高级检索

惯导与视觉信息融合的掘进机精确定位方法

毛清华, 周庆, 安炎基, 薛旭升, 杨文娟

毛清华,周 庆,安炎基,等. 惯导与视觉信息融合的掘进机精确定位方法[J]. 煤炭科学技术,2024,52(5):236−248. DOI: 10.12438/cst.2023-1003
引用本文: 毛清华,周 庆,安炎基,等. 惯导与视觉信息融合的掘进机精确定位方法[J]. 煤炭科学技术,2024,52(5):236−248. DOI: 10.12438/cst.2023-1003
MAO Qinghua,ZHOU Qing,AN Yanji,et al. Precise positioning method of tunneling machine for inertial navigation and visual information fusion[J]. Coal Science and Technology,2024,52(5):236−248. DOI: 10.12438/cst.2023-1003
Citation: MAO Qinghua,ZHOU Qing,AN Yanji,et al. Precise positioning method of tunneling machine for inertial navigation and visual information fusion[J]. Coal Science and Technology,2024,52(5):236−248. DOI: 10.12438/cst.2023-1003

惯导与视觉信息融合的掘进机精确定位方法

基金项目: 

国家自然科学基金资助项目(52174150);陕西省重点研发计划专项资助项目(2023-LL-QY—03)

详细信息
    作者简介:

    毛清华: (1984—),男,江西永丰人,教授,博士生导师,博士。E-mail:maoqh@xust.edu.cn

  • 中图分类号: TD421

Precise positioning method of tunneling machine for inertial navigation and visual information fusion

Funds: 

National Natural Science Foundation of China (52174150); Special Funding Project of Shaanxi Provincial Key Research and Development Plan (2023-LL-QY-03)

  • 摘要:

    针对煤矿巷道复杂环境下掘进机精确定位难题,提出了一种惯导与视觉融合的掘进机精确定位方法,该方法采用惯导与“视觉+激光标靶”的定位方案。该方案将设计的四特征点大尺寸激光标靶固定于巷道顶板,相机固定于掘进机机身采集激光标靶图像,并运用圆拟合法定位光斑中心和基于四特征点的EPnP算法解算掘进机位置。为了验证“视觉+激光标靶”方法对掘进机位置检测效果,在模拟掘进工作面环境下开展了“视觉+激光标靶”位置检测试验,结果表明:在30 m内沿巷道宽度方向、掘进方向、高度方向最大误差不超过28.549 mm、78.868 mm、44.459 mm,实现了掘进机位置精确检测。针对惯导测量掘进机位姿误差随时间累积和掘进机振动对组合定位系统产生干扰导致位姿检测不准问题,提出改进Sage-Husa自适应滤波的惯导与视觉信息融合方法,该方法通过检测新息方差值修正量测误差来提高定位准确性。在模拟掘进工作面环境下开展了惯导与“视觉+激光标靶”组合定位实验,采用改进前后Sage-Husa自适应滤波算法融合惯导与视觉信息进行对比分析,结果表明:改进后Sage-Husa自适应滤波算法融合得到的定位误差更小,俯仰角、横滚角、航向角最大误差分别为0.029°、0.051°、0.011 3°,在距离激光标靶30 m内巷道宽度位置误差在0.033 m范围内,巷道掘进方向位置误差在0.062 m范围内。所提出的惯导与视觉融合定位方法能够满足巷道掘进定位精度要求。

    Abstract:

    For the difficulty of pinpointing of tunneling machines in the complex environment of coal mine tunnels,a precise positioning method of roadheader based on inertial navigation and visual fusion is proposed, which uses a positioning scheme of inertial navigation plus "vision+laser target". With the designed four feature point large-sized laser target fixed on the roof of the tunnel and the camera on the tunneling machine to collect laser target images, the scheme uses the circular fitting method to locate the center of the light spot and the EPnP algorithm based on four feature points to calculate the position of the tunneling machine. A “vision+laser target” position detection experiment was conducted in simulated condition of heading face to verify the effectiveness of the method in detecting the position of tunneling machines. The results are as follows: within 30 meters tunnel, the maximum error in the width, position, and height are no more than 28.549, 78.868, and 44.459 mm, which shows accurate detection of the position of the tunneling machine. For the inaccurate pose detection of tunneling machines in inertial navigation measurement, induced by the accumulation of pose errors over time and the machine vibration on the combined positioning system, an improved Sage-Husa adaptive filtering method for inertial navigation and visual information fusion is proposed, which could correct measurement errors by detecting new variance values to improve positioning accuracy. A combined positioning experiment of inertial navigation plus “vision+laser target” was conducted in a simulated heading face environment, using improved Sage-Husa adaptive filtering algorithm to fuse inertial navigation and visual information for comparative analysis, which show that the improved Sage-Husa adaptive filtering algorithm fusion results in smaller positioning errors. The maximum errors of pitch angle, roll angle, and heading angle are 0.029°, 0.051°, and 0.0113°, respectively. Within 30 meters, the position error of tunnel width is within the range of 0.033 m, and the position error of tunnel excavation direction is within the range of 0.062 m. Overall, the proposed inertial navigation plus visual fusion positioning method can meet the accuracy requirements of tunnel excavation positioning.

  • 图  1   “视觉+激光标靶”系统结构及坐标系示意

    Figure  1.   Schematic of the “Vision+Laser Target” system structure and coordinate system

    图  2   组合定位系统原理

    Figure  2.   Principle of combined positioning system

    图  3   激光标靶结构

    Figure  3.   Structure diagram of laser targ

    图  4   EPnP算法的位置解算原理

    Figure  4.   Schematic diagram of EPnP algorithm for position calculation

    图  5   改进Sage-Husa自适应滤波原理

    Figure  5.   Improved Sage Husa adaptive filtering principle

    图  6   视觉位置检测试验平台

    Figure  6.   Visual position detection experimental platform

    图  7   光斑图像处理

    Figure  7.   Spot image processing

    图  8   视觉定位误差

    Figure  8.   Visual positioning error

    图  9   姿态角测量结果

    Figure  9.   Attitude angle measurement results

    图  10   距离标靶10 m时位置测量结果

    Figure  10.   Position measurement results at a distance of 10 m from the target

    图  11   距离标靶20 m时位置测量结果

    Figure  11.   Position measurement results at a distance of 20 m from the target

    图  12   距离标靶30 m时位置测量结果

    Figure  12.   Position measurement results at a distance of 30 m from the target

    图  13   不同算法解算误差曲线

    Figure  13.   Solution error curves of different algorithms

    项目 参数
    最高分辨率/(px×px) 1 600×1 200
    像素尺寸/(μm×μm) 4.4×4.4
    光学尺寸 1/1.8''
    有效感光面积/(mm×mm) 7×5.3
    最大帧率/fps 20
    输出颜色 黑白
    传输距离/m 100
    下载: 导出CSV

    表  2   镜头参数

    Table  2   Lens Parameters

    项目 参数
    分辨率/m 5
    焦距/mm 8
    视场角/DHV 67.1°×56.3°×43.7°
    畸变/(°) <1
    光圈 F=1:1.4~16
    聚焦/m 0.1~0.9
    像面尺寸 2/3"
    下载: 导出CSV

    表  3   定位平均误差

    Table  3   Average positioning error

    平均误差 宽度(X)
    方向/mm
    掘进(Y)
    方向/mm
    高度(Z)
    方向/mm
    掘进机距激光
    标靶的距离/m
    5 2.706 5.224 3.282
    10 5.055 14.258 8.657
    15 6.564 25.871 12.213
    20 11.848 31.899 13.102
    25 12.564 38.431 21.874
    30 15.064 44.087 21.346
    下载: 导出CSV

    表  4   定位最大误差

    Table  4   Maximum positioning error

    平均误差 宽度(X)
    方向/mm
    掘进(Y)
    方向/mm
    高度(Z)
    方向/mm
    掘进机距激光
    标靶的距离/m
    5 4.925 13.433 7.984
    10 6.738 25.896 13.392
    15 8.317 49.755 22.563
    20 18.103 56.729 29.600
    25 26.694 68.563 37.863
    30 28.549 78.868 44.459
    下载: 导出CSV

    表  5   Sage-Husa自适应滤波改进前后定位结果

    Table  5   Positioning results before and after Sage-Husa adaptive filtering improvement

    Sage-Husa自适应新息误差跟踪X方向最大误差/mY方向最大误差/mX方向RMSEY方向RMSE
    10 m20 m30 m10 m20 m30 m10 m20 m30 m10 m20 m30 m
    0.055 10.082 20.089 30.080 20.102 40.202 80.056 60.056 90.050 70.098 80.044 20.115 9
    0.011 20.021 50.033 20.020 50.041 30.062 30.017 60.013 00.018 20.031 10.021 10.035 8
    注:√代表使用该方法。
    下载: 导出CSV

    表  6   各算法解算最大误差与均方根误差

    Table  6   Maximum error and root mean square error of each algorithm

    融合算法X方向最大误差/mY方向最大误差/mX方向RMSEY方向RMSE
    Sage-Husa自适应0.089 30.202 80.050 70.115 9
    自适应UKF0.051 20.101 30.031 20.062 8
    自适应SRCKF0.034 60.073 40.021 40.042 8
    改进Sage-Husa自适应0.033 20.062 30.018 20.035 8
    下载: 导出CSV
  • [1] 王国法,王 虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295−305.

    WANG Guofa,WANG Hong,Ren Huaiwei,et al. 2025 Scenario objectives and development path of smart coal mines[J]. Journal of Coal Industry,2018,43(2):295−305.

    [2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27

    [3] 杨健健,张 强,王 超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995−3005.

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Research status and development of robotization of coal mine boring machines[J]. Journal of Coal Industry,2020,45(8):2995−3005.

    [4] 马宏伟,王世斌,毛清华,等. 煤矿巷道智能掘进关键共性技术[J]. 煤炭学报,2021,46(1):310−320.

    MA Hongwei,WANG Shibin,MAO Qinghua,et al. Key common technologies for intelligent excavation of coalmine tunnels[J]. Journal of Coal Industry,2021,46(1):310−320

    [5] 朱信平,李 睿,高 娟,等. 基于全站仪的掘进机机身位姿参数测量方法[J]. 煤炭工程,2011(6):113−115. doi: 10.3969/j.issn.1671-0959.2011.06.044

    ZHU Xinping,LI Rui,GAO Juan,et al. Measurement method of position and attitude parameters of roadheader body based on total station[J]. Coal Engineering,2011(6):113−115 doi: 10.3969/j.issn.1671-0959.2011.06.044

    [6] 张旭辉,沈奇峰,杨文娟,等. 基于三激光点标靶的掘进机机身视觉定位技术研究[J]. 电子测量与仪器报,2022,36(6):178−186.

    ZHANG Xuhui,SHEN Qifeng,YANG Wenjuan,et al. Research on visual positioning technology of tunneling machine body based on three laser point targets[J]. Journal of Electronic Measurement and Instrumentation,2022,36(6):178−186.

    [7] 贾文浩,陶云飞,张敏骏,等. 基于iGPS的煤巷狭长空间中掘进机绝对定位精度研究[J]. 仪器仪表报,2016,37(8):1920−1926.

    JIA Wenhao,TAO Yunfei,ZHANG Minjun,et al. Research on the absolute positioning accuracy of tunneling machines in narrow and long spaces of coal tunnels based on iGPS[J]. Journal of Instrumentation,2016,37(8):1920−1926.

    [8] 陶云飞,杨健健,李嘉赓,等. 基于惯性导航技术的掘进机位姿测量系统研究[J]. 煤炭技术,2017,36(1):235−237.

    TAO Yunfei,YANG Jianjian,LI Jiageng,et al. Research on the Position and Attitude Measurement System of Tunneling Machine Based on Inertial Navigation Technology[J]. Coal Technology,2017,36(1):235−237.

    [9] 陈慎金,成 龙,王鹏江,等. 基于掘进机位姿测量系统的自主标定方法误差分析[J]. 煤炭学报,2018,43(9):285−290.

    CHEN Shenjin,JACKIE Chan,WANG Pengjiang,et al. Error analysis of autonomous calibration method based on heading machine pose measurement system[J]. Journal of China Coal Society,2018,43(9):285−290.

    [10]

    WANG J,YU B,KANG H,et al. Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams[J]. International Journal of Coal Science & Technology,2015,2(2):97−161.

    [11]

    KHONZI H,FRANCOIS D P. Implementation of an autonomous underground localization system[C]. Robotics and MECHATRONICS Conference. IEEE,2013:1–34.

    [12] 刘 超,符世琛,成 龙,等. 基于TSOA定位原理混合算法的掘进机位姿检测方法[J]. 煤炭学报,2019,44(4):1255−1264.

    LIU Chao,FU Shichen,Jackie CHAN,et al. A hybrid algorithm based on TSOA positioning principle for detecting the pose of tunneling machines[J]. Journal of China Coal Society,2019,44(4):1255−1264.

    [13] 刘 宇,陈根林,刘永忠. 煤矿全断面掘进机捷联惯导曲线测量系统[J]. 工矿自动化,2019,45(8):65−69, 73.

    LIU Yu,CHEN Genlin,LIU Yongzhong. Strap down Inertial Navigation curve measurement system for coal mine full face tunneling machine[J]. Industrial and Mining Automation,2019,45(8):65−69, 73.

    [14] 卢新明,闫长青,袁照平. 掘进机精准定位方法与掘进机器人系统[J]. 通信学报,2020,41(2):58−65. doi: 10.11959/j.issn.1000-436x.2020042

    LU Xinming,YAN Changqing,YUAN Zhaoping. Precise positioning methods for tunneling machines and tunneling robot systems[J]. Journal of Communications,2020,41(2):58−65. doi: 10.11959/j.issn.1000-436x.2020042

    [15]

    AUGER F,HILAIRET M,GUERRERO J M,et al. Industrial applications of the Kalman filter:A review[J]. IEEE Transactions on Industrial Electronics,2013,60(12):5458−5471. doi: 10.1109/TIE.2012.2236994

    [16]

    LI M,MOURIKIS A I. High-precision,consistent EKF-based visualinertial odometry[J]. The International Journal of Robotics Research,2013,32(6):690−711. doi: 10.1177/0278364913481251

    [17] 余 铎,王耀南,毛建旭,等. 基于视觉的移动机器人目标跟踪方法[J]. 仪器仪表学报,2019,40(1):227−235.

    YU Duo,WANG Yaonan,MAO Jianxu,et al. Visual based object tracking method for mobile robots[J]. Journal of Instrumentation,2019,40(1):227−235.

    [18] 孟秀云,王语嫣. 一种SINS/GPS紧组合导航系统的改进自适应扩展卡尔曼滤波算法[J]. 北京理工大学学报,2018,38(6):625–630, 636.

    MENG Xiuyun,WANG Yuyan. An Improved Adaptive Extended Kalman Filter Algorithm for SINS/GPS Compact Integrated Navigation System [J]. Journal of Beijing University of Technology,2018,38(6):625–60, 636.

    [19]

    NARASIMHAPPA M,MAHINDRAKAR A D,GUIZILINI V C,et al. MEMS based IMU drift minimization:Sage Husa adaptive robust Kalman filtering[J]. IEEE Sensors Journal,2019,20(1):250−260.

    [20] 王天宇,董文博,王震宇. 基于单目视觉和固定靶标的位姿测量系统[J]. 红外与激光工程,2017,46(4):153−160.

    WANG Tianyu,DONG Wenbo,WANG Zhenyu. A pose measurement system based on monocular vision and fixed targets[J]. Infrared and Laser Engineering,2017,46(4):153−160.

    [21] 王 平,周雪峰,安爱民,等. 一种鲁棒且线性的PnP问题求解方法[J]. 仪器仪表学报,2020,41(9):271−280.

    WANG Ping,ZHOU Xuefeng,AN Aimin,et al. A robust and linear method for solving PnP problems[J]. Journal of Instrumentation,2020,41(9):271−280.

    [22]

    ZHENG Y,KUANG Y,SUGIMOTO S,et al. Revisiting the pnp problem:A fast,general and optimal solution[C]//Proceedings of the IEEE International Conference on Computer Vision,2013:2344–2351.

    [23] 周道德,高豆豆,董登峰,等. 基于深度学习和PnP模型的激光跟踪仪自动姿态测量[J]. 光学精密程,2022,30(9):1047−1057. doi: 10.37188/OPE.20223009.1047

    ZHOU Daode,GAO Doudou,DONG Dengfeng,et al. Laser tracker automatic attitude measurement based on deep learning and PnP model[J]. Optical Precision Engineering,2022,30(9):1047−1057. doi: 10.37188/OPE.20223009.1047

    [24] 王中宇,李亚茹,郝仁杰,等. 基于点特征的单目视觉位姿测量算法[J]. 红外与激光工程,2019,48(5):169−176.

    WANG Zhongyu,LI Yaru,HAO Renjie,et al. A monocular vision pose measure mentalgorithm based on point features[J]. Infrared and Laser Engineering,2019,48(5):169−176.

    [25]

    LEPETIT V,MORENO–NOGUER F,FUA P. EPnP:an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision,2008,81(2):155−166.

图(13)  /  表(6)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  30
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 网络出版日期:  2024-04-27
  • 刊出日期:  2024-05-24

目录

    /

    返回文章
    返回