高级检索

基于多编码器与惯导融合的无轨胶轮车定位方法

江帆, 康静静, 皇行涛, 朱真才, 周公博, 彭玉兴

江 帆,康静静,皇行涛,等. 基于多编码器与惯导融合的无轨胶轮车定位方法[J]. 煤炭科学技术,2024,52(S2):284−293. DOI: 10.12438/cst.2023-1944
引用本文: 江 帆,康静静,皇行涛,等. 基于多编码器与惯导融合的无轨胶轮车定位方法[J]. 煤炭科学技术,2024,52(S2):284−293. DOI: 10.12438/cst.2023-1944
JIANG Fan,KANG Jingjing,HUANG Xingtao,et al. A positioning method for underground trackless rubber wheel vehicle based on fusion of multiple encoders and strapdown inertial navigation system[J]. Coal Science and Technology,2024,52(S2):284−293. DOI: 10.12438/cst.2023-1944
Citation: JIANG Fan,KANG Jingjing,HUANG Xingtao,et al. A positioning method for underground trackless rubber wheel vehicle based on fusion of multiple encoders and strapdown inertial navigation system[J]. Coal Science and Technology,2024,52(S2):284−293. DOI: 10.12438/cst.2023-1944

基于多编码器与惯导融合的无轨胶轮车定位方法

基金项目: 国家自然科学基金面上资助项目(52374163);江苏省自然科学基金杰出青年基金资助项目(BK20230047);中国博士后科学基金面上资助项目(2023M732966)
详细信息
    作者简介:

    江帆: (1987—),男,湖南祁东人,副教授,博士。E-mail:jiangfan25709@163.com

  • 中图分类号: TD525

A positioning method for underground trackless rubber wheel vehicle based on fusion of multiple encoders and strapdown inertial navigation system

  • 摘要:

    针对煤矿井下传统无轨胶轮车定位定向技术精度低、可靠性差等问题,提出了一种基于多编码器与惯导融合的无轨胶轮车定位方法。根据多编码器数据特性,建立了无轨胶轮车轮式里程计运动学模型,进而推导了基于多编码器的航位推算算法。针对上述航位推算算法单独依赖编码器数据易导致定位发散的问题,将轮式里程计与捷联惯导姿态数据相结合,设计基于多编码器和捷联惯导的航位推算算法,该算法可以有效抑制航位推算误差的快速累积。在此基础上,采用扩展卡尔曼滤波算法对基于轮式里程计运动学模型解算的姿态数据和捷联惯导解算的姿态数据进行融合,通过提高航向精度来提高航位推算的定位精度。基于扩展卡尔曼滤波算法建立了捷联惯导/航位推算组合定位模型,针对建模不准确时扩展卡尔曼滤波存在滤波精度下降甚至发散的问题,提出了一种改进的自适应扩展卡尔曼滤波算法,通过实时估计并调整量测噪声来提高滤波的精度和稳定性。针对无轨胶轮车出现打滑或滑行等异常行驶状况导致的轮式里程计失效问题,建立了一种容错模型,实现了无轨胶轮车打滑或滑行等异常行驶状况的检测与隔离。搭建了移动小车实验系统,并将UWB定位结果作为参考真值,开展了综合跑车实验研究。实验结果表明:所提出的组合定位方法能够满足煤矿井下无轨胶轮车定位需求。

    Abstract:

    Aiming at the problems of low accuracy and poor reliability of traditional trackless rubber tire vehicle positioning and orientation technology in coal mines, a trackless rubber tire vehicle positioning method based on the fusion of multiple encoders and inertial navigation is proposed. Based on the characteristics of multi encoder data, a kinematic model of a trackless rubber wheel odometer was established, and a heading calculation algorithm based on multi encoder was derived. In response to the problem of positioning divergence caused by relying solely on encoder data in the aforementioned dead reckoning algorithm, a dead reckoning algorithm based on multiple encoders and strapdown inertial navigation is designed by combining wheel odometry with attitude data. This algorithm can effectively suppress the rapid accumulation of dead reckoning errors. On this basis, the extended Kalman filtering algorithm is adopted to fuse the attitude data calculated based on the kinematic model of the wheel odometer and the attitude data calculated by the strapdown inertial navigation, and improve the positioning accuracy of the heading calculation by improving the heading accuracy. Based on the extended Kalman filtering algorithm, a combined positioning model for strapdown inertial navigation/dead reckoning was established. To address the problem of decreased or even divergent filtering accuracy when modeling is inaccurate, an improved adaptive extended Kalman filtering algorithm was proposed. By estimating and adjusting measurement noise in real time, the accuracy and stability of the filtering were improved. A fault-tolerant model was established to detect and isolate abnormal driving conditions such as slipping or sliding of trackless rubber wheeled vehicles, which resulted in the failure of wheel odometers. We built a mobile car experimental system and used UWB positioning results as reference truth values to conduct comprehensive sports car experimental research. The experimental results show that the proposed combination positioning method can meet the positioning requirements of trackless rubber wheeled vehicles in coal mines underground.

  • 图  1   基于多编码器的轮式里程计运动学模型

    Figure  1.   Kinematic model of wheel odometer based on multiple encoders

    图  2   改进的自适应扩展卡尔曼滤波算法流程

    Figure  2.   Flow chart of improved adaptive extended Kalman filtering algorithm

    图  3   巷道区间定位策略

    Figure  3.   Positioning strategy diagram for underground tunnels

    图  4   移动小车实验平台及实验场景

    Figure  4.   Mobile car experimental platform and experimental scenarios

    图  5   航位推算精度测试实验场景

    Figure  5.   Experimental scene of accuracy test of DR

    图  6   航向角参考真值获取示意

    Figure  6.   Schematic diagram for obtaining reference truth value of heading angle

    图  7   三种航位推算算法定位结果

    Figure  7.   Positioning results of three DR algorithms

    图  8   基于EKF融合航向角的航位推算误差

    Figure  8.   Error chart of DR based on EKF fusion heading angle

    图  9   捷联惯导/航位推算组合定位实验场景

    Figure  9.   SINS/DR combined positioning experimental scene

    图  10   捷联惯导/航位推算组合定位结果

    Figure  10.   SINS/DR integrated positioning result

    图  11   捷联惯导/航位推算组合定位误差

    Figure  11.   SINS/DR integrated positioning error

    图  12   模拟打滑实验轮式里程计速度输出

    Figure  12.   Speed output diagram of wheel odometer for simulated slipping test

    图  13   模拟打滑实验定位结果

    Figure  13.   Positioning results of simulated sliding test

    图  15   隔离打滑定位误差

    Figure  15.   Isolation slip positioning error diagram

    图  14   未隔离打滑定位误差

    Figure  14.   Unisolated slip positioning error diagram

    表  1   航向角计算

    Table  1   Heading angle calculation

    航位推算算法姿态四元数航向角
    基于多编码器的航位推算算法[0,0,0.57459,0.81844]70.1467
    基于多编码器与捷联惯导的航位推算算法[0,0,0.58599,0.81028]71.7453
    基于扩展卡尔曼滤波融合航向角的航位推算算法[0,0,0.58696,0.80962]71.8886
    下载: 导出CSV
  • [1] 陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势[J]. 工矿自动化,2022,48(6):6−14,35.

    CHEN Xiaojing. Current status and development trend of intelligent technology of underground coal mine transportation system[J]. Journal of Mine Automation,2022,48(6):6−14,35.

    [2] 杨利文. 无轨胶轮车在煤矿辅助运输中的应用研究[J]. 能源与节能,2023(10):167−169. doi: 10.3969/j.issn.2095-0802.2023.10.050

    YANG Liwen. Application of trackless rubber wheeled vehicles in auxiliary transportation of coal mines[J]. Energy and Energy Conservation,2023(10):167−169. doi: 10.3969/j.issn.2095-0802.2023.10.050

    [3] 赵远,吉庆,王腾. 煤矿智能无轨辅助运输技术现状与展望[J]. 煤炭科学技术,2021,49(12):209−216. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112026

    ZHAO Yuan,JI Qing,WANG Teng. Current status and prospects of intelligent trackless auxiliary transportation technology in coal mines[J]. Coal Science and Technology,2021,49(12):209−216. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112026

    [4] 杨坤. 矿井无轨胶轮车智能化管理系统研究[J]. 工矿自动化,2023,49(1):162−170.

    YANG Kun. Research on the intelligent management system of the trackless rubber-tyred vehicles in the coal mine[J]. Journal of Mine Automation,2023,49(1):162−170.

    [5] 鲍久圣,章全利,葛世荣,等. 煤矿井下无人化辅助运输系统关键基础研究及应用实践[J]. 煤炭学报,2023,48(2):1085−1098.

    BAO Jiusheng,ZHANG Quanli,GE Shirong,et al. Basic research and application practice of unmanned auxiliary transportation system in coal mine[J]. Journal of China Coal Society,2023,48(2):1085−1098.

    [6] 贾磊. 煤矿中无轨胶轮车的智能调度管理技术[J]. 现代工业经济和信息化,2022,12(3):142−143,159.

    JIA Lei. Intelligent scheduling management technology for trackless rubber wheeled vehicles in coal mines[J]. Modern Industrial Economy and Informationization,2022,12(3):142−143,159.

    [7] 鲍文亮. 煤矿用无人驾驶辅助运输车辆的蒙特卡罗定位方法[J]. 煤炭科学技术,2021,49(11):211−217.

    BAO Wenliang. Monte Carlo Localization for autonomous auxiliary transport vehicles used in coal mine[J]. Coal Science and Technology,2021,49(11):211−217.

    [8] 叶伟. 煤矿井下目标定位的研究现状与展望[J]. 中国矿业,2021,30(1):82−89,105. doi: 10.12075/j.issn.1004-4051.2021.01.030

    YE Wei. Status and prospects of research on positioning of targets in underground coal mines[J]. China Mining Magazine,2021,30(1):82−89,105. doi: 10.12075/j.issn.1004-4051.2021.01.030

    [9]

    SEGUEL F,PALACIOS-JÁTIVA P,AZURDIA-MEZA C A,et al. Underground mine positioning:A review[J]. IEEE Sensors Journal,2022,22(6):4755−4771. doi: 10.1109/JSEN.2021.3112547

    [10] 胡青松,张赫男,王鹏,等. 目标定位中的非视距传播研究综述[J]. 工矿自动化,2020,46(7):16−27.

    HU Qingsong,ZHANG Henan,WANG Peng,et al. Non-line-of-sight propagation in object localization:A survey[J]. Industry and Mine Automation,2020,46(7):16−27.

    [11] 王浩然,王宏伟,李正龙,等. 基于捷联惯导与差速里程计的掘进机组合定位方法[J]. 工矿自动化,2022,48(9):148−156.

    WANG Haoran,WANG Hongwei,LI Zhenglong,et al. Roadheader combined positioning method based on strapdown inertial navigation and differential odometer[J]. Journal of Mine Automation,2022,48(9):148−156.

    [12] 刘送永,崔玉明. 煤矿井下定位导航技术研究进展[J]. 矿业研究与开发,2019,39(7):114−120.

    LIU Songyong,CUI Yuming. Research progress of positioning and navigation technology in underground coal mine[J]. Mining Research and Development,2019,39(7):114−120.

    [13] 牛小骥,王庭蔚,葛雯斐,等. 一种基于视觉二维码/惯性融合的室内高精度定位定姿方法[J]. 中国惯性技术学报,2023,31(11):1067−1075.

    NIU Xiaoji,WANG Tingwei,GE Wenfei,et al. A high precision indoor positioning and attitude determination method based on visual two-dimensional code/inertial information[J]. Journal of Chinese Inertial Technology,2023,31(11):1067−1075.

    [14] 马宏伟,毛金根,毛清华,等. 基于惯导/全站仪组合的掘进机自主定位定向方法[J]. 煤炭科学技术,2022,50(8):189−195.

    MA Hongwei,MAO Jingen,MAO Qinghua,et al. Automatic positioning and orientation method of roadheader based on combination of ins and digital total station[J]. Coal Science and Technology,2022,50(8):189−195.

    [15] 周李兵. 煤矿井下无轨胶轮车无人驾驶系统研究[J]. 工矿自动化,2022,48(6):36−48.

    ZHOU Libing. Research on unmanned driving system of underground trackless rubber-tyred vehicle in coal mine[J]. Journal of Mine Automation,2022,48(6):36−48.

    [16] 贺海涛,廖志伟,郭卫. 煤矿井下无轨胶轮车无人驾驶技术研究与探索[J]. 煤炭科学技术,2022,50(S1):212−217.

    HE Haitao,LIAO Zhiwei,GUO Wei. Research and exploration on driverless technology of trackless rubbertyred vehicle in coal mine[J]. Coal Science and Technology,2022,50(S1):212−217.

    [17] 郭梁,宋建成,宁振兵,等. 矿用单轨吊机车定位系统开发[J]. 煤矿机械,2021,42(9):177−179.

    GUO Liang,SONG Jiancheng,NING Zhenbing,et al. Development of mine monorail crane locomotive positioning system[J]. Coal Mine Machinery,2021,42(9):177−179.

    [18]

    LI M G,ZHU H,YOU S Z,et al. UWB-based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal,2020,20(12):6652−6669. doi: 10.1109/JSEN.2020.2976097

    [19]

    HE K,MA X M. Research on avoidance obstacle strategy of coal underground inspection robot based on binocular vision[C]//2017 29th Chinese Control and Decision Conference (CCDC). Piscataway,NJ:IEEE,2017:6732−6737.

    [20] 杜京义,郭金宝,张渤. 井下无人驾驶列车惯性导航定位系统[J]. 工矿自动化,2018,44(9):5−9.

    DU Jingyi,GUO Jinbao,ZHANG Bo. Inertial navigation and positioning system for underground driverless train[J]. Industry and Mine Automation,2018,44(9):5−9.

    [21] 杨洁,申亮亮,王新龙,等. RSINS/里程计容错组合导航方案设计与性能验证[J]. 航空兵器,2021,28(2):93−99.

    YANG Jie,SHEN Liangliang,WANG Xinlong,et al. Design and performance verification of RSINS/odometer fault-tolerant integrated navigation scheme[J]. Aero Weaponry,2021,28(2):93−99.

    [22]

    ULLAH I,ZAIDI B H,NISAR S,et al. An inertial and global positioning system based algorithm for ownship navigation[J]. International Journal of Sensor Networks,2021,37(4):209−218. doi: 10.1504/IJSNET.2021.119487

图(15)  /  表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  14
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 网络出版日期:  2025-02-20
  • 刊出日期:  2024-12-29

目录

    /

    返回文章
    返回