Industrialization bottlenecks and countermeasures for pumped storage utilization in underground spaces of closed coal mine
-
摘要:
传统抽水储能电站作为成熟的规模化储能技术,受地形和土地资源等因素的限制,难以满足快速增长的新能源装机需求。在此背景下,基于关闭矿井地下空间开发抽水储能电站的技术思路逐渐受到关注,并被视为一种具有广阔应用前景的新型储能方式。为助力关闭矿井抽水储能产业化发展,系统梳理了国内外关闭矿井抽水储能电站的工程实践与研究进展,归纳了该技术在工程利用过程中所面临的关键挑战与现实需求。研究聚焦模式设计与选址规划、水循环环境影响机制、地下水库围岩稳定性与密闭性、电站运行多场耦合水力学特性4大核心基础技术领域,剖析了其研究进展与关键科学问题。进一步从技术、经济、政策、环境及社会多重视角,揭示制约产业化的核心矛盾,包括中试平台验证体系缺失、装机容量界定困难、地下空间产权碎片化、环境评估机制缺位及复合型人才短缺等诸多制约瓶颈。针对上述挑战,提出多维度协同发展对策,包括关键技术突破路径、工程经济提升策略、政策标准完善建议、生态环境协同管理及协同创新体系构建。研究旨在为我国关闭煤矿抽水储能技术从理论探索迈向工程产业化应用提供科学依据与技术路线,推动矿区资源绿色转型,助力新型电力系统清洁高效发展。
Abstract:Traditional pumped hydro storage (PHS), as a mature large-scale energy storage technology, is currently constrained by factors such as terrain and land resource availability, making it increasingly challenging to meet the rapidly growing demand for renewable energy capacity integration. Against this backdrop, the concept of utilizing underground spaces in decommissioned coal mines for pumped storage power generation has garnered significant attention and is regarded as a promising alternative energy storage solution. To facilitate the industrialization of pumped storage in abandoned mines, this study systematically reviews engineering practices and research progress in this field both domestically and internationally. The key technical challenges and practical constraints encountered in engineering applications are identified. The research focuses on four fundamental technical domains: system design and site selection, hydrological and environmental impact mechanisms, stability and impermeability of underground reservoirs, and the coupled multi-field hydrodynamic characteristics of power station operation. The study further explores the core barriers to industrialization from five perspectives: technological feasibility, economic viability, policy frameworks, environmental sustainability, and societal acceptance. These barriers include the absence of a pilot validation system, difficulties in accurately determining installed capacity, fragmentation of underground space ownership, lack of comprehensive life-cycle environmental assessment mechanisms, and shortages of interdisciplinary professionals possessing cross-sectoral expertise. To address these challenges, a multidimensional coordinated development strategy is proposed, encompassing pathways for key technological advancements, engineering economic optimization strategies, policy and regulatory improvements, ecological and environmental management frameworks, and interdisciplinary innovation systems. The findings aim to provide a scientific foundation and technical roadmap for transitioning pumped storage technology in abandoned coal mines from theoretical research to large-scale engineering applications, thereby promoting the green transformation of mining regions and supporting the clean and efficient development of modern power systems.
-
-
表 1 国内外部分建设中的关闭矿井抽水储能电站工程情况[29]
Table 1 Engineering design parameters of closed mine pumped storage power station constructed at home and abroad[29]
电站 类型 水库巷道长/m 水头高/m 库容/103 m3 功率/MW 状态 主要制约因素 美国Mount Hope发电站 半地下 — 810 6 200 2 040 失败 政策、技术 西班牙Asturian发电站 半地下 5 700 300~600 170 23.52 规划 技术、社会 南非FWR发电站 全地下 67 000 1 200/1 500 1 000 抽955/发1 230 规划 技术、经济 德国Prosper-Haniel发电站 半地下 15 500 560 600 200 暂停 政策、技术 德国Grund ore mine发电站 全地下 25 000 700 240~260 100 规划 政策、经济 中国滦平发电站 全地上 — 470 1 810 300 启动 技术 中国句容石砀山铜矿发电站 半地下 20 460 339 约7 000 1 200 启动 技术 -
[1] BALOGH J M. The impacts of agricultural development and trade on CO2 emissions? Evidence from the Non-European Union countries[J]. Environmental Science & Policy,2022,137:99−108.
[2] BURKE A. An architecture for a net zero world:Global climate governance beyond the epoch of failure[J]. Global Policy,2022,13:24−37. doi: 10.1111/1758-5899.13159
[3] 辛保安,单葆国,李琼慧,等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报,2022,42(9):3117−3126. XIN Baoan,SHAN Baoguo,LI Qionghui,et al. Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE,2022,42(9):3117−3126.
[4] 谢和平,高明忠,高峰,等. 关停矿井转型升级战略构想与关键技术[J]. 煤炭学报,2017,42(6):1355−1365. XIE Heping,GAO Mingzhong,GAO Feng,et al. Strategic conceptualization and key technology for the transformation and upgrading of shut-down coal mines[J]. Journal of China Coal Society,2017,42(6):1355−1365.
[5] 袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20. YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
[6] 刘峰,李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报,2017,42(9):2205−2213. LIU Feng,LI Shuzhi. Discussion on the new development and utilization of underground space resources of transitional coal mines[J]. Journal of China Coal Society,2017,42(9):2205−2213.
[7] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211. XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
[8] 霍冉,徐向阳,姜耀东. 国外废弃矿井可再生能源开发利用现状及展望[J]. 煤炭科学技术,2019,47(10):267−273. HUO Ran,XU Xiangyang,JIANG Yaodong. Status and prospect on development and utilization of renewable energy in abandoned mines abroad[J]. Coal Science and Technology,2019,47(10):267−273.
[9] 文志杰,姜鹏飞,宋振骐,等. 关闭/废弃矿井抽水蓄能开发利用现状与进展[J]. 煤炭学报,2024,49(3):1358−1374. WEN Zhijie,JIANG Pengfei,SONG Zhenqi,et al. Development status and progress of pumped storage in underground space of closed/abandoned mines[J]. Journal of China Coal Society,2024,49(3):1358−1374.
[10] 卞正富,周跃进,曾春林,等. 废弃矿井抽水蓄能地下水库构建的基础问题探索[J]. 煤炭学报,2021,46(10):3308−3318. BIAN Zhengfu,ZHOU Yuejin,ZENG Chunlin,et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society,2021,46(10):3308−3318.
[11] COLAS E,KLOPRIES E M,TIAN D Y,et al. Overview of converting abandoned coal mines to underground pumped storage systems:Focus on the underground reservoir[J]. Journal of Energy Storage,2023,73:109153. doi: 10.1016/j.est.2023.109153
[12] MENÉNDEZ J,FERNÁNDEZ-ORO J M,GALDO M,et al. Efficiency analysis of underground pumped storage hydropower plants[J]. Journal of Energy Storage,2020,28:101234. doi: 10.1016/j.est.2020.101234
[13] 杨科,付强,袁亮,等. 关闭/废弃矿井地下空间抽水蓄能发展战略研究[J]. 矿业科学学报,2023,8(3):283−292. YANG Ke,FU Qiang,YUAN Liang,et al. Development strategy of pumped storage in underground space of closed/abandoned mines[J]. Journal of Mining Science and Technology,2023,8(3):283−292.
[14] 谢和平,侯正猛,高峰,等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972. XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped-storage power in underground coal mine:Principles,present situation and future[J]. Journal of China Coal Society,2015,40(5):965−972.
[15] 王双明,刘浪,赵玉娇,等. “双碳” 目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79. WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon”:A new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.
[16] FESSENDEN R A. System of Storing Power:US1247520[P]. 1917−11−20.
[17] ARGONNE NATIONAL LABORATORY,Acres American Incorporated. Siting opportunities in the U. S. for compressed air and underground pumped hydro energy storage facilities[M]. Buffalo:Acres American Inc,1976.
[18] CHIU H H,RODGERS L W,SALEEM Z A,et al. Mechanical energy storage systems:Compressed air and underground pumped hydro[J]. Journal of Energy,1979,3(3):131−139. doi: 10.2514/3.62426
[19] UDDIN N,ASCE M. Preliminary design of an underground reservoir for pumped storage[J]. Geotechnical & Geological Engineering,2003,21(4):331−355.
[20] SEIWALD S. Erweiterung kraftwerk Naßfeld–erhöhung bockhartseedamm[J]. Ö sterreichische Wasser- und Abfallwirtschaft,2007,59(7):91−97.
[21] CARNEIRO J F,MATOS C R,VAN GESSEL S. Opportunities for large-scale energy storage in geological formations in mainland Portugal[J]. Renewable and Sustainable Energy Reviews,2019,99:201−211. doi: 10.1016/j.rser.2018.09.036
[22] NIEMANN A,BALMES J P,SCHREIBER U,et al. Proposed underground pumped hydro storage power plant at Prosper-Haniel colliery in Bottrop:State of play and prospects[J]. Min. Rep. Glückauf,2018,154(3):214−223.
[23] WINDE F,KAISER F,ERASMUS E. Exploring the use of deep level gold mines in South Africa for underground pumped hydroelectric energy storage schemes[J]. Renewable and Sustainable Energy Reviews,2017,78:668−682. doi: 10.1016/j.rser.2017.04.116
[24] NAGLER N,LOHRENGEL A,SCHÄFER G. Untertägige Pumpspeicher-kraftwerke–Ein neuer Weg der Energiespeicherung[J]. Institut für Maschinenwesen,2009:155.
[25] NIEMANN A. Machbarkeitsstudie zur Nutzung von Anlagen des Steinkohlebergbaus als Pumpspeicherwerke[J]. PowerPoint Präsentation an der Universität Duisburg-Essen,2011.
[26] MENÉNDEZ J,SCHMIDT F,LOREDO J. Comparing subsurface energy storage systems:Underground pumped storage hydropower,compressed air energy storage and suspended weight gravity energy storage[J]. E3S Web of Conferences,2020,162:01001. doi: 10.1051/e3sconf/202016201001
[27] 赵倩,孙清钟,王丽娟,等. 基于矿坑开发的抽水蓄能电站下水库围岩稳定性分析[J/OL]. 煤炭学报,1−15[2024−03−11]. https://doi.org/10.13225/j.cnki.jccs.2024.0703. ZHAO Qian,SUN Qingzhong,WANG Lijuan,et al. Stability analysis of the surrounding rock of the underground reservoir of pumped-storage hrdropower based on mine pit development[J/OL]. Journal of China Coal Society,1−15[2024−03−11]. https://doi.org/10.13225/j.cnki.jccs.2024.0703.
[28] 卞正富,朱超斌,周跃进,等. 黄河流域九省区废弃矿井抽水蓄能利用潜力评估[J]. 煤田地质与勘探,2022,50(12):51−64. BIAN Zhengfu,ZHU Chaobin,ZHOU Yuejin,et al. Evaluation on potential of using abandoned mines for pumped storage in nine provinces of Yellow River Basin[J]. Coal Geology & Exploration,2022,50(12):51−64.
[29] 许雨喆. 基于废弃矿井的抽水蓄能电站设计[D]. 淮南:安徽理工大学,2019. XU Yuzhe. Design of pumped storage power station based on abandoned mines[D]. Huainan:Anhui University of Science and Technology,2019.
[30] 陈海生,李泓,徐玉杰,等. 2023年中国储能技术研究进展[J]. 储能科学与技术,2024,13(5):1359−1397. CHEN Haisheng,LI Hong,XU Yujie,et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology,2024,13(5):1359−1397.
[31] YANG K,LYU X,XU C S,et al. Research on pumped storage and complementary energy development models for abandoned mines in China[J]. Journal of Central South University,2024,31(8):2860−2871. doi: 10.1007/s11771-024-5716-2
[32] 刘德旭,杨迎,黄宏旭,等. 新型电力系统大规模抽水蓄能调度运行与控制综述及展望[J]. 中国电机工程学报,2025,45(1):80−98. LIU Dexu,YANG Ying,HUANG Hongxu,et al. An overview and outlook of the operation and control of large-scale pumped hydro storages in modern power systems[J]. Proceedings of the CSEE,2025,45(1):80−98.
[33] 刘钦节,杨卿干,杨科,等. 废弃矿井抽水蓄能电站多能互补利用模式及案例分析[J]. 采矿与安全工程学报,2023,40(3):578−586. LIU Qinjie,YANG Qinggan,YANG Ke,et al. Case study of pumped storage hydropower based on multi-energy complementary utilization mode in abandoned coal mines[J]. Journal of Mining & Safety Engineering,2023,40(3):578−586.
[34] 朱超斌,周跃进,卞正富,等. 废弃矿井抽水蓄能句法视角下拓扑模型构建及空间优化[J]. 煤炭学报,2022,47(6):2279−2288. ZHU Chaobin,ZHOU Yuejin,BIAN Zhengfu,et al. Topological model construction and space optimization of abandoned mine pumped storage from the perspective of space syntax[J]. Journal of China Coal Society,2022,47(6):2279−2288.
[35] FAN J Y,XIE H P,CHEN J,et al. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs[J]. Applied Energy,2020,258:114007. doi: 10.1016/j.apenergy.2019.114007
[36] SHANG D C,PEI P. Analysis of influencing factors of modification potential of abandoned coal mine into pumped storage power station[J]. Journal of Energy Resources Technology,2021,143(11):112003. doi: 10.1115/1.4049608
[37] YONG X K,CHEN W J,WU Y N,et al. A two-stage framework for site selection of underground pumped storage power stations using abandoned coal mines based on multi-criteria decision-making method:An empirical study in China[J]. Energy Conversion and Management,2022,260:115608. doi: 10.1016/j.enconman.2022.115608
[38] 王兵,刘朋帅,邓凯磊. 基于模糊多准则决策模型的废弃矿井抽水蓄能电站选址研究[J]. 矿业科学学报,2021,6(6):667−677. WANG Bing,LIU Pengshuai,DENG Kailei. Site selection of pumped storage power station in abandoned mines:Results from fuzzy-based multi criteria decision model[J]. Journal of Mining Science and Technology,2021,6(6):667−677.
[39] SUN Z B,ZHAO Y X,BOLZ P,et al. A multimethod GIS-based framework for site selection of underground pumped storage power stations using closing coal mines:A case study of the Shanxi province,China[J]. Renewable Energy,2025,243:122521. doi: 10.1016/j.renene.2025.122521
[40] LU Q Q,BIAN Z F,TSUCHIYA N. Assessment of heavy metal pollution and ecological risk in river water and sediments in a historically metal mined watershed,Northeast Japan[J]. Environmental Monitoring and Assessment,2021,193(12):814. doi: 10.1007/s10661-021-09601-1
[41] 孙文洁,任顺利,武强,等. 新常态下我国煤矿废弃矿井水污染防治与资源化综合利用[J]. 煤炭学报,2022,47(6):2161−2169. SUN Wenjie,REN Shunli,WU Qiang,et al. Waterpollution’s prevention and comprehensive utilization of abandoned coal mines in China under the new normal life[J]. Journal of China Coal Society,2022,47(6):2161−2169.
[42] HUANG G W,RAO X Z,SHAO X T,et al. Distribution of heavy metals influenced by pumped storage hydropower in abandoned mines:Leaching test and modelling simulation[J]. Journal of Environmental Management,2023,326:116836. doi: 10.1016/j.jenvman.2022.116836
[43] 蒋斌斌,李井峰,马力强,等. 煤矿地下水库岩石堆积效应对矿井水悬浮物去除规律研究[J]. 煤炭科学技术,2024,52(12):352−361. JIANG Binbin,LI Jingfeng,MA Liqiang,et al. nvestigation of the suspended solids removal from mine water by the rock accumu-lation effect in the underground reservoir of coal mines[J]. Coal Science and Technology,2024,52(12):352−361.
[44] ZENG Y F,WU Q,MEI A S,et al. Hydrogeochemical process and coal mining-motivated effect on the hydrochemistry for the groundwater system in mining area of Western China[J]. Journal of Geochemical Exploration,2024,263:107516. doi: 10.1016/j.gexplo.2024.107516
[45] 师修昌. 煤矿地下水库研究进展与展望[J]. 煤炭科学技术,2022,50(10):216−225. SHI Xiuchang. Research progress and prospect of underground mines in coal mines[J]. Coal Science and Technology,2022,50(10):216−225.
[46] 陈宁,李琦,袁亮. 废弃矿洞抽水蓄能地下储水空间多场耦合特性研究[J]. 水电与抽水蓄能,2022,8(1):7−12. CHEN Ning,LI Qi,YUAN Liang. Study on multi field coupling characteristics of underground water storage space for pumped storage in abandoned mine[J]. Hydropower and Pumped Storage,2022,8(1):7−12.
[47] PU H,YI Q Y,JIVKOV A P,et al. Effect of dry-wet cycles on dynamic properties and microstructures of sandstone:Experiments and modelling[J]. International Journal of Mining Science and Technology,2024,34(5):655−679.
[48] LI Y S,ZHOU C. Rockburst inducement mechanism and its prediction based on microseismic monitoring[J]. Geofluids,2021,2021(1):4028872.
[49] WANG Q,WANG F N,REN A W,et al. Corrosion behavior and failure mechanism of prestressed rock bolts (cables) in the underground coal mine[J]. Advances in Civil Engineering,2021,2021(1):6686865.
[50] 王海,黄选明,张雁,等. 矿山强渗松散层柔性磁吸防渗膜垂向帷幕截水技术研究[J]. 煤炭科学技术,2023,51(9):180−188. WANG Hai,HUANG Xuanming,ZHANG Yan,et al. Flexible magnetic suction impermeable membrane of vertical curtain water interception technology for strong seepage loose layer of coal mines[J]. Coal Science and Technology,2023,51(9):180−188.
[51] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报,2015,40(2):239−246. GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239−246.
[52] 张村,韩鹏华,王方田,等. 采动水浸作用下矿井地下水库残留煤柱稳定性[J]. 中国矿业大学学报,2021,50(2):220−227,247. ZHANG Cun,HAN Penghua,WANG Fangtian,et al. The stability of residual coal pillar in underground reservoir with the effect of mining and water immersion[J]. Journal of China University of Mining & Technology,2021,50(2):220−227,247.
[53] 吕鑫,何祥,杨科,等. 地下水库真实水压环境下坝体试件力学响应与破坏特征[J]. 岩石力学与工程学报,2024,43(9):2214−2224. LYU Xin,HE Xiang,YANG Ke,et al. Mechanical response and failure characteristics of dam prototype specimens under real hydrostatic pressures in underground reservoirs[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(9):2214−2224.
[54] 池明波,李鹏,曹志国,等. 煤矿地下水库平板型人工坝体抗震性能分析[J]. 煤炭学报,2023,48(3):1179−1191. CHI Mingbo,LI Peng,CAO Zhiguo,et al. Seismic performance analysis of flat artificial dam of underground reservoir in coal mine[J]. Journal of China Coal Society,2023,48(3):1179−1191.
[55] 刘晓丽,曹志国,陈苏社,等. 煤矿分布式地下水库渗流场分析及优化调度[J]. 煤炭学报,2019,44(12):3693−3699. LIU Xiaoli,CAO Zhiguo,CHEN Sushe,et al. Seepage field analysis and optimal schedule of distributed underground reservoir in mining area[J]. Journal of China Coal Society,2019,44(12):3693−3699.
[56] 庞义辉,李全生,曹光明,等. 煤矿地下水库储水空间构成分析及计算方法[J]. 煤炭学报,2019,44(2):557−566. PANG Yihui,LI Quansheng,CAO Guangming,et al. Analysis and calculation method of underground reservoir water storage space composition[J]. Journal of China Coal Society,2019,44(2):557−566.
[57] 顾大钊,曹志国,李井峰,等. 煤矿地下水库技术原创试验平台体系研制及应用[J]. 煤炭学报,2024,49(1):100−113. GU Dazhao,CAO Zhiguo,LI Jingfeng,et al. Original experimental platform system and application of underground coal mine reservoirs[J]. Journal of China Coal Society,2024,49(1):100−113.
[58] ZHANG C,WANG F T,BAI Q S. Underground space utilization of coalmines in China:A review of underground water reservoir construction[J]. Tunnelling and Underground Space Technology,2021,107:103657. doi: 10.1016/j.tust.2020.103657
[59] 张村,贾胜,吴山西,等. 基于矿井地下水库的煤矿采空区地下空间利用模式与关键技术[J]. 科技导报,2021,39(13):36−46. ZHANG Cun,JIA Sheng,WU Shanxi,et al. Research status and prospect of underground space utilization mode and key technology in goaf based on underground reservoir[J]. Science & Technology Review,2021,39(13):36−46.
[60] 高学平,袁泽雨. 抽水蓄能电站地下水库建设进展及关键水力学问题[J]. 水利学报,2023,54(9):1058−1069. GAO Xueping,YUAN Zeyu. Development of the underground reservoirs of pumped-storage hydropower and key hydraulics issues[J]. Journal of Hydraulic Engineering,2023,54(9):1058−1069.
[61] ZHOU X,ZHOU Y J,XU X D,et al. Hydraulic characteristics analysis of double-bend roadway of abandoned mine pumped storage[J]. Sustainability,2023,15(5):3958. doi: 10.3390/su15053958
[62] PUJADES E,WILLEMS T,BODEUX S,et al. Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow[J]. Hydrogeology Journal,2016,24(6):1531−1546. doi: 10.1007/s10040-016-1413-z
[63] MENÉNDEZ J,FERNÁNDEZ-ORO J M,GALDO M,et al. Pumped-storage hydropower plants with underground reservoir:Influence of air pressure on the efficiency of the Francis turbine and energy production[J]. Renewable Energy,2019,143:1427−1438. doi: 10.1016/j.renene.2019.05.099
[64] KITSIKOUDIS V,ARCHAMBEAU P,DEWALS B,et al. Underground pumped-storage hydropower (UPSH) at the martelange mine (Belgium):Underground Reservoir hydraulics[J]. Energies,2020,13(14):3512. doi: 10.3390/en13143512
[65] 叶鹏. 废弃矿井抽水蓄能电站流体动力学分析与结构优化设计[D]. 徐州:中国矿业大学,2022. YE Peng. Fluid Dynamics Analysis and structural optimization design of underground pumped-storage power station in abandoned coal mine[D]. Xuzhou:China University of Mining and Technology,2022.
[66] 杨志贤. 废弃矿井抽水储能电站井下巷道涌浪生成机理及防护[D]. 徐州:中国矿业大学,2022. YANG Zhixian. Surge formation mechanism and protection in underground roadway of abandoned mine pumping storage power stations[D]. Xuzhou:China University of Mining and Technology,2022.
[67] ZHANG T,ZHANG B S. Study on the hydraulic effect of Tesla valve structure on the end roadway of abandoned coal mine pumped storage[J]. Journal of Energy Storage,2024,95:112586. doi: 10.1016/j.est.2024.112586
[68] 杨科,吴犇牛,刘钦节,等. 地下空间储能防渗实验装置研制与初步应用[J]. 岩石力学与工程学报,2025,44(1):43−55. YANG Ke,WU Benniu,LIU Qinjie,et al. Development and preliminary application of experimental device for energy storage and seepage prevention in underground space[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(1):43−55.
[69] 袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825−1845. YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825−1845.
[70] 何涛,王传礼,高博,等. 废弃矿井抽水蓄能电站基础建设装备关键问题及对策[J]. 科技导报,2021,39(13):59−65. HE Tao,WANG Chuanli,GAO Bo,et al. Key problems and countermeasures for infrastructure equipment of abandoned mine pumped storage power station[J]. Science & Technology Review,2021,39(13):59−65.
[71] 邓元媛,常江,冯姗姗,等. 产权政策视角下废弃矿井采矿用地再开发模式研究[J]. 煤田地质与勘探,2022,50(4):17−24. DENG Yuanyuan,CHANG Jiang,FENG Shanshan,et al. Research on redevelopment model of abandoned mining land from the perspective of property right policy[J]. Coal Geology & Exploration,2022,50(4):17−24.
[72] 袁亮,杨科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(1):16−24. YUAN Liang,YANG Ke. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines[J]. Journal of China Coal Society,2021,46(1):16−24.
[73] 武强,张守成,刘宏磊,等. 矿山环境正效应开发利用适宜性评价理论与方法[J]. 煤炭学报,2024,49(1):114−130. WU Qiang,ZHANG Shoucheng,LIU Honglei,et al. Theory and method of suitable evaluation for mine environmental positive effects development and utilization[J]. Journal of China Coal Society,2024,49(1):114−130.
[74] 张保生,陈宁,高博,等. 废弃矿井抽水蓄能电站水泵水轮机关键技术[J]. 科技导报,2021,39(13):66−72. ZHANG Baosheng,CHEN Ning,GAO Bo,et al. Key technologies of pump-turbine in underground pumped storage station using abandoned mine[J]. Science & Technology Review,2021,39(13):66−72.
[75] 何涛,王传礼,高博,等. 煤矿抽水蓄能电站水下巡检机器人姿态调节系统建模与分析[J]. 煤炭科学技术,2022,50(3):239−247. HE Tao,WANG Chuanli,GAO Bo,et al. Modeling andanalysis of attitude regulation system of underwater inspection robot for coal mine pumped-storage power station[J]. Coal Science and Technology,2022,50(3):239−247.
[76] WU F,LIU Y,GAO R B. Challenges and opportunities of energy storage technology in abandoned coal mines:A systematic review[J]. Journal of Energy Storage,2024,83:110613.
[77] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五” 发展方向[J]. 煤炭学报,2021,46(1):1−15. LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15.
[78] 袁亮. 我国煤矿安全及废弃矿井资源开发利用战略研究总论[M]. 北京:科学出版社,2020.