高级检索

基于高位巷与工作面进回风巷联合卸压的坚硬顶板防冲技术研究

谭云亮, 任文涛, 李青海, 殷鹏涛, 张修峰, 王子郡, 陈洋, 胡善超, 李占海

谭云亮,任文涛,李青海,等. 基于高位巷与工作面进回风巷联合卸压的坚硬顶板防冲技术研究[J]. 煤炭科学技术,2025,53(1):65−81. DOI: 10.12438/cst.2025-0060
引用本文: 谭云亮,任文涛,李青海,等. 基于高位巷与工作面进回风巷联合卸压的坚硬顶板防冲技术研究[J]. 煤炭科学技术,2025,53(1):65−81. DOI: 10.12438/cst.2025-0060
TAN Yunliang,REN Wentao,LI Qinghai,et al. Study on combined pressure relief and scour prevention technology of high-level roadway and crossheading[J]. Coal Science and Technology,2025,53(1):65−81. DOI: 10.12438/cst.2025-0060
Citation: TAN Yunliang,REN Wentao,LI Qinghai,et al. Study on combined pressure relief and scour prevention technology of high-level roadway and crossheading[J]. Coal Science and Technology,2025,53(1):65−81. DOI: 10.12438/cst.2025-0060

基于高位巷与工作面进回风巷联合卸压的坚硬顶板防冲技术研究

基金项目: 国家自然科学基金资助项目(52374094);山东省泰山学者攀登计划资助项目(Tspd20210313);泰山产业领军人才工程资助(tscx202408130)
详细信息
    作者简介:

    谭云亮: (1964—),男,山东临朐人,教授,博士生导师,博士。E-mail:yunliangtan@163.com

    通讯作者:

    李青海: (1984—),男,山东肥城人,教授,博士生导师,博士。E-mail:li-qinghai@163.com

  • 中图分类号: TD324

Study on combined pressure relief and scour prevention technology of high-level roadway and crossheading

  • 摘要:

    深埋特厚煤层开采后高位坚硬顶板失稳造成强矿压现象突显,严重威胁矿井安全生产。为探究新型卸压防冲方案,以新巨龙煤矿8302工作面为研究背景,提出了高位巷与工作面进回风巷联合爆破卸压防冲方案。通过理论分析、物理模拟和数值计算相结合的方法,分析了高位巷爆破与进回风巷爆破协同卸压原理,揭示了高位巷爆破卸压对于坚硬顶板的破断失稳机制,明确了高位巷爆破对于煤层应力场演化特征。针对现场工况条件,设计并实践了高位巷与进回风巷联合爆破卸压及监测方案,取得了显著的卸压效果。结果表明:① 高位巷与进回风巷联合卸压,弱化了覆岩结构,使其产生大量裂隙,破坏了其连续性,降低了覆岩承载能力。② 高位巷爆破使高位关键岩层初次垮落步距由144 m减小为84 m,周期垮落步距由24~30 m减小为12~24 m。煤层垂直应力由18.1~18.3 MPa减小至16.2~18.0 MPa,最大降幅11.47%,改善了工作面应力分布状况。③ 设计了8302工作面进回风巷与高位巷联合爆破卸压方案。并从进回风巷表面变形、覆岩应力、顶板深部位移等方面制定了监测方案。④ 现场工程实践表明:104 J及以上的微震能量事件降幅64.3%,微震事件由改性前的“低频高能”逐渐向改性后的“高频低能”转化。联合爆破卸压后,围岩变形、钻孔应力及锚杆索受力对断层及不规则采空区具有高度的敏感性,而在进入正常阶段后,围岩稳定性得到改善,联合爆破卸压效果显著。为解决大采高坚硬顶板引发的强矿压显现问题提供了理论依据及实践参考。

    Abstract:

    The instability of high hard roof after deep-buried and extra-thick coal seam mining causes the phenomenon of strong ground pressure to stand out, which seriously threatens mine safety production. In order to explore a new scheme of pressure relief and scour prevention, taking 8302 working face of Xinjulong Coal Mine as the research background, a scheme of pressure relief and scour prevention by combined blasting of high roadway and gateway was put forward. By combining theoretical analysis, physical simulation and numerical calculation, this paper analyzes the principle of cooperative pressure relief of high roadway blasting and gateway blasting, reveals the fracture instability mechanism of high roadway blasting pressure relief on hard roof, and clarifies the evolution characteristics of high roadway blasting on coal seam stress field. According to the field working conditions, the pressure relief and monitoring scheme of combined blasting of high roadway and gateway is designed and practiced, and remarkable pressure relief effect is obtained. The conclusions are as follows: ① The joint pressure relief of high roadway and gateway weakens the overlying strata structure, causing a large number of cracks, destroying its continuity and reducing the bearing capacity of overlying strata.② Blasting in high roadway reduces the initial caving step of high key strata from 144 m to 84 m, and the periodic caving step from 24−30 m to 12−24 m. The vertical stress of coal seam decreased from 18.1−18.3 MPa to 16.2−18.0 MPa, with the largest decrease of 11.47%, which improved the stress distribution of working face. ③ The pressure relief scheme of combined blasting along the gateway and high roadway in 8302 working face is designed. The monitoring scheme is made from the aspects of surface deformation, overlying rock stress and deep displacement of roof.④ The field engineering practice shows that the microseismic energy events of 104 J and above decreased by 64.3%, and the microseismic events gradually changed from “low frequency and high energy” before modification to “high frequency and low energy” after modification. After pressure relief by combined blasting, the deformation of surrounding rock, borehole stress and stress of anchor cable are highly sensitive to faults and irregular mined-out areas, but after entering the normal stage, the stability of surrounding rock is improved, and the pressure relief effect by combined blasting is remarkable. It provides theoretical basis and practical reference for solving the problem of strong ground pressure behavior caused by hard roof with large mining height.

  • 图  1   8302工作面示意

    Figure  1.   Schematic diagram of 8302 working face

    图  2   现场矿压显现情况

    Figure  2.   On-site strata behavior

    图  3   8302工作面回采初期卸压措施

    Figure  3.   Initial mining procedures for pressure alleviation in 8302 working face

    图  4   高位巷道爆破卸压原理

    Figure  4.   Blasting pressure relief principle of high roadway

    图  5   高位巷位置示意

    Figure  5.   High roadway site schematic diagram

    图  6   相似模型方案

    Figure  6.   Similar model scheme diagram

    图  7   钻孔“模拟”

    Figure  7.   Drilling “simulation”

    图  8   回采过程中坚硬顶板周期破断特征

    Figure  8.   Characteristics of hard periodic fracture of roof during mining

    图  9   8302工作面数值模型

    Figure  9.   Numerical model diagram of 8302 working face

    图  10   未开采阶段煤层垂直应力分布图

    Figure  10.   Vertical stress distribution of coal seam in unexploited stage

    图  11   未开采阶段顶板覆岩垂直应力曲线

    Figure  11.   Vertical stress curve of roof overburden in unexploited stage

    图  12   不同高度的覆岩应力释放率

    Figure  12.   Stress release rate of overlying strata at different heights

    图  13   进风巷爆破孔三视图

    Figure  13.   Three views of blasting hole in air inlet roadway

    图  14   联合爆破布置示意

    Figure  14.   Combined blasting layout diagram

    图  15   8302工作面进回风巷监测方案

    Figure  15.   Crossheading monitoring scheme diagram

    图  16   8302工作面高位巷测站布置示意

    Figure  16.   8302 working face high roadway station layout diagram

    图  17   微震频次分布特征

    Figure  17.   Distribution characteristics of microseismic frequency

    图  18   微震事件改性前后空间分布

    Figure  18.   Spatial distribution map of microseismic events before and after modification

    图  19   微震事件超前分布特征

    Figure  19.   Advance distribution of microseismic events

    图  20   改性前后工作面进风巷围岩变形特征

    Figure  20.   Deformation characteristics of surrounding rock before and after blasting

    图  21   改性前后工作面不同区域支架工作阻力情况

    Figure  21.   Working resistance of supports in different areas of working face before and after blasting

    图  22   改性前后钻孔应力对比

    Figure  22.   Comparison of borehole stress before and after blasting

    图  23   改性前后锚杆(索)受力分析

    Figure  23.   Stress analysis diagram of bolt ( cable ) before and after blasting

    表  1   煤层顶底板岩层厚度及其力学参数

    Table  1   Thickness and mechanical parameters of roof and floor of coal seam

    序号 岩性 厚度/m 密度/(kg·m−3) 抗拉强度/MPa 弹性模量/GPa 单轴抗压强度/MPa 泊松比
    20 细砂岩 5.4 2637 4.54 15.86 95.35 0.207
    19 中砂岩 3.5 2662 5.89 14.78 82.94 0.192
    18 细砂岩 2.0 2635 4.35 20.84 139.87 0.202
    17 粉砂岩 13.8 2636 4.17 19.99 131.03 0.174
    16 细砂岩 3.0 2674 5.82 15.36 94.70 0.209
    15 粉砂岩 2.9 2674 5.62 22.62 68.83 0.194
    14 细砂岩 1.0 2546 7.81 20.76 60.50 0.205
    13 粉砂、细砂互层 8.9 2631 8.86 18.26 65.66 0.174
    12 粉砂岩 6.6 2561 7.98 11.22 48.67 0.181
    11 中砂岩 1.4 2450 5.92 8.91 55.30 0.168
    10 粉砂、细砂互层 2.0 2548 7.91 10.50 59.86 0.177
    9 中砂岩 4.5 2788 10.93 25.47 50.36 0.277
    8 粉砂、细砂互层 3.4 2550 7.82 24.58 55.23 0.222
    7 中砂岩 1.0 2660 5.70 12.08 72.10 0.172
    6 粉砂岩 2.0 2654 7.70 14.79 70.12 0.254
    5 中砂岩 2.2 2683 5.78 15.82 72.43 0.211
    4 粉砂岩 1.4 2636 7.39 15.19 67.90 0.221
    3 中砂岩 1.3 2683 5.61 12.16 75.27 0.217
    2 细砂岩 1.9 2557 8.02 13.28 68.51 0.211
    1 粉砂岩 3.0 2677 7.39 15.08 70.24 0.294
    3煤 9.0 1425 1.52 5.51 8.37 0.237
    底板 粉砂岩 4.4 2543 3.77 3.61 23.25 0.283
    下载: 导出CSV

    表  2   104 J及以上能量微震事件

    Table  2   Energy microseismic events above 104 J

    序号 日期 微震能量/J 工作面前/m 距煤层顶板/m
    1 2022−10−31 1.4×104 83 29
    2 2022−10−31 1.9×104 249 −45
    3 2022−11−01 1.3×104 −37 7
    4 2022−11−01 1.3×104 −32 5
    5 2022−11−03 1.2×104 21 31
    6 2022−11−05 2.2×104 −20 35
    7 2022−11−07 1.7×104 116 23
    8 2022−11−07 1.1×104 301 27
    9 2022−11−09 1.4×104 34 0
    10 2022−11−10 3.5×105 103 −53
    11 2022−11−26 1.4×104 310 45
    12 2022−11−30 1.1×106 50 43
    下载: 导出CSV

    表  3   各推采距离处煤层应力分布特征

    Table  3   Distribution characteristics of coal seam stress at different pushing and mining distance

    方案一 方案二
    推采30 m
    推采90 m
    推采150 m
    推采210 m
    推采270 m
    下载: 导出CSV
  • [1] 姚邦华,李硕,杜锋,等. 采动岩体损伤与断层冲蚀协同致灾时空演化机制[J]. 煤炭学报,2024,49(5):2212−2221.

    YAO Banghua,LI Shuo,DU Feng,et al. Mechanical model of deformation-seepage-erosion for Karst collapse column water inrush and its application[J]. Journal of China Coal Society,2024,49(5):2212−2221.

    [2] 张永将,季飞,赵同彬,等. 临空巷道坚硬顶板水力割缝-压裂联合控顶卸压技术[J]. 煤炭学报,2024,49(12):4739−4751.

    ZHANG Yongjiang,JI Fei,ZHAO Tongbin,et al. Theoretical and applied research on hydraulic slit-fracture joint roof control and pressure relief of hard roof in goaf roadway[J]. Journal of China Coal Society,2024,49(12):4739−4751.

    [3] 谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,2024,49(1):367−379.

    TAN Yunliang,ZHANG Xiufeng,XIAO Ziyi,et al. Main control factors of rock burst and its disaster evolution mechanism[J]. Journal of China Coal Society,2024,49(1):367−379.

    [4] 王凯兴,窦林名,潘一山,等. 块系覆岩破坏对巷道顶板的防冲吸能效应研究[J]. 中国矿业大学学报,2017,46(6):1211−1217,1230.

    WANG Kaixing,DOU Linming,PAN Yishan,et al. Study of tunnel roof anti-impact and energy absorption effect on block overburden rock mass failure[J]. Journal of China University of Mining & Technology,2017,46(6):1211−1217,1230.

    [5] 王书文,鞠文君,潘俊锋. 临空留巷底板冲击地压启动区判定与分步防治技术[J]. 煤炭学报,2017,42(11):2799−2807.

    WANG Shuwen,JU Wenjun,PAN Junfeng. Determination on start-up area for floor rockburst at retained entry and its stepwise control technology[J]. Journal of China Coal Society,2017,42(11):2799−2807.

    [6] 冯龙飞,窦林名,王晓东,等. 回采速度对坚硬顶板运动释放能量的影响机制[J]. 煤炭学报,2019,44(11):3329−3339.

    FENG Longfei,DOU Linming,WANG Xiaodong,et al. Mechanism of mining advance speed on energy release from hard roof movement[J]. Journal of China Coal Society,2019,44(11):3329−3339.

    [7] 窦林名,王永忠,卢方舟,等. 急倾斜特厚煤层冲击地压防治探索与总结[J]. 煤炭科学技术,2024,52(1):84−94. doi: 10.12438/cst.2023-1700

    DOU Linming,WANG Yongzhong,LU Fangzhou,et al. Exploration and summary of prevention and control of rock burst in steeply inclined and ultra-thick coal seam[J]. Coal Science and Technology,2024,52(1):84−94. doi: 10.12438/cst.2023-1700

    [8] 于斌,霍丙杰. 多层叠加煤柱覆岩结构特征及对下伏煤层矿压显现影响[J]. 岩石力学与工程学报,2017,36(S1):3374−3381.

    YU Bin,HUO Bingjie. Structure characteristics of multi-layer superimposed coal pillar and its influence on strata behavior for underlying coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S1):3374−3381.

    [9] 姜福兴,刘懿,张益超,等. 采场覆岩的“载荷三带” 结构模型及其在防冲领域的应用[J]. 岩石力学与工程学报,2016,35(12):2398−2408.

    JIANG Fuxing,LIU Yi,ZHANG Yichao,et al. A three-zone structure loading model of overlying strata and its application on rockburst prevention[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2398−2408.

    [10] 冯宇,姜福兴,李京达. 孤岛工作面围岩整体失稳冲击危险性评估方法[J]. 煤炭学报,2015,40(5):1001−1007.

    FENG Yu,JIANG Fuxing,LI Jingda. Evaluation method of rock burst hazard induced by overall instability of island coal face[J]. Journal of China Coal Society,2015,40(5):1001−1007.

    [11] 冯龙飞,窦林名,王皓,等. 综放大煤柱临空侧巷道密集区冲击地压机制研究[J]. 采矿与安全工程学报,2021,38(6):1100−1110,1121.

    FENG Longfei,DOU Linming,WANG Hao,et al. Mechanism of rockburst in dense roadway area near the goaf of fully-mechanized large pillars[J]. Journal of Mining & Safety Engineering,2021,38(6):1100−1110,1121.

    [12] 余鑫,边俊奇,刘长友. 基于动压巷道围岩控制的临空侧顶板压裂释能参数确定[J]. 采矿与岩层控制工程学报,2022,4(1):25−34.

    YU Xin,BIAN Junqi,LIU Changyou. Determination of energy release parameters of hydraulic fracturing roof near goaf based on surrounding rock control of dynamic pressure roadway[J]. Journal of Mining and Strata Control Engineering,2022,4(1):25−34.

    [13] 谭云亮,张修峰,范德源,等. 沿空侧向覆岩结构改性防冲机理与实践[J]. 煤炭学报,2025,50(1):1−14.

    TAN Yunliang,ZHANG Xiufeng,FAN Deyuan,et al. Mechanism and practice of structural modification to lateral overlying strata in gob-side entry for rockburst prevention[J]. Journal of China Coal Society,2025,50(1):1−14.

    [14] 孙浩杰,徐青云,赵晓渝,等. 同忻矿8311工作面坚硬顶板破断特征与矿压显现规律研究[J]. 煤,2024,33(2):33−36,47. doi: 10.3969/j.issn.1005-2798.2024.02.008

    SUN Haojie,XU Qingyun,ZHAO Xiaoyu,et al. Study on characteristics of hard roof breaking and strata behavior in 8311 working face of Tongxin coal mine[J]. Coal,2024,33(2):33−36,47. doi: 10.3969/j.issn.1005-2798.2024.02.008

    [15] 赵云虎. 和善煤矿坚硬顶板工作面巷道支护与爆破切顶技术研究[D]. 徐州:中国矿业大学,2023:43−58.

    ZHAO Yunhu. Study on roadway support and blasting roof cutting technology in hard roof working face of Heshan Coal Mine[D]. Xuzhou:China University of Mining and Technology,2023:43−58.

    [16] 郑凯歌,袁亮,杨森,等. 基于分区弱化的复合坚硬顶板冲击地压分段压裂区域防治研究[J]. 采矿与安全工程学报,2023,40(2):322−333.

    ZHENG Kaige,YUAN Liang,YANG Sen,et al. Study on prevention and control of rock burst staged fracturing area of composite hard roof based on zoning weakening[J]. Journal of Mining & Safety Engineering,2023,40(2):322−333.

    [17] 赖国伟. 基安达矿坚硬顶板预裂爆破切顶卸压护巷机理研究[D]. 徐州:中国矿业大学,2023:11−51.

    LAI Guowei. Study on mechanism of roof cutting,pressure relief and roadway protection by presplitting blasting of hard roof in Ji 'Anda Mine[D]. Xuzhou:China University of Mining and Technology,2023:11−51.

    [18] 王金东. 综放开采覆岩高位结构稳定性及强矿压形成机理研究[D]. 西安:西安科技大学,2015:25−54.

    WANG Jindong. Study on structural stability of overlying strata and formation mechanism of strong ground pressure in fully mechanized top-coal caving mining[D]. Xi’an:Xi’an University of Science and Technology,2015:25−54.

    [19] 于斌,高瑞,孟祥斌,等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报,2018,37(5):1134−1145.

    YU Bin,GAO Rui,MENG Xiangbin,et al. Near-far strata structure instability and associate strata behaviors in large space and corresponding control technology[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1134−1145.

    [20] 于斌,杨敬轩,高瑞. 大同矿区双系煤层开采远近场协同控顶机理与技术[J]. 中国矿业大学学报,2018,47(3):486−493.

    YU Bin,YANG Jingxuan,GAO Rui. Mechanism and technology of roof collaborative controlling in the process of Jurassic and Carboniferous coal mining in Datong mining area[J]. Journal of China University of Mining & Technology,2018,47(3):486−493.

    [21] 雷照源,赵茂平,李团结,等. 深埋大采高相邻工作面强矿压发生机理研究[J/OL]. 煤炭科学技术,1−10[2024−07−15]. http://kns.cnki.net/kcms/detail/11.2402.td.20240611.1429.003.html.

    LEI Zhaoyuan,ZHAO Maoping,LI Tuanjie,et al. Strong mine pressure appearing mechanism and control at deep buried working face with large mining height[J/OL]. Coal Science and Technology,1−10[2025−03−04]. http://kns.cnki.net/kcms/detail/11.2402.td.20240611.1429.003.html.

    [22]

    ZHU H Q,FANG S H,HUO Y J,et al. Study of the dynamic development law of overburden breakage on mining faces[J]. Scientific Reports,2020,10:6555. doi: 10.1038/s41598-020-63526-2

    [23] 潘俊锋,康红普,闫耀东,等. 顶板“人造解放层” 防治冲击地压方法、机理及应用[J]. 煤炭学报,2023,48(2):636−648.

    PAN Junfeng,KANG Hongpu,YAN Yaodong,et al. The method,mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society,2023,48(2):636−648.

    [24]

    YOU H L,LIU Z G. Key parameters of the roof cutting and pressure relief technology in the pre-splitting blasting of a hard roof in guqiao coal mine[J]. Applied Sciences,2024,14(24):11779. doi: 10.3390/app142411779

    [25] 于斌,刘长友,杨敬轩,等. 坚硬厚层顶板的破断失稳及其控制研究[J]. 中国矿业大学学报,2013,42(3):342−348.

    YU Bin,LIU Changyou,YANG Jingxuan,et al. Research on the fracture instability and its control technique of hard and thick roof[J]. Journal of China University of Mining & Technology,2013,42(3):342−348.

    [26] 孙文超,王兆会,李强,等. 深部坚硬顶板工作面冲击地压多元协同防控技术[J]. 岩石力学与工程学报,2024,43(7):1736−1750.

    SUN Wenchao,WANG Zhaohui,LI Qiang,et al. Multiple synergistic control technology of rock burst disasters in deep hard roof working faces[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(7):1736−1750.

    [27]

    WANG Q,JIANG Z H,JIANG B,et al. Ground control method of using roof cutting pressure release and energy-absorbing reinforcement for roadway with extra-thick hard roof[J]. Rock Mechanics and Rock Engineering,2023,56(10):7197−7215. doi: 10.1007/s00603-023-03461-6

    [28] 李东印,敖良凯,王伸,等. 煤矿顶板深孔爆破封孔长度确定方法研究[J/OL]. 煤炭学报,1−16[2024−07−15]. https://doi.org/10.13225/j.cnki.jccs.2024.0704.

    LI Dongyin,AO Liangkai,WANG Shen,et al. Determination methodology of optimal sealing length of deep blastingboreholes for hard roof cutting in coal mines[J/OL]. Journal of China Coal Society,1−16 [2024−10−02]. https://doi.org/10.13225/j.cnki.jccs.2024.0704.

    [29] 张自政,柏建彪,韩志婷,等. 空巷顶板稳定性力学分析及充填技术研究[J]. 采矿与安全工程学报,2013,30(2):194−198.

    ZHANG Zizheng,BAI Jianbiao,HAN Zhiting,et al. Roof mechanics analysis and backfill technology for abandoned roadway[J]. Journal of Mining & Safety Engineering,2013,30(2):194−198.

    [30] 刘长友,杨敬轩,于斌,等. 覆岩多层坚硬顶板条件下特厚煤层综放工作面支架阻力确定[J]. 采矿与安全工程学报,2015,32(1):7−13.

    LIU Changyou,YANG Jingxuan,YU Bin,et al. Support resistance determination of fully mechanized top-coal caving face in extra thick seam under multi-layered hard strata[J]. Journal of Mining & Safety Engineering,2015,32(1):7−13.

    [31]

    YANG J X,LIU C Y,YU B. Application of confined blasting in water-filled deep holes to control strong rock pressure in hard rock mines[J]. Energies,2017,10(11):1874. doi: 10.3390/en10111874

    [32]

    LIU H,DAI J,JIANG J Q,et al. Analysis of overburden structure and pressure-relief effect of hard roof blasting and cutting[J]. Advances in Civil Engineering,2019,2019(1):1354652. doi: 10.1155/2019/1354652

    [33]

    HUANG Z F,WU W B. Research on high-pressure abrasive water jet slotting and pressure relief technology for hard rock roof[J]. Energy Science & Engineering,2024,12(11):5211−5229.

    [34] 杨俊哲,郑凯歌,王振荣,等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报,2020,45(10):3371−3379.

    YANG Junzhe,ZHENG Kaige,WANG Zhenrong,et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society,2020,45(10):3371−3379.

    [35] 郝宪杰,孙希奎,唐忠义,等. 覆岩高位整层爆破卸压“人造预裂层” 源头防治冲击地压技术体系及应用[J]. 煤炭学报,2024,49(3):1318−1331.

    HAO Xianjie,SUN Xikui,TANG Zhongyi,et al. Technology system and application of “artificial pre-fracture layer” by high level whole layer blasting for pressure releasing to source prevention and control of rockburst[J]. Journal of China Coal Society,2024,49(3):1318−1331.

    [36] 李猛, 王兆会, 孙文超, 等. 深部坚硬顶板充填工作面支架–围岩耦合作用与支护参数优化[J]. 岩石力学与工程学报,2024,43(11):2753−2765.

    LI Meng,WANG Zhaohui,SUN Wenchao,et al. Support-rock interaction and supporting parameter optimization in deep backfilling longwall faces with hard roof[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(11):2753−2765.

    [37]

    XIANG Z,ZHANG N,XIE Z Z,et al. Cooperative control mechanism of long flexible bolts and blasting pressure relief in hard roof roadways of extra-thick coal seams:A case study[J]. Applied Sciences,2021,11(9):4125. doi: 10.3390/app11094125

    [38] 李振雷,何学秋,窦林名. 综放覆岩破断诱发冲击地压的防治方法与实践[J]. 中国矿业大学学报,2018,47(1):162−171.

    LI Zhenlei,HE Xueqiu,DOU Linming. Control measures and practice for rock burst induced by overburden fracture in top-coal caving mining[J]. Journal of China University of Mining & Technology,2018,47(1):162−171.

    [39] 赵善坤,李英杰,柴海涛,等. 陕蒙地区厚硬砂岩顶板定向水力压裂预割缝倾角优化及防冲实践[J]. 煤炭学报,2020,45(S1):150−160.

    ZHAO Shankun,LI Yingjie,CHAI Haitao,et al. Optimization of inclination angle of pre-cut joint in directional hydraulic fracturing of thick hard sandstone roof in Shaanxi-inner Mongolia Region and its scour prevention practice[J]. Journal of China Coal Society,2020,45(S1):150−160.

    [40] 梁运培,李其罡,黄旭超,等. 基于颗粒流的倾斜厚煤层坚硬顶板运动失稳规律及水力弱化参数研究[J]. 岩石力学与工程学报,2024,43(S1):3428−3438.

    LIANG Yunpei,LI Qigang,HUANG Xuchao,et al. Study on movement instability law and hydraulic weakening parameters of hard roof in inclined thick coal seam based on particle flow[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(S1):3428−3438.

    [41] 胡善超,韩金明,程亚飞,等. 多孔套筒定向压裂力学机制及影响因素分析[J]. 煤炭学报,2024,49(8):3366−3380.

    HU Shanchao,HAN Jinming,CHENG Yafei,et al. Analysis of mechanical mechanism and influencing factors of directional fracturing of multi-hole sleeve[J]. Journal of China Coal Society,2024,49(8):3366−3380.

    [42] 赵环帅, 潘永泰, 余超, 等. 振动载荷对青砂岩冲击裂纹扩展及能量利用效率的影响[J]. 清华大学学报(自然科学版),2024,64(12):2155−2165.

    ZHAO Huanshuai, PAN Yongtai, YU Chao, et al. Influence of vibration loading on impact crack propagation and energ yutilization efficiency in green sandstone[J]. Journal of Tsinghua University(Science and Technology),2024,64(12):2155−2165.

    [43] 戴俊. 岩石动力学特性与爆破理论[M]. 北京:冶金工业出版社,2002.
    [44] 肖明,张雨霆,陈俊涛,等. 地下洞室开挖爆破围岩松动圈的数值分析计算[J]. 岩土力学,2010,31(8):2613−2618. doi: 10.3969/j.issn.1000-7598.2010.08.044

    XIAO Ming,ZHANG Yuting,CHEN Juntao,et al. Numerical analysis of excavation damaged zone of underground Caverns induced by excavation blasting[J]. Rock and Soil Mechanics,2010,31(8):2613−2618. doi: 10.3969/j.issn.1000-7598.2010.08.044

    [45] 柴敬,兰浩,马晨阳,等. 保护层开采下伏煤岩应力释放与卸压程度识别[J/OL]. 煤炭学报,1−13[2024−07−19]. https://doi.org/10.13225/j.cnki.jccs.2023.0895.

    CHAI Jing,LAN Hao,MA Chenyang,et al. Identification of the degree of stress release and unloading in the underlying coal rock of protected seam mining[J]. Journal of China Coal Society,1−13[2024−07−19]. https://doi.org/10.13225/j.cnki.jccs.2023.0895.

    [46] 周坤友,窦林名,李家卓,等. 巨厚关键层对冲击矿压动静载作用机制研究[J]. 采矿与安全工程学报,2024,41(5):908−919.

    ZHOU Kunyou,DOU Linming,LI Jiazhuo,et al. Effect of extra-thick key strata on the static and dynamic stress of rockburst[J]. Journal of Mining & Safety Engineering,2024,41(5):908−919.

图(23)  /  表(3)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  24
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-09
  • 网络出版日期:  2025-01-22
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回