高级检索

矿井水中有机污染物的潜在风险评估

何昱鹏, 包一翔, 吴敏, 胡嘉敏, 李杰, 刘小庆, 钟金魁, 李井峰

何昱鹏,包一翔,吴 敏,等. 矿井水中有机污染物的潜在风险评估[J]. 煤炭科学技术,2024,52(8):234−246. DOI: 10.12438/cst.2023-1527
引用本文: 何昱鹏,包一翔,吴 敏,等. 矿井水中有机污染物的潜在风险评估[J]. 煤炭科学技术,2024,52(8):234−246. DOI: 10.12438/cst.2023-1527
HE Yupeng,BAO Yixiang,WU Min,et al. Potential risk assessment of organic pollutants in coal mining water[J]. Coal Science and Technology,2024,52(8):234−246. DOI: 10.12438/cst.2023-1527
Citation: HE Yupeng,BAO Yixiang,WU Min,et al. Potential risk assessment of organic pollutants in coal mining water[J]. Coal Science and Technology,2024,52(8):234−246. DOI: 10.12438/cst.2023-1527

矿井水中有机污染物的潜在风险评估

基金项目: 

国家自然科学基金青年基金资助项目(52100070); 国家能源集团科技创新资助项目(SZY93002219N)

详细信息
    作者简介:

    何昱鹏: (1999—),男, 安徽安庆人,硕士研究生。E-mail:1393501921@qq.com

    通讯作者:

    包一翔: (1991—),男,甘肃庆阳人,高级工程师,博士。E-mail:baoja2008@163.com

  • 中图分类号: X752

Potential risk assessment of organic pollutants in coal mining water

Funds: 

National Natural Science Foundation of China (52100070); National Energy Group Science and Technology Innovation Project (SZY93002219N)

  • 摘要:

    为研究矿井水中有机污染物的潜在风险,针对矿井水中的已知有机污染物,使用EPI Suite和毒理学数据对其持久性、生物累积性和急性毒性进行系统模拟和评估,并采用层次分析法(AHP)基于毒性效应和环境效应的2个一级指标及7个二级指标建立矿井水中优先有机污染物的评估体系。研究结果表明:①54种有机物中有13种持久性物质、8种生物累积性物质及1种急性毒性物质, 其中卤代烃的持久性最强, 多环芳烃的生物累积性最强, 与羟基自由基(OH•)反应的反应速率的总体趋势为: 醚>酯>卤代烃;脂肪族>芳香族。(短链卤代)脂肪族化合物没有生物累积性物质, 多环芳烃的生物累积性普遍较高,且生物累积性物质分子结构中均有4个及以上的苯环, 苯环个数的增加会导致多环芳烃生物累积性增强。磷酸三苯酯为显著急性毒性物质, 需要在后续的矿井水处理中重点关注。②筛选出综合评分最高的20种有机污染物作为矿井水中的优先污染物, 其中评分较高的二氯甲烷、1, 2−二氯乙烷、甲苯、邻苯二甲酸二丁酯、邻苯二甲酸二(2−乙基己基)酯、萘、苯并[a]芘、二苯并[a, h]蒽、苯并[b]荧蒽、苯并[k]荧蒽和苯并[a]蒽符合新污染物特征,但目前矿井水中已经测出的有机污染物存在水平普遍不足以对人体健康和生态环境造成显著风险。随着国家政策实施和矿井水高质量处理利用需求的增加,矿井水中有机污染物的管控将成为区域水资源保护与利用的现实需求,本研究构建的优先有机污染物的潜在风险评估体系可用于筛选出矿井水中优先污染物, 为未来矿井水中有机污染物管控提供理论基础。

    Abstract:

    In order to investigate the potential risk of organic pollutants in coal mining water, the persistence, bioaccumulation and toxicity of known organic pollutants in coal mining water were systematically simulated and assessed by using EPI Suite and toxicolgical data, and the analytic hierarchy process (AHP) was used to establish an evaluation system for priority organic pollutants in coal mining water based on two primary indexes and seven secondary indicators of toxic and environmental effects. The results showed that: ① there were 13 persistent persistent substances, 8 bioaccumulative substances and 1 toxic substances among 54 organic pollutants, halgenated hydrocarbons have the strongest persistence, polycyclic aromatic hydrocarbons have the strongest bioaccumulation, and the general trend of reaction rate with hydroxyl radicals (OH•) is as follows: ether>esters>halgenated hydrocarbons; aliphatic>aromatic. (Short-chain halgenated) aliphatic compounds have no bioaccumulative substances, and the bioaccumulation of polycyclic aromatic hydrocarbons is generally high, moreover, there were 4 or more benzene rings in the molecular structure of the bioaccumulative ones, and the increase in the number of benzene rings would lead to the enhancement of the bioaccumulation of polycyclic aromatic hydrocarbons. Triphenyl phosphate is a significant toxic substance, which needs to be focused on during coal mining water treatment. ② The 20 organic pollutants with the higher comprehensive score were screened out as priority pollutants in coal mining water, among which dichloromethane, 1,2-dichloroethane, toluene, dibutyl phthalate, di(2-ethylhexyl) phthalate, naphthalene, benzo [a] pyrene, dibenzo [a, h] anthracene, benzo [b] fluoranthracene, benzo [k] fluoranthracene and benzo [a] anthracene have the characteristics of emerging contaminants, however, the level of organic pollutants detected in coal mining water is insufficient to pose risks to human health and ecolgical environment presently, but with the implementation of national policies and the increase in demand for high-quality treatment and utilization of coal mining water. The control of organic pollutants in coal mining water will become an realistic demand for the protection and utilization of regional water resources, and the potential risk assessment system of priority organic pollutants constructed in this study can be used to screen out priority pollutants in coal mining water, and provide a theoretical basis for the future control of organic pollutants.

  • 图  1   层次评价模型

    Figure  1.   Hierarchical evaluation model

    图  2   有机污染物和大气中OH•的反应速率常数

    Figure  2.   Reaction rate constants between organic pollutants with OH• in the atmosphere

    图  3   辛醇−水分配系数与几种化学品鱼类生物累积性关系

    Figure  3.   Plot of octanol-water partition coefficient vs. fish bioaccumulative for several chemical classes

    图  4   有机污染物对水蚤的经口急性毒性值

    Figure  4.   Oral acute toxicity of organic pollutants to Daphnia

    表  1   评价因子的分级

    Table  1   Grading of evaluation factors

    危害性急性毒性
    (LD50)/
    (mg·kg−1
    致癌性致突变性生殖毒性环境持久性(T1/2)/d生物累积性内分泌干扰性
    4≤50对人类有致癌性的物质、对人类很可能致癌的物质已知引起人类生殖细胞可遗传突变的物质已知的人类生殖毒物≥2FBC>5 000具有内分泌干扰性
    350~300对人类可能致癌的物质可能引起人类生殖细胞可遗传突变的物质假定的人类生殖毒物2 000 < FBC ≤ 5 000
    2300~2 000对人类的致癌性无法分类可能导致人类生殖细胞可遗传突变而引起人类关注的物质可疑的人类生殖毒物 < 2FBC ≤ 2 000无显著证据或无数据
    1>2 000对人类没有致癌性无可遗传突变无生殖毒性证据
      注:LD50为半数致死量,表示在规定时间内,经过指定感染途径,使一定体重或年龄的某种动物(此处为水蚤)半数死亡所需最小毒素量;T1/2为半衰期,有机污染物在空气中浓度降低一半所需要的时间;FBC为生物富集系数。
    下载: 导出CSV

    表  2   判断矩阵中不同标度的含义

    Table  2   The meaning of scale in judgment matrix

    标度含义
    1表示2个评价因子相比,具有相同的重要性
    3表示2个评价因子相比,前者比后者稍重要
    5表示2个评价因子相比,前者比后者明显重要
    7表示2个评价因子相比,前者比后者极其重要
    9表示2个评价因子相比,前者比后者强烈重要
    2、4、6、8表示上述判断的中间值
    1~9的倒数表示相应两因素交换次序比较的重要性
    下载: 导出CSV

    表  3   各项评价指标的目标权重

    Table  3   The target weight of each evaluation index

    目标权重 WC1 WC2 WC3 WC4 WC5 WC6 WC7
    Wbi·Wci 0.1002 0.2644 0.1646 0.1646 0.0562 0.1250 0.1250
      注:Wbi为毒性效应和环境效应在矿井水中优先污染物筛选指标中所占权重,Wbii为1~2,指代图1评价模型的B层;Wci为各评价因子分别在毒性效应和环境效应中所占比重,Wci中的i为1~7,指代图1评价模型的C层。
    下载: 导出CSV

    表  4   矿井水中的有机污染物的基本信息

    Table  4   Basic information of organic pollutants in coal mining water

    序号 物质 化学式 相对分子质量 CAS号 结构式 质量浓度/(μg·L−1
    1 氯甲烷 CH3Cl 50.487 74-87-3 3.88[4]
    2 二氯甲烷 CH2Cl2 84.93 75-09-2 7.49[12]
    3 四氯化碳 CCl4 153.823 56-23-5 0.92[12]
    4 二氯二氟甲烷 CCl2F2 120.914 75-71-8 2.40[4]
    5 1,2−二氯乙烷 C2H4Cl2 98.959 107-06-2 0.15[4]
    6 反1,2−二氯乙烯 C2H2Cl2 96.943 156-60-5 1.39[4]
    7 1,3−二氯丙烷 C3H6Cl2 112.986 142-28-9 0.03[4]
    8 邻苯二甲酸二甲酯 C10H10O4 194.184 131-11-3 0.10[4]
    9 邻苯二甲酸二乙酯 C12H14O4 222.237 84-66-2 0.03[4]
    10 邻苯二甲酸二丁酯 C16H22O4 278.344 84-74-2 0.041[4]
    11 邻苯二甲酸二(2−乙基己基)酯 C24H38O4 390.556 27554-26-3 6.86[4]
    12 邻苯二甲酸二辛酯 C24H38O4 390.556 117-84-0 0.29[4]
    13 C10H8 128.171 91-20-3 0.07[13]
    14 二氢苊 C12H8 152.192 208-96-8 0.09[13]
    15 C12H10 154.208 83-32-9 0.08[13]
    16 C13H10 166.219 86-73-7 0.10[13]
    17 C14H10 178.229 120-12-7 0.25[4]
    18 C14H10 178.229 85-01-8 0.24[4]
    19 荧蒽 C16H10 202.251 206-44-0 0.12[13]
    20 C16H10 202.251 129-00-0 0.13[13]
    21 苯并[a]蒽 C18H12 228.288 56-55-3 0.26[13]
    22 C18H12 228.288 218-01-9 0.14[13]
    23 苯并[b]荧蒽 C20H12 252.309 205-99-2 0.23[13]
    24 苯并[k]荧蒽 C20H12 252.309 207-08-9 0.14[13]
    25 苯并[a]芘 C20H12 252.309 50-32-8 0.18[13]
    26 二苯并[a,h]蒽 C22H14 278.347 53-70-3 0.17[13]
    27 茚并[1,2,3-cd]芘 C22H12 276.331 193-39-5 0.27[13]
    28 苯并[g,h,i]苝 C22H12 276.331 191-24-2 0.33[13]
    29 甲苯 C7H8 92.138 108-88-3 0.01[4]
    30 2,6−二硝基甲苯 C7H6N2O4 182.133 606-20-2 0.14[4]
    31 苯胺 C6H7N 93.127 62-53-3
    32 对溴氟苯 C6H4BrF 174.998 460-00-4 0.56[4]
    33 苯并三氮唑 C6H5N3 119.124 95-14-7
    34 一乙醇胺 C2H7NO 61.08 141-43-5
    35 三乙醇胺 C6H15NO3 149.188 102-71-6
    36 油酸 C18H34O2 282.461 112-80-1
    37 乙二胺四亚甲基膦酸 C6H20N2O12P4 436.124 1429-50-1
    38 十二烷基苯磺酸钠 C18H29NaO3S 348.476 25155-30-0
    39 磷酸三苯酯 C18H15O4P 326.283 115-86-6
    40 磷酸三甲苯酯 C21H21O4P 368.363 1330-78-5
    41 磷酸三乙酯 C6H15O4P 182.155 78-40-0
    42 磷酸三丁酯 C12H27O4P 266.314 126-73-8
    43 亚磷酸二正丁酯 C8H19O3P 194.208 1809-19-4
    44 丙烯酸乙酯 C5H8O2 100.116 140-88-5
    45 甲基丙烯酸乙酯 C6H10O2 114.142 97-63-2
    46 丙烯酸丁酯 C7H12O2 128.169 141-32-2
    47 甲基丙烯酸丁酯 C8H14O2 142.196 97-88-1
    48 乙二醇乙醚 C4H10O2 90.121 110-80-5
    49 乙二醇丁醚 C6H14O2 118.174 111-76-2
    50 二乙二醇丁醚 C8H18O3 162.227 112-34-5
    51 三乙二醇丁醚 C10H22O4 206.279 143-22-6
    52 三丙二醇甲醚 C10H22O4 206.279 20324-33-8
    53 丙二醇丁醚 C7H16O2 132.201 29387-86-8
    54 二丙二醇丁醚 C10H22O3 190.28 29911-28-2
    下载: 导出CSV

    表  5   有机污染物PBT性质的模拟计算结果

    Table  5   Simulation results of PBT properties of organic pollutants

    污染物 OH•的反应
    速率常数/
    (cm3·mol−1·s−1)
    lg FBC 48h-LC50/
    (mg·L−1)
    lg KOW 污染物 OH•的反应
    速率常数/
    (cm3·mol−1·s−1)
    lg FBC 48h-LC50/
    (mg·L−1)
    lg KOW
    氯甲烷 0.05 0.50 143.14 1.09 乙二醇丁醚 23.51 0.50 935.82 0.57
    二氯甲烷 0.13 0.49 145.79 1.34 二乙二醇丁醚 37.53 0.50 2 209.16 0.29
    四氯化碳 0.0001 1.53 29.95 2.44 三乙二醇丁醚 51.54 0.50 4 830.5 0.02
    二氯二氟甲烷 0.0004 1.09 81.20 1.82 三丙二醇甲醚 59.96 0.50 7 467.6 -0.2
    1,2−二氯乙烷 0.26 0.64 64.38 1.83 丙二醇丁醚 31.23 0.50 458.8 0.98
    1,2−二氯乙烯 2.49 0.99 46.97 1.98 二丙二醇丁醚 49.74 0.41 497.6 1.13
    1,3−二氯丙烷 0.99 0.99 27.85 2.32 一乙醇胺 35.84 0.50 217.04 -1.61
    甲苯 5.23 1.47 14.78 2.54 三乙醇胺 110.53 0.50 1 771.33 -2.48
    2,6−二硝基甲苯 0.22 1.05 31.75 2.18 油酸 75.53 1.75 7.73
    苯胺 107.65 0.50 0.68 1.08 乙二胺四亚甲基膦酸 189.23 0.50 -7.58
    对溴氟苯 0.70 1.70 9.6 3.08 十二烷基苯磺酸钠 16.22 1.85 6.22 3
    苯并三氮唑 1 0.62 66.77 1.17 21.60 1.84 5.94 3.30
    邻苯二甲酸二甲酯 0.57 0.72 87.97 1.66 二氢苊 75.49 2.27 1.55 3.94
    邻苯二甲酸二乙酯 3.47 1.26 2.65 66.86 2.25 1.03 3.92
    邻苯二甲酸二丁酯 9.28 2.64 1.75 4.61 8.85 2.42 1.45 4.18
    邻苯二甲酸二(2−乙基己基)酯 20.56 2.85 0.04 8.39 40 2.60 0.81 4.45
    邻苯二甲酸二辛酯 20.58 2.99 8.54 13 3.27 0.81 4.46
    磷酸三苯酯 10.84 1.87 0.001 4.7 荧蒽 29.23 3.07 5.16
    磷酸三甲苯酯 13.70 2.21 6.34 50 2.89 0.29 4.88
    磷酸三乙酯 57.94 0.50 260.46 0.87 苯并[a]蒽 50 3.47 5.76
    磷酸三丁酯 78.84 1.48 5.28 3.82 50 3.50 5.81
    亚磷酸二正丁酯 52.56 1.48 70.72 1.81 苯并[b]荧蒽 18.55 3.48 5.78
    丙烯酸乙酯 10.87 0.54 5.80 1.22 苯并[k]荧蒽 53.61 3.70 6.11
    甲基丙烯酸乙酯 19.79 0.95 23.57 1.77 苯并[a]芘 50 3.71 6.13
    丙烯酸丁酯 13.77 1.22 3.08 2.2 二苯并[a,h]蒽 50 3.98 6.75
    甲基丙烯酸丁酯 22.69 1.57 6.20 2.75 茚并[1,2,3-cd]芘 64.47 4.09 6.7
    乙二醇乙醚 17.34 0.50 4 968.46 -0.42 苯并[g,h,i]苝 86.86 4.04 6.63
      注:“—”表示不满足模拟软件的使用条件,无法得到模拟数据;KOW为辛醇−水分配系数。
    下载: 导出CSV

    表  6   有机污染物的PBT性质

    Table  6   PBT properties of organic pollutants

    编号 有机污染物 大气半衰期/d lg BCF 水蚤LC50/(mg·L−1) PBT性质
    1 氯甲烷 207.0 0.215 143.144 P
    2 二氯甲烷 79.3 0.420 145.790 P
    3 1,2−二氯乙烷 41.9 0.577 64.380 P
    4 1,2−二氯乙烯 4.3 1.030 46.970 P
    5 1,3−二氯丙烷 10.8 1.015 27.858 P
    6 甲苯 2.0 1.577 14.780 P
    7 2,6−二硝基甲苯 49.6 0.996 31.752 P
    8 对溴氟苯 15.3 2.041 9.600 P
    9 苯并三氮唑 10.7 0.546 66.766 P
    10 邻苯二甲酸二甲酯 18.6 0.291 87.973 P
    11 邻苯二甲酸二乙酯 3.1 0.770 24.192 P
    12 四氯化碳 >2 1.275 29.957 P
    13 二氯二氟甲烷 >2 1.175 81.204 P
    14 磷酸三苯酯 1.0 1.864 0.0012 T
    15 苯并[a]蒽 0.2 3.470 B
    16 0.2 3.500 B
    17 苯并[b]荧蒽 0.6 3.480 B
    18 苯并[k]荧蒽 0.2 3.700 B
    19 苯并[a]芘 0.2 3.710 B
    20 二苯并[a,h]蒽 0.2 3.980 B
    21 茚并[1,2,3-cd]芘 0.2 4.090 B
    22 苯并[g,h,i]苝 0.1 4.040 B
    下载: 导出CSV

    表  7   矿井水优先污染物筛选排序结果

    Table  7   Results of screening and sequencing of priority pollutants in mine water

    排序 污染物 总分 排序 污染物 总分
    1 二氯甲烷 3.437 2 28 1.835 4
    2 苯并[a]芘 3.143 8 29 苯并三氮唑 1.821 0
    3 2,6−二硝基甲苯 2.943 8 30 荧蒽 1.695 6
    4 氯甲烷 2.908 4 31 1.695 6
    5 二苯并[a,h]蒽 2.774 9 32 1.670 8
    6 1,2−二氯乙烷 2.679 0 33 1.670 8
    7 邻苯二甲酸二甲酯 2.656 2 34 磷酸三甲苯酯 1.595 8
    8 邻苯二甲酸二乙酯 2.656 2 35 磷酸三丁酯 1.570 6
    9 甲苯 2.579 2 36 三乙醇胺 1.570 6
    10 苯胺 2.464 4 37 二氯二氟甲烷 1.556 2
    11 四氯化碳 2.414 2 38 对溴氟苯 1.556 2
    12 邻苯二甲酸二丁酯 2.406 2 39 十二烷基苯磺酸钠 1.531 4
    13 邻苯二甲酸二(2−乙基己基)酯 2.406 2 40 二氢苊 1.531 4
    14 茚并[1,2,3-cd]芘 2.385 5 41 甲基丙烯酸乙酯 1.470 8
    15 苯并[b]荧蒽 2.385 5 42 二乙二醇丁醚 1.470 8
    16 苯并[k]荧蒽 2.185 1 43 油酸 1.431 2
    17 2.185 1 44 邻苯二甲酸二辛酯 1.418 6
    18 苯并[a]蒽 2.160 3 45 磷酸三乙酯 1.406 4
    19 丙烯酸乙酯 2.099 8 46 丙二醇丁醚 1.406 4
    20 2.099 8 47 二丙二醇丁醚 1.406 4
    21 乙二醇丁醚 2.000 0 48 一乙醇胺 1.406 4
    22 乙二醇乙醚 1.964 6 49 磷酸三苯酯 1.306 2
    23 1.960 4 50 亚磷酸二正丁酯 1.306 2
    24 苯并[g,h,i]苝 1.920 8 51 甲基丙烯酸丁酯 1.306 2
    25 1,2−二氯乙烯 1.885 4 52 三乙二醇丁醚 1.306 2
    26 1,3−二氯丙烷 1.885 4 53 三丙二醇甲醚 1.306 2
    27 丙烯酸丁酯 1.835 4 54 乙二胺四亚甲基膦酸 1.306 2
    下载: 导出CSV
  • [1] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.

    GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technolgy and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.

    [2] 何绪文,王绍州,张学伟,等. 煤矿矿井水资源化利用技术创新[J]. 煤炭科学技术,2023,51(1):523−530.

    HE Xuwen,WANG Shaozhou,ZHANG Xuewei,et al. Coal mine drainage resources utilization technology innovation[J]. Coal Science and Technology,2023,51(1):523−530.

    [3] 孙亚军,陈歌,徐智敏,等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报,2020,45(1):304−316.

    SUN Yajun,CHEN Ge,XU Zhimin,et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304−316.

    [4] 李 庭. 废弃矿井地下水污染风险评价研究[D]. 徐州:中国矿业大学,2014.

    LI Ting. Study on groundwater pollution risk assessment of abandoned coal mine[D]. Xuzhou:China University of Mining and Technolgy,2014.

    [5] 徐楚良,袁武建,缪旭光. 矿井水中微量有机污染物的深度处理[J]. 煤矿环境保护,1998,12(4):7−10.

    XU Chuliang,YUAN Wujian,MOU Xuguang. Deep treatment on microorganic pollutant in mine drainage[J]. Energy Environmental Protection,1998,12(4):7−10.

    [6] 何瑞敏,孔令坡,刘鲤粽,等. 液压支架用传动介质对矿区水源的影响研究[J]. 煤炭与化工,2021,44(4):89−92.

    HE Ruimin,KONG Lingpo,LIU Lizong,et al. Influence of transmission medium used by hydraulic support on water resource of mining area[J]. Coal and Chemical Industry,2021,44(4):89−92.

    [7] 汪利平,郎需进,程亚洲,等. 中国矿用难燃液压支架液市场分析[J]. 润滑油,2022,37(5):6−10.

    WANG Lipin,LANG Xujin,CHENG Yazhou,et al. Analysis on China market of fire-resistant hydraulic support fluids for mining[J]. Lubricating Oil,2022,37(5):6−10.

    [8] 李建中. 乳化液配制质量及其对液压支架工作性能的影响[J]. 煤炭学报,1999,24(2):71−73. doi: 10.3321/j.issn:0253-9993.1999.02.016

    LI Jianzhong. The compounding quality of emulsion and its influence on the work performance of the powered supports[J]. Journal of China Coal Society,1999,24(2):71−73. doi: 10.3321/j.issn:0253-9993.1999.02.016

    [9] 刘加双. 液压支架(柱)用乳化油[J]. 煤炭技术,2004,23(11):20−21. doi: 10.3969/j.issn.1008-8725.2004.11.013

    LIU Jiashuang. Emulsified oil for hydraulic support (column)[J]. Coal Technolgy,2004,23(11):20−21. doi: 10.3969/j.issn.1008-8725.2004.11.013

    [10] 张溪彧,杨 建,王 皓,等. 基于平行因子法的黄河流域中段矿井水中DOM特征及来源[J]. 煤炭学报,2021,46(S2):936−947.

    ZHANG Xiyu,YANG Jian,WANG Hao,et al. DOM characteristics and sources of mine water in themiddle Yellow River Basin based on parallel factor method[J]. Journal of China Coal Society,2021,46(S2):936−947.

    [11] 彭思涵. 矿井液压支架用乳化油废水的破乳与生物降解研究[D]. 徐州:中国矿业大学,2021.

    PENG Sihan. Research on demulsification and biodegradation of emulsified oil wastewater used for hydraulic supports in mines[D]. Xuzhou:China University of Mining and Technolgy,2021

    [12] 陈 琳,冯启言,高 波,等. 某矿区矿井水有机污染健康风险评价[J]. 工业安全与环保,2015,41(10):21−23. doi: 10.3969/j.issn.1001-425X.2015.10.007

    CHEN Lin,FENG Qiyan,GAO Bo,et al. The health risk assessment of organic pollution in coal mine water[J]. Industrial Safety and Environmental Protection,2015,41(10):21−23. doi: 10.3969/j.issn.1001-425X.2015.10.007

    [13] 高波. 关闭煤矿多环芳烃的赋存特征及生物降解机理研究[D]. 徐州:中国矿业大学,2019.

    GAO Bo. Study on Occurrence and biodegradation mechanism of PAHs in closed coal mine[D]. Xuzhou:China University of Mining and Technolgy,2019.

    [14]

    SAATY T L. The analytic hierarchy process:planning,priority setting,resource allocation[M]. London:McGraw-Hill Education,1980.

    [15]

    ZHANG Lingyue,LAVAGNOLO M C,BAI Hao,et al. Environmental and economic assessment of leachate concentrate treatment technolgies using analytic hierarchy process[J]. Resources,Conservation and Recycling,2019,141:474−480.

    [16] 杨保安. 多目标决策分析理论、方法与应用研究[M]. 上海:东华大学出版社,2008.

    YANG Baoan. Research on theory,method and application of multi-objective decision analysis[M]. Shanghai:Donghua University press,2008

    [17]

    PASSANANTI M,TEMUSSI F,IESCE MR,et al. The impact of the hydroxyl radical photochemical sources on the rivastigmine drug transformation in mimic and natural waters[J]. Water Research,2013,47(14):5422−5430. doi: 10.1016/j.watres.2013.06.024

    [18]

    GLIGOROVSKI S,STREKOWSKI R,BARBATI S,et al. Environmental Implications of Hydroxyl Radicals (•OH)[J]. Chemical Reviews,2015,115(24):13051−13092. doi: 10.1021/cr500310b

    [19]

    LI Chao,YANG Xianhai,LI Xuehua,et al. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures[J]. Chemosphere,2014,95(1):613−618.

    [20]

    MELLOUKI A,BRAS G L,SIDEBOTTOM H. Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase[J]. Chemical Reviews,2003,103(12):5077−5096. doi: 10.1021/cr020526x

    [21] 雷 斌. 有机污染物气相自由基反应速率常数的3D-QSAR及HQSAR研究[D]. 西安:西安石油大学,2021.

    LEI Bin. 3D-QSAR and HQSAR study on the reaction rate constants of organic pollutants with gaseous free radicals [D]. Xi'an:Xi'an Shiyou University,2021.

    [22]

    TOMBERG A,POTTEL J,LIU Zhaomin,et al. Understanding P450‐mediated bio‐transformations into epoxide and phenolic metabolites[J]. Angewandte Chemie,2015,127(46):13743−13747.

    [23] 罗 翔. 有机污染物与羟基自由基和单线态氧水相反应速率常数的QSAR模型[D]. 大连:大连理工大学,2021.

    LUO Xiang. QSAR models for aqueous reaction rate constants of organic pollutants with hydroxyl radical and singlet oxygen[D]. Dalian:Dalian University of Technolgy,2021.

    [24]

    HOWARD P H,MUIR D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce II:pharmaceuticals[J]. Environmental Science & Technolgy,2011,45(16):6938.

    [25]

    BRANSON D R,BLAU G E,NEELY W B. Partition coefficient to measure bioconcentration potential of organic chemicals in fish[J]. Environmental Science & Technolgy,1974,8(13):1113−1115.

    [26]

    VEITH G D,Defoe D L,BERGSTEDT B V. Measuring and estimating the bioconcentration factor of chemicals in fish[J]. Journal of the Fisheries Research Board of Canada,1979,36(9):1040−1048. doi: 10.1139/f79-146

    [27]

    MEYLAN W M,HOWARD P H,BOETHLING RS,et al. Improved method for estimating bioconcentration /bioaccumulation factor from octanol/water partition coefficient[J]. Environmental Toxicolgy & Chemistry,1999,18(4):664−672.

    [28] 王伟霞,姚烘烨,赵 静,等. 基于逼近理想解排序的江苏省优先控制毒害有机化学物质筛查研究[J]. 生态毒理学报,2022,17(4):197−212. doi: 10.7524/AJE.1673-5897.20211109001

    WANG Weixia,YAO Hongye,ZHAO Jing,et al. Screening system for priority control of toxic organic chemicals in Jiangsu Province based on technique for order preference by similarity to an ideal solution[J]. Asian Journal of Ecotoxicolgy,2022,17(4):197−212. doi: 10.7524/AJE.1673-5897.20211109001

图(4)  /  表(7)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  16
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-21
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回