]. Journal of Safety Science and Technology,2019,15(7):142−148. doi: 10.11731/j.issn.1673-193x.2019.07.023
[20] 胡苏安,何盈利,姜宝元,等. 河堤决口预测及溃堤洪水的矿井风险评价模型[J]. 现代矿业,2018,34(11):175−180. doi: 10.3969/j.issn.1674-6082.2018.11.046 HU Suan,HE Yingli,JIANG Baoyuan,et al. Mine risk evaluation model of the prediction of river bank breakage and flooding of embankments[J]. Modern Mining,2018,34(11):175−180. doi: 10.3969/j.issn.1674-6082.2018.11.046
[21] 齐庆杰,刘文岗,王安虎,等. 地震诱发煤矿次生灾害隐患排查体系构建[J]. 煤炭科学技术,2022,50(1):134−141. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201012 QI Qingjie,LIU Wengang,WANG Anhu,et al. Construction of hidden danger investigation system of coal mine earthquake disaster bearing body[J]. Coal Science and Technology,2022,50(1):134−141. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201012
[22] 史培军. 灾害研究的理论与实践[J]. 南京大学学报,1991,11:37−42. SHI Peijun. On the theory of disaster research and its practice[J]. Journal of Nanjing University,1991,11:37−42.