高级检索

基于粗糙度的煤体表面接触角数值模拟研究

张健, 许博, 魏建平, 张鹏妍, 蔡茂林, 张凯旋

张 健,许 博,魏建平,等. 基于粗糙度的煤体表面接触角数值模拟研究[J]. 煤炭科学技术,2023,51(4):96−104

. DOI: 10.13199/j.cnki.cst.2021-0871
引用本文:

张 健,许 博,魏建平,等. 基于粗糙度的煤体表面接触角数值模拟研究[J]. 煤炭科学技术,2023,51(4):96−104

. DOI: 10.13199/j.cnki.cst.2021-0871

ZHANG Jian,XU Bo,WEI Jianping,et al. Numerical simulation of coal surface contact angle based on roughness[J]. Coal Science and Technology,2023,51(4):96−104

. DOI: 10.13199/j.cnki.cst.2021-0871
Citation:

ZHANG Jian,XU Bo,WEI Jianping,et al. Numerical simulation of coal surface contact angle based on roughness[J]. Coal Science and Technology,2023,51(4):96−104

. DOI: 10.13199/j.cnki.cst.2021-0871

基于粗糙度的煤体表面接触角数值模拟研究

基金项目: 

国家自然科学基金资助项目(52174171);河南省高等学校重点科研计划资助项目(22A440012);河南理工大学安全与能源工程学部“双一流”学科创建工程资助项目(AQ20230741)

详细信息
    作者简介:

    张健: (1988—),男,河南商丘人,副教授,博士。E-mail:zhangjian@hpu.edu.cn

    通讯作者:

    许博: (1997—),男,河南驻马店人,硕士研究生。E-mail:1242056370@qq.com

  • 中图分类号: TD714

Numerical simulation of coal surface contact angle based on roughness

Funds: 

National Natural Science Foundation of China (52174171); Key Research Project of Colleges and Universities of Henan Province (22A440012); Double First-class Discipline Creation Project, Department of Safety and Energy Engineering, Henan Polytechnic University (AQ20230741)

  • 摘要:

    煤尘是煤矿的七大灾害之一,它不仅影响作业人员的身心健康,还能致使发生煤尘爆炸。煤的润湿效果对除尘有很大的影响,已有研究表明煤的润湿效果与煤的润湿性、表面粗糙度和表面活性剂等有关。为了有效地解决井下煤尘问题,选取了亲水性的哈密褐煤、疏水性的安阳焦煤和弱亲水性的赵固二矿无烟煤作为研究对象,使用光学接触角形貌联用仪测量3种煤样的均方粗糙度,测定3种煤样的本征接触角,利用COMSOL数值软件构建二维物理模型,设置模拟条件,调整模拟参数,分析对比试验值和模拟值,验证COMSOL数值模拟的可行性,研究了煤体表面粗糙度对煤体表面接触角的影响。结果表明:数值模拟的液滴铺展过程、液滴铺展速度及液滴铺展形态和试验情况类似,但模拟接触角值比试验接触角值大;随着煤体表面粗糙度的增加,褐煤接触角从60.7°降低到50.9°,变化范围在10°左右,焦煤接触角从96.5°增加到112.7°,变化范围在16°左右,无烟煤接触角从89.7°降低到78.3°,变化范围在11°左右;同种表面活性剂对3种煤样接触角的模拟值和试验值具有相同的变化趋势,但模拟值比试验值大。采用数值模拟的方法,研究煤体表面粗糙度对煤体表面接触角的影响具有一定的可行性。煤体表面受粗糙度影响的润湿情况符合Wenzel模型。表面活性剂的存在不改变3种煤样的接触角随表面粗糙度变化的规律。

    Abstract:

    Coal dust is one of the seven disasters in coal mine. It affects the health of workers and causes coal dust explosion. The wetting effect of coal has a great influence on dust removal. Studies have shown that the wetting effect of coal is related to the wettability, surface roughness and surfactants of coal. In order to effectively solve the problem of coal dust under the mines, which selects hydrophilic Hami lignite, hydrophobic Anyang coking coal and weakly hydrophilic anthracite of Zhaogu No.2 mine as the research objects. The mean square roughness of the three coal samples were measured by the optical contact angle morphology combined instrument, the intrinsic contact angles of the three coal samples were measured, the two-dimensional physical model was constructed by COMSOL numerical software, the simulation conditions were set, the simulation parameters were adjusted, the experimental and simulation values were analyzed and compared, the feasibility of COMSOL numerical simulation was verified, and the influence of coal surface roughness on coal surface contact angle was studied. The results show that the droplet spreading process, the droplet spreading velocity and the droplet spreading shape of numerical simulation are similar to those of experiment, but the simulated contact angle is larger than that of experiment. With the increase of coal surface roughness, the contact angle of lignite decreases from 60.7° to 50.9°, the variation range is about 10°, the contact angle of coking coal increases from 96.5° to 112.7°, the variation range is about 16°, and the contact angle of anthracite decreases from 89.7° to 78.3°, and the variation range is about 11°. The simulated and experimental values of contact angle of three kinds of coal samples with the same surfactant have the same change trend, but the simulated value is larger than the experimental value. It is feasible to study the influence of coal surface roughness on coal surface contact angle by numerical simulation. The wetting of coal surface affected by roughness conforms to Wenzel model. The existence of surfactant does not change the variation of contact angle with surface roughness of three coal samples.

  • 图  1   条纹投影相移技术原理

    Figure  1.   Principle of fringe projection and phase-shifting technology

    图  2   3种煤样的光学图像

    Figure  2.   Optical images of three coal samples

    图  3   3种煤样的二维形貌

    Figure  3.   2D topography images of three coal samples

    图  4   3种煤样的三维形貌

    Figure  4.   3D topography images of three coal samples

    图  5   不同砂纸处理煤样的接触角

    Figure  5.   Contact angle of the coal samples treated with various sandpapers

    图  6   模拟几何模型

    Figure  6.   Geometric model of the simulation

    图  7   不同粗糙度表面

    Figure  7.   Diagram of different roughness surfaces

    图  8   边界条件

    Figure  8.   Boundary conditions

    图  9   网格剖分

    Figure  9.   Mesh generation

    图  10   3种煤样的模拟液滴铺展过程

    Figure  10.   Simulated droplet spreading process of three coal samples

    图  11   3种煤样在不同粗糙度下的模拟值

    Figure  11.   Three coal sample simulation values with different roughness

    图  12   Wenzel模型曲线

    Figure  12.   Wenzel model curve

    图  13   3种煤样的模拟值和试验值

    Figure  13.   Simulated and experimental values of three coal sample

    表  1   煤样的工业分析和坚固性系数

    Table  1   Proximate analysis and firmness coefficient of coal samples

    煤样Mad/%Aad/%Vdaf/%坚固性系数f
    哈密褐煤5.9410.0533.610.78
    安阳焦煤0.5712.2323.171.12
    赵无烟煤2.9815.557.981.92
    下载: 导出CSV

    表  2   试验和模拟接触角对比

    Table  2   Comparison of experimental and simulated contact angles

    煤样接触角
    试验模拟
    褐煤
    45.9°46.5°
    焦煤
    113.8°114.1°
    无烟煤
    82.2°82.9°
    下载: 导出CSV
  • [1] 程卫民,周 刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展与展望[J]. 煤炭科学技术,2020,48(2):1−20.

    CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China’s coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1−20.

    [2] 王海涛,杨 荔,苏亚娇,等. 2009—2018年中国职业病发病规律及特征[J]. 职业卫生与应急救援,2020,38(2):178−182.

    WANG Haitao,YANG Li,SU Yajiao,et al. Characteristics of occupational disease reported in China during 2009 to 2018[J]. Occupational Health and Emergency Rescue,2020,38(2):178−182.

    [3] 胡 斐,胡胜勇,高 扬,等. 湿式旋流抽尘净化器的除尘机理研究[J]. 煤炭科学技术,2022,50(8):118−124.

    HU Fei,HU Shengyong,GAO Yang,et al. Study on dust removal mechanism of wet cyclone scrubber[J]. Coal Science and Technology,2022,50(8):118−124.

    [4] 李娇阳. 煤表面润湿性影响因素分析[D]. 焦作: 河南理工大学, 2016.

    LI Jiaoyang. The influence factors of coal surface wettability[D]. Jiaozuo: Henan Polytechnic University, 2016.

    [5] 李庆钊,林柏泉,张军凯,等. 矿井煤尘的分形特征及对其表面润湿性能的影响[J]. 煤炭学报,2012,37(S1):138−142.

    LI Qingzhao,LIN Boquan,ZHANG Junkai,et al. Fractal characteristics of particle size distribution and its effects on the surface wetting performance of coal mine dusts[J]. Journal of China Coal Society,2012,37(S1):138−142.

    [6] 杨 静. 煤尘的润湿机理研究[D]. 青岛: 山东科技大学, 2008.

    YANG Jing. Study on wettability mechanism of coal dust[D]. Qingdao: Shandong University of Science and Technology, 2008.

    [7] 王宝和,强伟丽,王 甜,等. 纳米水滴在纳米粗糙壁面上润湿行为的分子动力学模拟[J]. 高校化学工程学报,2017,31(5):1169−1176.

    WANG Baohe,QIANG Weili,WANG Tian,et al. Molecular dynamics simulation on wetting behaviors of water nanodroplets on nanotextured rough surfaces[J]. Journal of Chemical Engineering of Chinese Universities,2017,31(5):1169−1176.

    [8]

    GUAN C H,LYU X J,HAN Z X,et al. The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations.[J]. Physical Chemistry Chemical Physics:PCCP,2020,22(4):2361−2371. doi: 10.1039/C9CP05672F

    [9] 黄桥高,潘 光. 基于格子Boltzmann方法的疏水表面润湿性数值模拟[J]. 功能材料,2015,46(10):10023−10028.

    HUANG Qiaogao,PAN Guang. Numerical simulation on wettability of hydrophobic surfaces based on lattice boltzmann method[J]. Journal of Functional Materials,2015,46(10):10023−10028.

    [10] 张 博. 液滴润湿行为与表面微纳结构关系的模拟研究[D]. 北京: 北京化工大学, 2016.

    ZHANG Bo. Theoretical study on the relationship between wetting behaviors of microdroplets and substrate microstructures[D]. Beijing: Beijing University of Chemical Technology, 2016.

    [11] 李 勇. 相位测量轮廓术关键技术及应用研究[D]. 成都: 四川大学, 2006.

    LI Yong. Study on key technology and application of phase measurement profilometry[D]. Chengdu: Sichuan University, 2006.

    [12]

    GOOD R J. Contact angle, wetting, and adhesion: a critical review[J]. Journal of Adhesion Science and Technology,2012,6(12):1269−1302.

    [13]

    YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805,95:65−87. doi: 10.1098/rstl.1805.0005

    [14]

    OU X W,LIN Z,LI J Y. Surface microstructure engenders unusual hydrophobicity in phyllosilicates[J]. Chemical Communications (Cambridge, England),2018,54(43):5418−5421. doi: 10.1039/C8CC02102C

    [15]

    RIVERA R M,KOLTSOV A,LAZCANO B A,et al. Wettability in water/iron ore powder systems: To the universality of the Cassie model[J]. International Journal of Mineral Processing,2017,162:36−47. doi: 10.1016/j.minpro.2017.02.016

    [16]

    DEEN N G,KUIPERS J A M. Direct numerical simulation of wall-to liquid heat transfer in dispersed gas-liquid two-phase flow using a volume of fluid approach[J]. Chemical Engineering Science,2013,102:268−282. doi: 10.1016/j.ces.2013.08.025

    [17] 鲁建华. 基于格子Boltzmann方法的多孔介质内流动与传热的微观模拟[D]. 武汉: 华中科技大学, 2009.

    LU Jianhua. Pore-scale study of flow and heat transfer in porous media based on lattice Boltzmann method[D]. Wuhan: Huazhong University of Science and Technology, 2009.

    [18] 王瑞学,季顺迎,岳前进. 海冰动力学数值模拟中改进的PIC方法[J]. 计算力学学报,2006,23(4):440−446. doi: 10.3969/j.issn.1007-4708.2006.04.011

    WANG Ruixue,JI Shunying,YUE Qianjin. Modified PIC method for numerical simulation of sea ice dynamics[J]. Chinese Journal of Computational Mechanics,2006,23(4):440−446. doi: 10.3969/j.issn.1007-4708.2006.04.011

    [19]

    MISHRA A V,BOLOTNOV I A. Contact angle control algorithm development for level set interface tracking method[J]. Transactions of the American Nuclear Society,2013,108(6):1017−1019.

    [20]

    FRANK F,LIU C,SCANZIANI A,et al. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods[J]. Journal of Colloid and Interface Science,2018,523:282−291. doi: 10.1016/j.jcis.2018.02.075

    [21]

    MENSHOV I S,ZHANG C. Interface capturing method based on the Cahn-Hilliard equation for two-phase flows[J]. Computational Mathematics and Mathematical Physics,2020,60(3):472−483. doi: 10.1134/S0965542520030124

图(14)  /  表(2)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  21
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 录用日期:  2022-01-31
  • 网络出版日期:  2023-05-10
  • 刊出日期:  2023-04-29

目录

    /

    返回文章
    返回