高级检索

煤与天然气协同开采理论与技术构想

杨胜利, 张燊, 王旭东, 张凯, 辛德林, 翟瑞昊

杨胜利,张 燊,王旭东,等. 煤与天然气协同开采理论与技术构想[J]. 煤炭科学技术,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720
引用本文:

杨胜利,张 燊,王旭东,等. 煤与天然气协同开采理论与技术构想[J]. 煤炭科学技术,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720

YANG Shengli,ZHANG Shen,WANG Xudong,et al. Theoretical and technological concepts of synergistic coal and natural gas extraction[J]. Coal Science and Technology,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720
Citation:

YANG Shengli,ZHANG Shen,WANG Xudong,et al. Theoretical and technological concepts of synergistic coal and natural gas extraction[J]. Coal Science and Technology,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720

煤与天然气协同开采理论与技术构想

基金项目: 

国家自然科学基金资助项目(51934008,51904304);中央高校基本科研业务费资助项目(2023YQTD02)

详细信息
    作者简介:

    杨胜利: (1983—),男,内蒙古宁城人,教授,博士生导师。E-mail:yslcumtb@163.com

    通讯作者:

    张燊: (1998—)男,河北石家庄人,博士研究生。E-mail:zshencumtb@163.com

  • 中图分类号: TD821; TE375

Theoretical and technological concepts of synergistic coal and natural gas extraction

Funds: 

National Natural Science Foundation of China (51934008, 51904304); Fundamental Research Funds for the Central Universities (2023YQTD02)

  • 摘要:

    我国存在大量的煤炭与天然气重叠赋存资源,出于对资源开采效率的要求,大量的煤与天然气重叠资源需要在同一时空内同步开采,传统的煤与天然气开采理论与技术难以满足协同开采出现的技术难题,煤与天然气协同开采的进程受到了严重制约。基于此,结合国内煤与天然气重叠赋存情况对煤与天然气协同开采进行了科学定义,总结了已有可借鉴的煤与天然气开采技术和相关理论。建立了天然气井近场岩体力学理论、天然气近场围岩耦合损伤理论、“围岩–水泥环–套管”耦合损伤理论、煤与天然气协同开采垂直场围岩耦合损伤理论,揭示了煤与天然气协同开采围岩的耦合损伤机理,为煤与天然气技术体系的构建提供了理论基础。提出了“煤与天然气协同开采技术”“煤炭开采通过废弃井技术”和“天然气近场小煤柱留设技术”3项技术以及“协同开采分区规划系统”“透明地质与生产信息动态监测系统”和“煤与天然气协同区安全监测与评价系统”三大系统,为煤与天然气协同开采提供技术支持,提高煤炭与天然气资源的开采效率。在此基础上,构建了煤与天然气协同开采的理论与技术体系,明确了煤与天然气协同开采未来的研究重点,提出了我国煤与天然气资源安全、绿色、高效协同开采的技术路径与研究方向。

    Abstract:

    There are a large number of overlapping coal and natural gas resources in China, and due to the requirement of resource extraction efficiency, a large number of overlapping coal and natural gas resources need to be extracted synchronously in the same time and space, and the traditional coal and natural gas extraction theories and technologies are difficult to meet the technical problems arising from coordinated extraction, and the process of coordinated extraction of coal and natural gas has been seriously constrained. Based on this, a scientific definition of coal and natural gas synergistic mining is made based on the overlapping coal and natural gas resources in China, and the existing coal and natural gas mining technologies and related theories are summarised. We have established the near-field rock mechanics theory of natural gas wells, the coupled damage theory of natural gas near-field surrounding rock, the coupled damage theory of “surrounding rock-cement ring-casing”, and the coupled damage theory of vertical surrounding rock of coal and natural gas synergistic mining, which reveal the coupled damage mechanism of surrounding rock of coal and natural gas synergistic mining, and provide a theoretical basis for the construction of the technology system of coal and natural gas. It provides a theoretical basis for the construction of coal and natural gas technology system. The three technologies of “Coal and Natural Gas Cooperative Mining Technology”, “Coal Mining through Abandoned Wells Technology” and “Natural Gas Near-Field Small Coal Pillar Retention Technology” are proposed, as well as the “Coal and Natural Gas Cooperative Mining Zoning Planning Technology”. Three major systems, namely, “Coal and Natural Gas Cooperative Mining Zoning Planning System”, “Transparent Geological and Production Information Dynamic Monitoring System” and “Coal and Natural Gas Cooperative Zone Safety Monitoring and Evaluation System”, provide technical support for coal and natural gas cooperative mining, and improve the safety of coal and natural gas production. This system provides technical support for the synergistic mining of coal and natural gas and improves the mining efficiency of coal and natural gas resources. On this basis, the theoretical and technological system of coal and natural gas synergistic mining is constructed, the future research focus of coal and natural gas synergistic mining is clarified, and the technological path and research direction for the safe, green and high-efficiency synergistic mining of coal and natural gas resources in China are proposed.

  • “双碳”目标下[1],煤炭依旧为我国主体能源,为响应国家生态文明建设和实现高质量发展,加快推进绿色智能煤矿建设尤为重要[2-3]。煤炭开采环境复杂、条件恶劣,大量挖掘运输设备相互交叉运行在矿场中,操作人员工作强度大、危险系数高,安全问题难以保障[4]。因此,实现开采机械自动化、无人驾驶矿车智能化在煤矿开采中的应用是建设智能矿山的首要举措[5-6]。同时定位与地图构建是实现采矿设备自动化和采矿环境数字化的一种关键技术,该技术能够让机器人在未知的环境中,完成定位、建图和路径规划[7]

    早期的SLAM使用单一的激光雷达进行定位,在非结构化或复杂恶劣的环境下运行时会造成点云地图稀疏的问题。如REN[8]等在连续帧之间、连续关键帧之间和回环检测帧之间使用GICP[9]配准方法并使用了随机抽样一致性(Random Sample Consensus,RANSAC)对煤矿巷道点云进行了分割,并将分割得到的巷道平面作为了观测约束,实现了在结构化的煤矿巷道环境低漂移定位与建图。惯性测量单元能够不受环境影响,实现高频高精度位姿估计,但其在长时间工作状态下会导致自身误差累积无法精确估计,因此将LiDAR和IMU进行融合能够实现在复杂恶劣环境下长时间高精度定位[10]。目前,国内外学者在LiDAR/IMU融合方面已经进行了大量研究,主要分为松耦合和紧耦合2大类[11]。对LiDAR和IMU的测量数据分别处理后进行加权融合确定运动状态的方法被称为松耦合,如ZHANG等[12]提出了激光里程计与建图(LiDAR Odometry and Mapping,LOAM),该算法使用IMU计算的姿态作为LiDAR扫描配准的初始值,而未将其作为全局优化的约束条件。后续对松耦合系统的研究大多延续了LOAM算法框架,如SHAN 等[13]在LOAM算法的基础上增加了地面优化,对具有相同类别的特征点进行匹配,提高了融合计算效率,使得特征匹配更稳定。XUE等[14]在LeGO-LOAM基础上通过整合扫描上下文回环算法降低了点云维数,提高了在煤矿井下模拟场景下的实时性和鲁棒性。

    松耦合算法仅停留在数据结果层面分析,无法解决退化场景问题,为此,紧耦合算法使用图优化或者滤波的方式将LiDAR与IMU观测数据融合,充分考虑了两者间的内在约束,系统的鲁棒性和准确性得到提升。YE等提出的LIO-Mapping[15]使用VINS-Mono[16]中的优化过程来最小化IMU残差和LiDAR测量误差,并以一种旋转约束的方法来细化最终的地图,但由于该约束的计算复杂性,系统难以实时运行。SHAN等[17]提出了基于图优化的LIO-SAM使用划窗的方式来完成帧到局部子图的扫描配准,关键帧的选择以及对旧帧的边缘化有效降低了计算复杂性,提高了系统运行速度。QIN等基于滤波的LINS[18]提出了一种以机器人为中心,以误差状态进行迭代卡尔曼滤波的融合算法。YANG等[19]利用扰动模型对煤矿长巷道退化环境进行了检测和补偿,IMU预积分用于补偿旋转状态退化,LiDAR与IMU融合产生的新姿态用于补偿平移状态退化,提高了煤矿巷道退化场景的鲁棒性。XU等在FAST-LIO[20]中提出了一个新的计算卡尔曼增益公式,显著提高了计算效率。在此基础之上的FAST-LIO2[21]提出了一种新的数据结构ikd-tree[22],能够高效动态地对数据结构进行划分,实现增量更新地图,极大地提高了地图管理效率。

    尽管当前SLAM解决方案众多,但是在露天煤矿环境下使用时的表现却不尽如人意。该环境存在大量斜坡、碎石以及开采后产生的不规则单侧石壁,算法会随运行距离增长产生累计漂移问题,而且大多数SLAM算法需要提取边缘和平面等几何特征进行配准,均采用LOAM框架对海量点云进行多次降采样,导致配准结果不准确,影响定位精度以及建图效果。另外,在这样的环境下会出现分段式的相似环境,当无法检测到新的特征时LiDAR会出现退化现象,一旦配准失败且经过IMU积分发散,SLAM的定位性能将迅速下降,导致建图失败。综上所述,SLAM如何在露天煤矿环境下保持系统的鲁棒性和准确性仍是一大难题。为此,提出了一种基于滤波与图优化相结合的紧耦合SLAM算法,前端使用迭代扩展卡尔曼滤波(Iterater Extended Kalman Filter,IEKF)来实现激光雷达与IMU数据的融合,后端分别设计了雷达相对位姿因子和回环检测因子来完成全局优化,增强了在露天煤矿环境下对颠簸不平路况的鲁棒性,实现了复杂环境下精确的定位建图,为煤矿设备智能化提供了一种关键技术支撑。

    所提出的算法主要由前端迭代扩展卡尔曼滤波和后端因子图优化两部分组成。该算法使用LiDAR和IMU两种传感器作为数据输入信息源。前端使用紧耦合的迭代扩展卡尔曼滤波器将LiDAR特征点与IMU数据相融合,使用后向传播来补偿LiDAR运动失真,经过运动补偿后与该时刻的特征点来构造残差,完成状态更新。后端分别设计了雷达相对位姿因子和回环检测因子,相对位姿因子作用于全局提供新的关位姿与局部子图内关键帧位姿之间的约束,并对当前帧与局部子图进行匹配;回环检测因子同样作用于全局,检测是否与历史位姿重合并对相邻关键帧进行调整来,完成全局优化。最后输出优化后的机器人轨迹,位姿以及全局点云地图,系统结构如图1所示。

    图  1  系统结构
    Figure  1.  System framework

    使用了文献[23]中定义封装了两个算子⊞和⊟,⊞:$\mathcal{S} \times {\mathbb{R}^n} \to \mathcal{S}$及其逆⊟:$\mathcal{S} \times \mathcal{S} \to {\mathbb{R}^n}$,其中$\mathcal{S}$为维数为n的流形($\mathcal{S} = SO(3)$)。IMU坐标系记为${I}$,一般假设IMU与LiDAR以外参$^I{{\boldsymbol{T}}_L} = {(^I}{{\boldsymbol{R}}_L}{,^I}{{\boldsymbol{p}}_L})$刚性连接在一起,则IMU运动学模型如下:

    $$ \begin{array}{l}{}^{G}{{\boldsymbol{p}}}_{I}=^{G}{{\boldsymbol{v}}}_{I}{,}^{G}{\dot{{\boldsymbol{v}}}}_{I}=^{G}{{\boldsymbol{R}}}_{I}\left({{\boldsymbol{a}}}_{m}-{{\boldsymbol{b}}}_{a}-{{\boldsymbol{n}}}_{a}\right)+^{G}{\boldsymbol{g}}{\text{,}}^{G}\dot{{\boldsymbol{g}}}=0\\ {}^{G}{\dot{{\boldsymbol{R}}}}_{I}=^{G}{{\boldsymbol{R}}}_{I}{\lfloor {{\boldsymbol{\omega}} }_{m}-{{\boldsymbol{b}}}_{\omega }-{{\boldsymbol{n}}}_{\omega }\rfloor }_{\wedge }\text{,}{\dot{{\boldsymbol{b}}}}_{a}={{\boldsymbol{n}}}_{ba},{\dot{{\boldsymbol{b}}}}_{\omega }={n}_{{\boldsymbol{b}}\omega }\end{array} $$ (1)

    其中,$ ^G{{\boldsymbol{p}}_I} $和$ ^G{{\boldsymbol{R}}_I} $分别为IMU在机器人坐标系(记为$ G $)中的位置和姿态;$ ^G{\boldsymbol{g}} $为未知重力向量;$ {{\boldsymbol{a}}_m} $和$ {{\boldsymbol{\omega }}_m} $为IMU测得的加速度与角速度;$ {{\boldsymbol{n}}_{\boldsymbol{a}}} $和$ {{\boldsymbol{n}}_{\boldsymbol{\omega }}} $为IMU测量值的白噪声;$ {{\boldsymbol{b}}_{\boldsymbol{a}}} $和$ {{\boldsymbol{b}}_{\boldsymbol{\omega }}} $建模为高斯噪声$ {{\boldsymbol{n}}_{{\boldsymbol{ba}}}} $和$ {{\boldsymbol{n}}_{{\boldsymbol{b\omega }}}} $的一阶马尔科夫过程,符号${\left\lfloor \alpha \right\rfloor _ \wedge }$为向量${\boldsymbol{\alpha }}\in {\mathbb{R}^3}$的斜对称矩阵。离散化上述模型可以得到:

    $$ {{\boldsymbol{x}}_{i + 1}} = {{\boldsymbol{x}}_i} \boxplus \left[ {\Delta t{\boldsymbol{f}}({{\boldsymbol{x}}_i},{{\boldsymbol{u}}_i},{{\boldsymbol{w}}_i})} \right] $$ (2)

    其中,$\Delta t$为IMU采样时间间隔;${\boldsymbol{f}}$为函数;${\boldsymbol{x}}$为状态;${\boldsymbol{u}}$为输入;${\boldsymbol{w}}$为噪声;定义如下:

    $$ \boldsymbol{f}\left(\boldsymbol{x}_i, \boldsymbol{u}_i, \boldsymbol{w}_i\right)=\left[\begin{array}{c} \boldsymbol{\omega}_{m_i}-\boldsymbol{b}_{\boldsymbol{\omega}_i}-\boldsymbol{n}_{\boldsymbol{\omega}_i} \\ { }^G \boldsymbol{v}_{I_i} \\ \boldsymbol{R}_{I_i}\left(\boldsymbol{a}_{m_i}-\boldsymbol{b}_{\boldsymbol{a}_i}-\boldsymbol{n}_{\boldsymbol{a}_i}\right)+{ }^G \boldsymbol{g}_i \\ \boldsymbol{n}_{\boldsymbol{b \omega}_i} \\ \boldsymbol{n}_{\boldsymbol{b a}_i} \\ \boldsymbol{0}_{3 \times 1} \end{array}\right] $$ (3)
    $$ \begin{aligned} & \boldsymbol{x} \doteq\left[\begin{array}{llllll} { }^G \boldsymbol{R}_{\mathrm{I}}^{\mathrm{T}} & { }^G \boldsymbol{p}_{\mathrm{I}}^{\mathrm{T}} & { }^G \boldsymbol{v}_{\mathrm{I}}^{\mathrm{T}} & \boldsymbol{b}_{\boldsymbol{\omega}}^{\mathrm{T}} & \boldsymbol{b}_{\boldsymbol{a}}^{\mathrm{T}} & { }^G \boldsymbol{g}^{\mathrm{T}} \end{array}\right]^{\mathrm{T}} \in \mathcal{S} \\ & \boldsymbol{u} \doteq\left[\begin{array}{llll} \boldsymbol{\omega}_{{m}}^{\mathrm{T}} & \boldsymbol{a}_{{m}}^{\mathrm{T}} \end{array}\right]^{\mathrm{T}} \\ & \boldsymbol{w} \doteq\left[\begin{array}{llll} \boldsymbol{n}_{\boldsymbol{\omega}}^{\mathrm{T}} & \boldsymbol{n}_{\boldsymbol{a}}^{\mathrm{T}} & \boldsymbol{n}_{\boldsymbol{b \omega}}^{\mathrm{T}} & \boldsymbol{n}_{{ba}}^{\mathrm{T}} \end{array}\right]^{\mathrm{T}} \end{aligned} $$ (4)

    使用IEKF来估计式(2)中的状态。假设LiDAR在$t_{k{-1}}$时刻的扫描最优状态估计值是${{\boldsymbol{\bar x}}_{k - 1}}$,则系统的随机误差状态向量为

    $$ {{\boldsymbol{\tilde x}}_{k - 1}} \doteq {{\boldsymbol{x}}_{k - 1}} \boxminus {{\boldsymbol{\bar x}}_{k - 1}} = {\left[ {\begin{array}{*{20}{l}} {\delta {{\boldsymbol{\theta }}^{\mathrm{T}}}}&{^G{\boldsymbol{\tilde p}}_{\mathrm{I}}^{\mathrm{T}}}&{{}^G{\boldsymbol{\tilde v}}_{\mathrm{I}}^{\mathrm{T}}}&{{\boldsymbol{\tilde b}}_{\boldsymbol{\omega }}^{\mathrm{T}}}&{{\boldsymbol{\tilde b}}_{\boldsymbol{a}}^{\mathrm{T}}}&{^G{{{\boldsymbol{\tilde g}}}^{\mathrm{T}}}} \end{array}} \right]^{\mathrm{T}}} $$ (5)

    其中,$ \delta {\boldsymbol{\theta }} = {\text{log}}{(^G}\overline {\boldsymbol{R}} _I^{TG}{{\boldsymbol{R}}_I}) $为姿态误差,其他项为标准加性误差[24],姿态误差$ \delta {\boldsymbol{\theta }} $的定义直观地描述了真实姿态与估计姿态之间的偏差,使得姿态不确定性可以简洁的使用3$ \times $3的协方差矩阵$\mathbb{E}[ \delta \theta \delta {\theta ^{\mathrm{T}}}]$表示。

    IMU测量时,按照式(2)将过程噪声设置为零进行传播得到下式:

    $$ {\widehat{{\boldsymbol{x}}}}_{i+1}={\widehat{{\boldsymbol{x}}}}_{i}\boxplus\left(\Delta t{\boldsymbol{f}}\left({\widehat{{\boldsymbol{x}}}}_{i},{{\boldsymbol{u}}}_{i},0\right)\right)\text{,}{\widehat{{\boldsymbol{x}}}}_{0}={\overline{{\boldsymbol{x}}}}_{k-1} $$ (6)

    传播协方差以迭代误差动态模型来处理,定义如下[19]

    $$ \begin{split} {{{\boldsymbol{\tilde x}}}_{i + 1}} & ={{\boldsymbol{x}}_{i + 1}} \boxminus {{{\boldsymbol{\hat x}}}_{i + 1}} \\ & {\text{ }} = \left( {{{\boldsymbol{x}}_i} \boxplus \Delta t{\boldsymbol{f}}\left( {{{\boldsymbol{x}}_i},{{\boldsymbol{u}}_i},{{\boldsymbol{w}}_i}} \right)} \right) \boxminus \left( {{{{\boldsymbol{\hat x}}}_i} \boxplus \Delta t{\boldsymbol{f}}\left( {{{{\boldsymbol{\hat x}}}_i},{{\boldsymbol{u}}_i},{\boldsymbol{0}}} \right)} \right) \\ & {\text{ }} \simeq {{\boldsymbol{F}}_{{\boldsymbol{\tilde x}}}}{{{\boldsymbol{\tilde x}}}_i} + {{\boldsymbol{F}}_{\boldsymbol{w}}}{{\boldsymbol{w}}_i} \\ \end{split} $$ (7)

    其中,$ {{\boldsymbol{F}}_{{\boldsymbol{\tilde x}}}} $和$ {{\boldsymbol{F}}_{\boldsymbol{w}}} $分别为$ {{\boldsymbol{\tilde x}}_i} $和$ {{\boldsymbol{w}}_i} $的雅克比矩阵,定义如下:

    $${ {{\boldsymbol{F}}_{\widetilde {\boldsymbol{x}}}} = \left[ {\begin{array}{*{20}{c}} {{Exp} \left( { - {{{{\hat {\boldsymbol{\omega}} }}}_i}\Delta t} \right)} & {\boldsymbol{0}} & {\boldsymbol{0}} & { - {\boldsymbol{A}}{{\left( {{{{{\hat {\boldsymbol{\omega}} }}}_i}\Delta t} \right)}^{\rm{T}}}\Delta t} & 0 & 0 \\ 0 & {{\text{ }}{\boldsymbol{I}}} & {{\boldsymbol{I}}{\text{ }}\Delta t} & 0 & 0 & 0 \\ {{ - ^G}{{{{\hat {\boldsymbol{R}}}}}_{{I_i}}}{{\left\lfloor {{{{{\hat {\boldsymbol{a}}}}}_i}} \right\rfloor }_ \wedge }\Delta t} & 0 & {\boldsymbol{I}} & 0 & {{ - ^G}{{{{\hat {\boldsymbol{R}}}}}_{{I_i}}}\Delta t} & {{\boldsymbol{I}}\Delta t} \\ 0 & 0 & 0 & {\boldsymbol{I}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {\boldsymbol{I}} & 0 \\ 0 & 0 & 0 & 0 & 0 & {\boldsymbol{I}} \end{array}} \right] }$$ (8)
    $$ {{\boldsymbol{F}}_{\boldsymbol{w}}} = \left[ {\begin{array}{*{20}{c}} { - {\boldsymbol{A}}{{\left( {{{{{\hat {\boldsymbol{\omega}} }}}_i}\Delta t} \right)}^{\rm{T}}}\Delta t}&0&0&0 \\ 0&0&0&0 \\ 0&{{ - ^G}{{{{\hat {\boldsymbol{R}}}}}_{{I_i}}}\Delta t}&0&0 \\ 0&0&{{\boldsymbol{I}}\Delta t}&0 \\ 0&0&0&{{\boldsymbol{I}}\Delta t} \\ 0&0&0&0 \end{array}} \right] $$ (9)

    其中,${\hat \omega _i} = {\omega _{{m_i}}} - {{\boldsymbol{\hat b}}_{{{\boldsymbol{\omega }}_i}}}$,${{\boldsymbol{\hat a}}_i} = {{\boldsymbol{a}}_{{m_i}}} - {{\boldsymbol{\hat b}}_{{{\boldsymbol{a}}_i}}}$

    传播一直进行到${{{t}}_{{k}}}$这一帧结束,传播状态以及协方差分别记为$ {{\boldsymbol{\hat x}}_k} $和${{\boldsymbol{\hat P}}_k}$,将白噪声$ {\boldsymbol{w}} $的协方差定义为$ {\boldsymbol{Q}} $,则传播协方差${{\boldsymbol{\hat P}}_i}$可以通过下式计算得出:

    $$ {\widehat{{\boldsymbol{P}}}}_{i+1}={{\boldsymbol{F}}}_{\tilde{x}}{\widehat{{\boldsymbol{P}}}}_{i}{{\boldsymbol{F}}}_{\tilde{x}}^{{\mathrm{T}}}+{{\boldsymbol{F}}}_{w}{\boldsymbol{Q}}{{\boldsymbol{F}}}_{w}^{{\mathrm{T}}}\text{,}{\widehat{{\boldsymbol{P}}}}_{0}={\overline{{\boldsymbol{P}}}}_{k-1} $$ (10)

    当点云累积时间间隔达到${t_k}$时,将新产生的特征点集与式(9)中的传播状态和协方差进行融合来产生最优的状态。对于采集一帧点云时间内产生的时间偏差所造成的运动畸变,可以用高于IMU测量值的后向传播进行补偿。后向传播可以在采样时间$ {\rho _j} $以及扫描结束时间${t_k}$之间,产生一个相对位姿$ ^{{I_k}}{\mathop {\boldsymbol{T}}\limits^ \vee _{{I_j}}} = {(^{{I_k}}}{\mathop {\boldsymbol{R}}\limits^ \vee _{{I_j}}}{,^{{I_k}}}{\mathop {\boldsymbol{p}}\limits^ \vee _{{I_j}}}) $。该相对位姿可以将局部测量${}^{{L_j}}{{\boldsymbol{p}}_{{f_j}}}$投影到扫描结束时的测量位置:

    $$ { }^{L_k} \boldsymbol{p}_{f_j}={ }^I \boldsymbol{T}_L^{-1 I_k} \stackrel{\rightharpoonup}{\boldsymbol{T}}_{I_j}{ }^I \boldsymbol{T}_L^{L_j} \boldsymbol{p}_{f_j} $$ (11)

    其中,$ {}^I{\boldsymbol{T}}_L^{} $为LiDAR和IMU之间外参,可通过标定获得,特征点集$ ^{{L_k}}{{\boldsymbol{p}}_{{f_j}}} $可以用来构造残差,将残差定义为特征点全局点云坐标${}^G{\boldsymbol{\hat p}}_{{f_j}}^\kappa $与地图中最近的平面点或者边缘点的距离:

    $$ {\boldsymbol{z}}_j^\kappa = {{\boldsymbol{G}}_j}({}^{{G}}\hat p_{{f_j}}^\kappa - {}^G{{\boldsymbol{q}}_j}) $$ (12)

    $ \boldsymbol{x}_{k} $先验分布由前向传播得到:

    $$ {{\boldsymbol{x}}_k} \boxminus {{\boldsymbol{\hat x}}_k} = ({\boldsymbol{\hat x}}_k^\kappa \boxplus {\boldsymbol{x}}_k^\kappa ) \boxminus {{\boldsymbol{x}}_k} = {\boldsymbol{\hat x}}_k^\kappa \boxminus {{\boldsymbol{x}}_k} + {{\boldsymbol{J}}^\kappa }{\boldsymbol{\tilde x}}_k^\kappa $$ (13)
    $$ {\boldsymbol{\hat x}}_k^{\kappa + 1} = {\boldsymbol{\hat x}}_k^\kappa \boxplus \left[ { - {\boldsymbol{Kz}}_k^\kappa - ({\boldsymbol{I}} - {\boldsymbol{KH}}){{({{\boldsymbol{J}}^\kappa })}^{ - 1}}({\boldsymbol{\hat x}}_k^\kappa \boxminus {{{\boldsymbol{\hat x}}}_k})} \right] $$ (14)

    利用式(13)更新后的估计值${\boldsymbol{\hat x}}_k^{\kappa + 1}$来计算残差,并重复该过程,直到$ \Vert {\widehat{{\boldsymbol{x}}}}_{k}^{\kappa +1}\boxminus {\widehat{{\boldsymbol{x}}}}_{k}^{\kappa }\Vert < \varepsilon $,收敛后最优估计状态和协方差为:

    $$ {{\boldsymbol{\bar x}}_k} = {\boldsymbol{\hat x}}_k^{\kappa + 1},{\overline {\boldsymbol{P}} _k} = ({\boldsymbol{I}} - {\boldsymbol{KH}}){\boldsymbol{P}} $$ (15)
    $$ {\boldsymbol{K}} = {\left( {{{\boldsymbol{H}}^{\rm{T}}}{{\boldsymbol{R}}^{ - 1}}{\boldsymbol{H}} + {{\boldsymbol{P}}^{ - 1}}} \right)^{ - 1}}{{\boldsymbol{H}}^{\rm{T}}}{{\boldsymbol{R}}^{ - 1}} $$ (16)

    其中,${\boldsymbol{K}}$为卡尔曼增益,随着状态更新,每个特征点($ { }^{5} \boldsymbol{P}_{f j} $)将会投影到全局地图中,实现地图更新。

    理论上前端的状态更新后已经可以获得完整的激光雷达惯性里程计,但在实际试验过程中,上述得到的定位与建图结果随着系统运行会产生偏移,并且这种偏移是不可逆的。这个问题在露天煤矿环境下显得尤为突出,图优化的方式可以非常简洁方便的描述各个误差项之间的关联,因此本文后端使用因子图来进行全局位姿图优化,通过对残差模型进行分析,最终目的就是最小化一个残差项。构建了雷达相对位姿和回环检测两个因子来实现全局位姿优化。

    1)雷达相对位姿因子。在前端激光雷达惯性里程计中采用了帧到子图的扫描配准方式,并且通过滑动窗口的方式来创建固定关键帧数量的子图。机械式雷达的运行频率一般为10 Hz,相邻帧之间变化量极小但却需要消耗海量的计算资源,将每一帧都添加到因子图中进行优化显然是低效的,因此本文采用了选取关键帧的策略。关键帧的选取主要遵循两个阈值指标进行确立:①最小平移阈值d当系统接收到的当前帧与上一帧的最小平移距离超过d时选取当前帧为关键帧,这样可以避免设备移动缓慢甚至暂停时产生大量冗余激光帧。②最小旋转角$\alpha $,当接受到的当前帧与上一帧的姿态旋转角度变化值大于$\alpha $时选取该帧为关键帧,由于机械雷达扫描覆盖范围较大,该阈值的设定可避免设备在颠簸路面的微量转动提取到太多的激光点云数据。满足上述任一指标即可确立当前帧为关键帧,利用关键帧来维护一个固定滑窗,即局部子图。接着对新到来的关键帧进行特征提取,利用该帧以及局部子图来构建以下代价函数求解位姿变换关系$ \overline{\boldsymbol{T}}_{k+1} $:

    $$ f{\text{(}}{{\boldsymbol{\bar T}}_{k + 1}}{\text{)}} = {\boldsymbol{d}},{\boldsymbol{d}} = \left[ {\begin{array}{*{20}{c}} {{d_{\rm{e}}}} \\ {{d_{\rm{p}}}} \end{array}} \right] $$ (17)

    ${d_{\rm{e}}}$和${d_{\rm{p}}}$分别为新一帧提取到的边缘特征和平面特征与其在局部子图中相邻帧提取到对应特征之间的距离,以此构建相邻位姿间的优化目标:

    $$ {\phi _L}({\boldsymbol{x}}) = \frac{1}{2}\left\| {{r_L}({{\boldsymbol{x}}_i},{{\boldsymbol{x}}_j})} \right\|_\Sigma ^2 $$ (18)

    其中,${\boldsymbol{x}}$为待优化量;${{\boldsymbol{x}}_i}$和${{\boldsymbol{x}}_j}$分别为第$ \hat{t} $帧和相邻第$ j $帧对应运因子动状态。

    2)回环检测。SLAM系统运行时,各个传感器误差会不断积累,这一误差难以消除并且会逐渐增大,导致定位结果漂移。回环检测因子的使用对于纠正漂移误差以及构建全局一致的地图具有重要作用[25]。此外,在露天煤矿环境下往来矿用卡车基本会走固定路线进行运输,重复运输的路线使得检测到回环的几率大幅增加,因此本文将回环检测因子加入因子图,与雷达相对位姿因子共同进行对全局位姿的优化。

    当新的关键帧确立后,首先设定最小距离阈值,对因子图内的全部历史关键帧进行搜索,找到与新关键帧在欧氏距离上满足最小阈值的关键帧,设其为待匹配帧。使用GICP对新帧与对应待匹配帧进行配准,通过式(19)计算出最近点均方根的最小距离获得置信分数,同时与设定的最小距离阈值进行比较,确认该帧是否为回环关键帧,确定后可利用式(20)计算出该位姿的相对变换并添加到因子图中。该步骤需要严格设置最小距离阈值,一旦回环检测匹配到错误的关键帧就会导致地图崩溃。

    $$ {\rm{score}} = \frac{1}{N}\sum\limits_{k = 1}^N {\sqrt {\Delta {x^2} + \Delta {y^2} + \Delta {{\textit{z}}^2}} } $$ (19)
    $$ \Delta {{\boldsymbol{T}}_{k,k + 1}} = {\boldsymbol{T}}_k^{ - 1}{{\boldsymbol{T}}_{k + 1}} $$ (20)

    为验证文中算法的有效性以及鲁棒性,我们分别在公共开源数据集以及露天煤矿实测数据集上进行了试验。开源数据集选择了M2DGR[26]:一个带有全套传感器的地面机器人对上海交通大学校园内不同场景采集的大规模数据集,所有传感器都经过良好的外部校准和时间同步。露天煤矿实测数据集使用的数据采集设备如图2所示,该设备主要搭载传感器为速腾聚创RS-LiDAR-16型激光雷达,10 Hz工作模式下水平分辨率为0.2°,垂直分辨率为2°;超核电子CH110型9轴IMU,设置采样频率为400 Hz;北斗星通C200卫星接收机;机载计算机为NVIDIA Jetson AGX Xavier,8核ARM处理器,主频2.26 GHz,内存32 G。提出的SLAM算法均使用C++实现,运行于Ubuntu20.04,ROS版本为noetic。

    图  2  数据采集设备
    Figure  2.  Data collection equipment

    使用开源数据集对目前主流激光SLAM算法:A-LOAM、LeGO-LOAM、FAST-LIO2、LIO-SAM与本文所提算法进行了测试,通过计算最终绝对位姿误差(Absolute Position Error,APE)来计算各个算法的定位精度。所有算法均在相同配置环境下使用,运行设备为Intel(R) i9-10850K 3.60 GHz。分别选取了3个不同场景下采集的数据street_08、door_02和gate_02序列进行试验,使用EVO[27]作为最终结果评估工具。其中street08序列为户外环境,采集过程中存在大量连续转弯,图3所示为各个算法在该序列上的定位轨迹对比结果。

    图  3  street_08序列各算法轨迹对比
    Figure  3.  Trajectory comparison of each algorithm for the street_08 sequence

    图3中可以看出A-LOAM、LeGO-LOAM表现较差,运行一段时间后开始出现明显漂移,LIO-SAM同样存在该问题,但绕行一周后成功检测到了回环,纠正了累计漂移,仍取得较好的结果,FAST-LIO2对新的数据结构的应用可以在不提取特征的情况下可以快速直接地将原始点配准到地图上,在短距离结构化的环境下,精度较高。算法所设计的相对位姿因子有效抑制了IMU累计误差,同时后期检测到了回环,表现良好。各算法在所选序列试验结果的APE见表1,其中加粗项表示该项测试中误差项最小的结果,对应箱型图如图4所示。

    表  1  开源数据集APE误差
    Table  1.  Open source dataset APE error
    数据集RMSE/m
    A-LOAMLeGO-LOAMFAST-LIO2LIO-SAMOURS
    door_020.18612.07240.28010.18490.1855
    gate_020.33050.31710.32040.32640.3167
    street_083.33761.13270.19820.17080.1179
    下载: 导出CSV 
    | 显示表格
    图  4  开源数据集APE误差数据集箱型图
    Figure  4.  Open source dataset APE box plot

    为进一步验证算法的有效性以及鲁棒性,对内蒙古哈尔乌素露天煤矿进行了数据采集,实地环境如图5所示。该环境道路崎岖不平,沿途布满山石碎块,呈现分段相似性,且结构复杂无明显的几何特征。在采集的数据集中选取了两个序列进行试验分析,各算法配置均与开源数据集试验配置相同。

    图  5  露天矿山环境
    Figure  5.  Open pit mine environmental

    序列1全长2024 m,为实时观测到矿山数据误差累积情况,对序列1进行了分段切片处理,分别截取为500、10002000 m。图6分别展示了不同算法在两处不同地点的建图效果。

    图  6  序列1建图效果
    Figure  6.  Sequence 1 mapping results

    图6建图效果中能够看出LeGO-LOAM和FAST-LIO2存在明显的漂移现象,虽完成了最终建图,但是误差较大。A-LOAM与LIO-SAM无直观地漂移现象,但累计定位误差较大。本文所提出的算法完整地构建出了高精度点云地图,对碎石岩壁结构建图清晰,扫描到的矿卡轮廓直观无重影,具有较高的一致性。针对露天煤矿环境体现出了较高的鲁棒性。

    序列2全长2 120 m,各算法运行出的定位轨迹如图7所示。A-LOAM和LeGO-LOAM属于单一激光雷达建图算法,缺少IMU的辅助出现了较大的累计误差,尤其是轻量化LiDAR里程计LeGO-LOAM严重依赖地面特征提取,在露天煤矿这样的环境下,大量斜坡的存在导致该算法严重失效,状态估计出现了较大误差。FAST-LIO2默认不使用特征提取的方法,降采样之后直接将原始点云配准到地图上来体现全局一致性,但是在碎石岩壁与颠簸道路环境中,原始点云经过降采样后呈现高度一致性,导致几处相似场景出现了较大的漂移现象。

    图  7  序列2轨迹对比
    Figure  7.  Sequence 2 trajectory comparison result

    为避免这些问题,提出的算法将激光雷达帧间配准结果作为约束因子在后端与回环因子进行联合优化,进一步提升了SLAM系统的鲁棒性,同时提高了定位建图精度。各算法在所选序列试验结果的APE见表2,其中加粗项表示该项测试中误差项最小的结果,其对应箱型图如图8所示。

    表  2  露天煤矿数据集APE误差
    Table  2.  open pit coal mine dataset APE error
    数据集RMSE/m
    A-LOAMLeGO-LOAMFAST-LIO2LIO-SAMOURS
    序列1-500 m1.900112.772312.86212.70050.8394
    序列1-1000 m7.395612.772320.64263.39461.4519
    序列1-2000 m10.130131.382624.55314.19403.1644
    序列2-2120 m6.921151.463010.13407.12045.4720
    下载: 导出CSV 
    | 显示表格
    图  8  露天煤矿数据集APE误差箱线图
    Figure  8.  Open pit coal mine dataset APE box plot

    1)提出了一种针对露天煤矿复杂环境下具有高精度高鲁棒性的LiDAR/IMU紧耦合SLAM算法,前端使用紧耦合的迭代扩展卡尔曼将LiDAR特征点与IMU数据融合,后端使用因子图来接收关键帧位姿状态,将激光雷达帧间配准结果作为约束因子并与回环检测因子共同完成全局优化。

    2)利用该算法在开源数据集M2DGR的3个不同场景和露天煤矿实地环境进行了试验测试,结果表明,算法在开源数据集的城市化环境下精度表现与当前的SOAT激光SLAM算法保持一致,在长达两千多米的露天煤矿实地环境下所提算法较FAST-LIO2、LIO-SAM紧耦合算法在定位精度上分别提高了46.00%和23.15%,提高了复杂环境下的定位精度与鲁棒性。

  • 图  1   近年煤炭与天然气消费总量及占比

    Figure  1.   Total consumption and proportion of coal and natural gas in recent years

    图  2   煤与天然气开采面临的挑战及解决途径

    Figure  2.   Challenges and solution of coal and natural gas extraction

    图  3   煤与天然气协同开采示意

    Figure  3.   Schematic diagram of coal and natural gas co-mining

    图  4   煤与天然气协同开采技术路径

    Figure  4.   Technical path of coal and natural gas co-mining

    图  5   近场岩体力学理论构想

    Figure  5.   Theoretical conception of near-field rock mass mechanics

    图  6   工作面与天然气井距离缩进时应力重叠情况

    Figure  6.   Stress overlap when distance between working face and natural gas well is indented

    图  7   “围岩–水泥环–套管”组合体耦合损伤模型

    Figure  7.   Stress overlap during workover and gas well distance indentation

    图  8   煤、气垂直场时空示意图

    Figure  8.   Spatio-temporal diagram of coal and gas vertical fields

    图  9   天然气井近场煤柱留设技术构想

    Figure  9.   Technical concept of small coal pillar retention in near field of natural gas well

    图  10   天然气井身优化示意

    Figure  10.   Schematic diagram of natural gas wellbore optimization

    图  11   工作面回采过废弃井

    Figure  11.   Working face passes through abandoned well

    图  12   废弃井处理方法示意

    Figure  12.   Schematic diagram of the disposal method of the abandoned well

    图  13   协同开采分区规划示意

    Figure  13.   Schematic of zoning plan for co-mining

    图  14   三场透明可视化构想

    Figure  14.   Three transparent visualization ideas

    图  15   透明地质示意与生产信息监测

    Figure  15.   Transparent geological diagram and production information monitoring map

    图  16   透明地质与生产信息动态监测系统构想

    Figure  16.   Concept of dynamic monitoring system for transparent geological and production information

    图  17   协同区安全监测系统构想

    Figure  17.   Concept of safety monitoring system in the coordination area

    图  18   煤矿工作面与天然气井位置示意

    Figure  18.   Schematic diagram of coal mine working face and gas well location

    图  19   煤炭工作面开采套管应力峰值变化

    Figure  19.   Peak stress variation in casing for coal working face mining

    图  20   天然气设施稳定性控制技术体系

    Figure  20.   Stability control technology system for natural gas facilities

    图  21   煤–气协同开采数据库示意

    Figure  21.   Coal-gas synergistic mining database schematic

  • [1] 吕超贤,孙 文,宋关羽,等. 煤矿能源资源高效利用发展研究[J]. 中国工程科学,2023,25(5):136−145. doi: 10.15302/J-SSCAE-2023.05.012

    LYU Chaoxian,SUN Wen,SONG Guanyu,et al. Efficient utilization of energy resources in coal mines[J]. Strategic Study of CAE,2023,25(5):136−145. doi: 10.15302/J-SSCAE-2023.05.012

    [2] 崔 艳. 我国煤系共伴生矿产资源分布与开发现状[J]. 洁净煤术,2018,24(S1):27−32.

    CUI Yan. Distribution and exploration of associated resources occurred in Chinese coal-bearing series[J]. Clean Coal Technology,2018,24(S1):27−32.

    [3] 黄炳香,赵兴龙,张 权. 煤与煤系伴生资源共采的理论与技术框架[J]. 中国矿业大学学报,2016,45(4):653−662.

    HUANG Bingxiang,ZHAO Xinglong,ZHANG Quan. Framework of the theory and technology for simultaneous mining of coal and its associated resources[J]. Journal of China University of Mining & Technology,2016,45(4):653−662.

    [4] 袁 亮. 煤及共伴生资源精准开采科学问题与对策[J]. 煤炭学报,2019,44(1):1−9.

    YUAN Liang. Scientific problem and countermeasure for precision mining of coal and associated resources[J]. Journal of China Coal Society,2019,44(1):1−9

    [5] 郭旭升,胡东风,黄仁春,等. 四川盆地深层—超深层天然气勘探进展与展望[J]. 天然气工业,2020,40(5):1−14. doi: 10.3787/j.issn.1000-0976.2020.05.001

    GUO Xusheng,HU Dongfeng,HUANG Renchun,et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin:Progress and prospect[J]. Natural Gas Industry,2020,40(5):1−14. doi: 10.3787/j.issn.1000-0976.2020.05.001

    [6] 王家臣,唐岳松,王兆会,等. 千米深井综采工作面覆岩微震显现特征与损伤度计算方法[J]. 中国矿业大学学报,2023,52(3):417−431.

    WANG Jiachen,TANG Yuesong,WANG Zhaohui,et al. Characteristics of microseismic events and damage degree calculation method in kilometer deep fully mechanical longwall panel[J]. Journal of China University of Mining & Technology,2023,52(3):417−431.

    [7] 王兆会,唐岳松,李 辉,等. 千米深井超长工作面支架阻力分布特征及影响因素研究[J]. 采矿与安全工程学报,2023,40(1):1−10.

    WANG Zhaohui,TANG Yuesong,LI Hui,et al. Distribution and influence factors of support resistance in longwall panel with large face length of a kilometer-deep coal mine[J]. Journal of Mining & Safety Engineering,2023,40(1):1−10.

    [8] 杨伟利,王 毅,王传刚,等. 鄂尔多斯盆地多种能源矿产分布特征与协同勘探[J]. 地质学报,2010,84(4):579−586.

    YANG Weili,WANG Yi,WANG Chuangang,et al. Distribution and co-exploration of multiple energy minerals in Ordos Basin[J]. Acta Geologica Sinica,2010,84(4):579−586.

    [9] 郝秀强,常振恒,俞珠峰. 鄂尔多斯盆地煤与天然气的协调开发及综合评价[J]. 煤炭经济研究,2017,37(11):63−67.

    HAO Xiuqiang,CHANG Zhenheng,YU Zhufeng. Coordinated development and comprehensive evaluation on coal and natural gas in Ordos Basin[J]. Coal Economic Research,2017,37(11):63−67.

    [10] 王 文,杨 昆,何 云,等. 煤–气交叉开采区天然气井防碰撞预警技术研究[J]. 矿业科学学报,2022,7(4):490−497.

    WANG Wen,YANG Kun,HE Yun,et al. A study on collision warning of gas wells in coal-gas cross mining area[J]. Journal of Mining Science and Technology,2022,7(4):490−497.

    [11] 刘云鹏. 气煤重叠区交叉开采安全技术研究[J]. 当代石油石化,2019,27(1):27−31. doi: 10.3969/j.issn.1009-6809.2019.01.005

    LIU Yunpeng. Safety technology research of cross mining for gas and coal overlap area[J]. Petroleum & Petrochemical Today,2019,27(1):27−31. doi: 10.3969/j.issn.1009-6809.2019.01.005

    [12] 任建东,赵毅鑫,孙中博,等. 气煤叠置区埋地管道的保护煤柱优化设计及多参量演化规律研究[J]. 岩土力学,2023,44(9):2679−2695.

    REN Jiandong,ZHAO Yixin,SUN Zhongbo,et al. Protective coal pillar optimization and multi-parameter evolution characteristics of buried pipeline in gas-coal superposition area[J]. Rock and Soil Mechanics,2023,44(9):2679−2695.

    [13] 王 文,任建东,王付斌,等. 鄂尔多斯盆地“煤气走廊”开采模式研究[J]. 金属矿山,2019(10):23−31.

    WANG Wen,REN Jiandong,WANG Fubin,et al. Study on the mining mode of “gas corridor” in Erdos Basin[J]. Metal Mine,2019(10):23−31.

    [14] 倪 炜,孙宝东,郝秀强,等. 新街台格庙矿区高质量开发路径及关键问题研究[J]. 煤炭工程,2023,55(5):1−7.

    NI Wei,SUN Baodong,HAO Xiuqiang,et al. High quality development path and key issues of Xinjie Taigemiao Mining Area[J]. Coal Engineering,2023,55(5):1−7.

    [15]

    BP. BP Statistical Review of World Energy 2023[M]. London:BP plc,2023.

    [16] 袁 亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.

    [17] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.

    [18] 康红普,徐 刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7−39.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining And Strata Control Engineering,2019,1(2):7−39.

    [19] 袁 亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.

    YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.

    [20] 王家臣. 基于采动岩层控制的煤炭科学开采[J]. 采矿与岩层控制工程学报,2019,1(2):40−47.

    WANG Jiachen. Sustainable coal mining based on mining ground control[J]. Journal of Mining And Strata Control Engineering,2019,1(2):40−47.

    [21] 杨 莉,姚建华,罗平亚. 钻井液常见污染问题及处理方法探讨[J]. 钻井液与完井液,2012,29(2):47−50,93.

    YANG Li,YAO Jianhua,LUO Pingya. Discussion on common contamination problems and treatment methods for drilling fluid[J]. Drilling Fluid & Completion Fluid,2012,29(2):47−50,93.

    [22] 杨勋尧. 四川天然气深井钻井主要工程地质问题及对策[J]. 钻采工艺,2004(2):9−11,3.

    YANG Xunyao. Engineering geology probloms of deep drilling and its strategy in Sichuan natural gas well[J]. Drilling & Production Technology,2004(2):9−11,3.

    [23] 宋 明,杨凤香,宋胜利,等. 固井水泥环对套管承载能力的影响规律[J]. 石油钻采工艺,2002(4):7−9,82.

    SONG Ming,YANG Fengxiang,SONG Shengli,et al. Influencing tendencies of cement sheath on casing retaining capacity[J]. Oil Drilling & Production Technology,2002(4):7−9,82.

    [24] 冯 琦,仝少凯,徐晓航,等. 高浓度H2S天然气井中射孔段套管的应力腐蚀[J]. 腐蚀与防护,2013,34(5):417−422.

    FENG Qi,TONG Shaokai,XU Xiaohang,et al. Stress corrosion of perforating casing in solution of high H2S gas well[J]. Corrosion & Protection,2013,34(5):417−422.

    [25] 郝一松. 煤–气交叉开采油井保护煤柱采动应力演化及泄漏甲烷运移规律研究[D]. 徐州:中国矿业大学,2023.

    HAO Yisong. Evolution of mining induced stresses within the coal protective pillar and the transport characteristics of leaked methane in co-extraction of coal and deep natural gas[D]. Xuzhou:China University of Mining and Technology,2023.

    [26] 王 文,任建东,李小军,等. 开采沉陷区天然气井避让距离控制预测方法研究[J]. 中国矿业大学学报,2021,50(5):943−954.

    WANG Wen,REN Jiandong,LI Xiaojun,et al. Research on prediction method of natural gas well avoidance distance control in mining sinkhole area[J]. Journal of China University of Mining & Technology,2021,50(5):943−954.

    [27] 王 文,任建东,董 淼,等. 采动影响下天然气管道变形演化模拟试验研究[J]. 采矿与安全工程学报,2020,37(4):777−787.

    WANG Wen,REN Jiandong,DONG Miao,et al. A simulation experimental study on deformation evolution of natural gas pipeline under mining influence[J]. Journal of Mining & Safety Engineering,2020,37(4):777−787.

    [28] 朱庆杰,赵 晨,陈艳华,等. 埋地天然气管道泄漏的影响因素及保护措施[J]. 环境工程学报,2018,12(2):417−420.

    ZHU Qingjie,ZHAO Chen,CHEN Yanhua,et al. Influencing factors and protective measures of buried natural gas pipeline leakage[J]. Chinese Journal of Environmental Engineering,2018,12(2):417−420.

    [29] 石 林,汪海阁,纪国栋. 中石油钻井工程技术现状、挑战及发展趋势[J]. 天然气工业,2013,33(10):1−10.

    SHI Lin,WANG Haige,JI Guodong. Current situation,challenges and developing trend of CNPC’s oil & gas drilling[J]. Natural Gas Industry,2013,33(10):1−10.

    [30] 聂 臻,夏朝辉,吴波鸿,等. 中东地区碳酸盐岩油藏钻井工程技术现状及发展趋势[J]. 石油钻探技术,2024,52(1):8−16.

    NIE Zhen,XIA Zhaohui,WU Bohong,et al. Status and the future perspective of drilling engineering technologies in middle east carbonate reservoirs[J]. Petroleum Drilling Techniques,2024,52(1):8−16.

    [31] 刘硕琼,李德旗,袁进平,等. 页岩气井水泥环完整性研究[J]. 天然气工业,2017,37(7):76−82.

    LIU Shuoqiong,LI Deqi,YUAN Jinping,et al. Cement sheath integrity of shale gas wells:A case study from the Sichuan Basin[J]. Natural Gas Industry,2017,37(7):76−82.

    [32] 宋振骐,文志杰,蒋宇静,等. 采动力学与岩层控制关键理论及工程应用[J]. 煤炭学报,2024,49(1):16−35.

    4-01-02]. SONG Zhenqi,WEN Zhijie,JIANG Yujing,et al. The theory and application of mining mechanics and strata control[J]. Journal of China Coal Society,2024,49(1):16−35.

    [33] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.

    [34] 缪协兴,陈荣华,浦 海,等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报,2005(8):1289−1295.

    MIAO Xiexing,CHEN Ronghua,PU Hai,et al. Analysis of breakage and collapse of thick key strata around coal face[J]. Chinese Journal of Rock Mechanics and Engineering,2005(8):1289−1295.

    [35] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

    XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.

    [36] 李夕兵,周 健,王少锋,等. 深部固体资源开采评述与探索[J]. 中国有色金属学报,2017,27(6):1236−1262.

    LI Xibing,ZHOU Jian,WANG Shaofeng,et al. Review and practice of deep mining for solid mineral resources[J]. The Chinese Journal of Nonferrous Metals,2017,27(6):1236−1262.

    [37] 谢和平,张国庆,罗 通,等. 月球大深度保真取芯探矿机器人系统构想与设计[J]. 工程科学与技术,2020,52(2):1−9.

    XIE Heping,ZHANG Guoqing,LUO Tong,et al. Scheme and design of a lunar large-depth and in-situ condition-holding coring robot system[J]. Advanced Engineering Sciences,2020,52(2):1−9.

    [38] 史配铭,李晓明,倪华峰,等. 苏里格气田水平井井身结构优化及钻井配套技术[J]. 石油钻探技术,2021,49(6):29−36.

    SHI Peiming,LI Xiaoming,NI Huafeng,et al. Casing program optimization and drilling matching technologies for horizontal wells in sulige gas field[J]. Petroleum Drilling Techniques,2021,49(6):29−36.

    [39] 黄 熠,陈浩东,郑浩鹏,等. 套管偏心对压裂井水泥环力学完整性的影响研究[J]. 中国海上油气,2022,34(6):135−141.

    HUANG Yi,CHEN Haodong,ZHENG Haopeng,et al. Influence of casing eccentricity on mechanical integrity of cement sheath in fractured wells[J]. China Offshore Oil and Gas,2022,34(6):135−141.

    [40] 杨 钊,孙 锐,梁 飞,等. 基于裂缝诱导应力场的套管应力影响因素分析[J]. 石油机械,2023,51(4):135−143.

    YANG Zhao,SUN Rui,LIANG Fei,et al. Analysis on influential factors of casing stress based on fracture induced stress field[J]. China Petroleum Machinery,2023,51(4):135−143.

    [41] 闫 炎,管志川,阎卫军,等. 水力压裂过程中水泥环裂缝扩展的数值模拟[J]. 科学技术与工程,2021,21(32):13673−13680. doi: 10.3969/j.issn.1671-1815.2021.32.008

    YAN Yan,GUAN Zhichuan,YAN Weijun,et al. Crack propagation simulation of perforated cement sheath during hydraulic fracturing[J]. Science Technology and Engineering,2021,21(32):13673−13680. doi: 10.3969/j.issn.1671-1815.2021.32.008

    [42] 李 勇,纪宏飞,邢鹏举,等. 气井井筒温度场及温度应力场的理论解[J]. 石油学报,2021,42(1):84−94.

    LI Yong,JI Hongfei,XING Pengju,et al. Theoretical solutions of temperature field and thermal stress field in wellbore of a gas well[J]. Acta Petrolei Sinica,2021,42(1):84−94.

    [43] 杨永明,孙梦珂. 三轴应力下孔隙水泥环的压裂破坏机制[J]. 高压物理学报,2022,36(6):92−102.

    YANG Yongming,SUN Mengke. Fracturing failure mechanism of porous cement sheath under triaxial stress[J]. Chinese Journal of High Pressure Physics,2022,36(6):92−102.

    [44]

    THIERCELIN M J,DARGAUD B,BARET J F,et al. Cement design based on cement mechanical response[J]. SPE Drill & Compl,1998,13(4):266−273.

    [45] 张 智,王嘉伟,吴 优,等. 页岩气水平井固井水泥环状态对套管力学完整性的影响[J]. 石油学报,2022,43(8):1158−1172.

    ZHANG Zhi,WANG Jiawei,WU You,et al. Effect of cement sheath condition on casing mechanical integrity in shale gas horizontal wells[J]. Acta Petrolei Sinica,2022,43(8):1158−1172.

    [46] 初 纬,沈吉云,杨云飞,等. 连续变化内压下套管–水泥环–围岩组合体微环隙计算[J]. 石油勘探与开发,2015,42(3):379−385. doi: 10.1016/S1876-3804(15)30028-8

    CHU Wei,SHEN Jiyun,YANG Yunfei,et al. Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change[J]. Petroleum Exploration and Development,2015,42(3):379−385. doi: 10.1016/S1876-3804(15)30028-8

    [47] 姜福兴,冯 宇,KOUAME K J A,等. 高地应力特厚煤层“蠕变型”冲击机理研究[J]. 岩土工程学报,2015,37(10):1762−1768.

    JIANG Fuxing,FENG Yu,KOUAME K J A,et al. Mechanism of creep-induced rock burst in extra-thick coal seam under high ground stress[J]. Chinese Journal of Geotechnical Engineering,2015,37(10):1762−1768.

    [48] 叶子昂,黄瑞萱,师晓达,等. 大倾角特厚煤层开采地表沉降规律数值模拟研究[J]. 煤炭技术,2023,42(10):40−45.

    YE Ziang,HUANG Ruixuan,SHI Xiaoda,et al. Numerical simulation of surface subsidence patterns in large inclination extra-thick coal seam mining[J]. Coal Technology,2023,42(10):40−45.

    [49] 谢和平,鞠 杨,高明忠,等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报,2018,43(5):1210−1219.

    XIE Heping,JU Yang,GAO Mingzhong,et al. Theories and technologies for in-situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society,2018,43(5):1210−1219.

    [50] 张庆贺,王晓蕊,袁 亮. 煤炭地下气化多场耦合数值模拟程序开发及多场演化规律[J]. 煤炭学报,2023,48(6):2506−2518.

    ZHANG Qinghe,WANG Xiaorui,YUAN Liang. Development of multi-field coupled numerical simulation program for underground coal gasification and multi-field evolution laws[J]. Journal of China Coal Society,2023,48(6):2506−2518.

    [51] 于海洋,许永彬,陈智明,等. 双碳目标下煤炭深部流态化开采及前景[J]. 洁净煤技术,2023,29(1):15−32.

    YU Haiyang,XU Yongbin,CHEN Zhiming,et al. Deep fluidized coal mining and its prospect under the target of carbon peak and carbon neutralization[J]. Clean Coal Technology,2023,29(1):15−32.

    [52] 王家臣,杨胜利,刘淑琴,等. 急倾斜煤层开采技术现状与流态化开采构想[J]. 煤炭科学技术,2022,50(1):48−59.

    WANG Jiachen,YANG Shengli,LIU Shuqin,et al. Technology status and fluidized mining conception for steeply inclined coal seams[J]. Coal Science and Technology,2022,50(1):48−59.

    [53] 周 泽,易同生,秦 勇,等. 煤炭地下气化的敏感性地质因素探讨[J]. 煤田地质与勘探,2024,52(3):24−36.

    ZHOU Ze,YI Tongsheng,QIN Yong,et al. Exploring geological parameters sensitive to underground coal gasification[J]. Coal Geology & Exploration,2024,52(3):24−36.

    [54] 秦 勇,易同生,杨 磊,等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探,2023,51(7):17−25.

    QIN Yong,YI Tongsheng,YANG Le,et al. Underground coal gasification field tests in China:history and prospects[J]. Coal Geology & Exploration,2023,51(7):17−25.

    [55] 刘曰武,方惠军,李龙龙,等. 煤炭地下气化关键力学问题的数值研究进展[J]. 力学学报,2023,55(3):669−685.

    LIU Yuewu,FANG Huijun,LI Longlong,et al. Recent progress on numerical research of key mechanical problems during underground coal gasification[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(3):669−685.

    [56] 谢和平,高 峰,鞠 杨,等. 深地煤炭资源流态化开采理论与技术构想[J]. 煤炭学报,2017,42(3):547−556.

    XIE Heping,GAO Feng,JU Yang,et al. Theoretical and technological conception of fluidization mining for deep coal resources[J]. Journal of China Coal Society,2017,42(3):547−556.

    [57] 卢文斌,杨永杰,郝以瑞. 深部孤岛工作面沿空掘巷小煤柱留设及巷道支护设计[J]. 煤矿安全,2015,46(5):208−211.

    LU Wenbin,YANG Yongjie,HAO Yirui. Small coal pillar leaving and roadway support design for gob-side entry driving at deep isolated island coal face[J]. Safety in Coal Mines,2015,46(5):208−211.

    [58] 刘茂森,付建红,白 璟. 页岩气双二维水平井轨迹优化设计与应用[J]. 特种油气藏,2016,23(2):147−150,158. doi: 10.3969/j.issn.1006-6535.2016.02.036

    LIU Maosen,FU Jianhong,BAI Jing. Optimization of shale gas dual-2D horizontal-well trajectories and its application[J]. Special Oil & Gas Reservoirs,2016,23(2):147−150,158. doi: 10.3969/j.issn.1006-6535.2016.02.036

    [59] 黎金明,陈在君,陈 磊,等. 苏里格气田废弃钻井液固液分离及回用研究[J]. 钻采工艺,2018,41(4):89−91,11.

    LI Jinming,CHEN Zaijun,CHEN Lei,et al. Research on solid-liquid separation and recycling of waste drilling fluid at sulige gasfield[J]. Drilling & Production Technology,2018,41(4):89−91,11.

    [60] 张其朋,问小江,谭东升,等. 岩层倾角对钻井套管剪切变形的影响分析[J]. 煤矿安全,2020,51(5):183−186.

    ZHANG Qipeng,WEN Xiaojiang,TAN Dongsheng,et al. Analysis of influence of strata dip angle on shear deformation of drilling casing[J]. Safety in Coal Mines,2020,51(5):183−186.

    [61] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26.

    WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26.

    [62] 李 梅,毛善君,赵明军. 煤矿智能地质保障系统研究进展与展望[J]. 煤炭科学技术,2023,51(2):334−348.

    LI Mei,MAO Shanjun,ZHAO Mingjun. Research progress and prospects of coal mine intelligent geological guarantee systems[J]. Coal Science and Technology,2023,51(2):334−348.

    [63] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27.

    [64] 袁 亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1−14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1−14.

    [65] 毛明仓,张孝斌,张玉良. 基于透明地质大数据智能精准开采技术研究[J]. 煤炭科学技术,2021,49(1):286−293.

    MAO Mingcang,ZHANG Xiaobin,ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology,2021,49(1):286−293.

    [66] 杨胜利,王家臣,李 明. 煤矿采场围岩智能控制技术路径与设想[J]. 矿业科学学报,2022,7(4):403−416.

    YANG Shengli,WANG Jiachen,LI Ming. Technology path and assumptions of intelligent surrounding rock control at longwall working face[J]. Journal of Mining Science and Technology,2022,7(4):403−416.

    [67] 刘 鹏,李 云,郭 祥,等. 北海油田废弃井处置标准对我国的借鉴意义[J]. 石油工程建设,2020,46(S1):266−272.

    LIU Peng,LI Yun,GUO Xiang,et al. Disposal standards for abandoned wells in north sea oilfields and enlightenment to China[J]. Petroleum Engineering Construction,2020,46(S1):266−272.

  • 期刊类型引用(7)

    1. 张海东, 管国伦, 史士业. 隧道综合量测机器人定位导航方案设计与研究. 铁道建筑技术. 2025(06) 百度学术
    2. 毛清华,柴建权,陈彦璋,薛旭升,王川伟. 激光雷达和IMU融合的煤矿掘进巷道三维重建方法. 煤炭科学技术. 2025(02): 351-362 . 本站查看
    3. 张全平,任助理,郝英豪,邓浩坤,苏士杰,袁瑞甫,方程. 基于移动式三维激光扫描技术的巷道围岩变形监测研究. 煤矿机械. 2025(05): 205-208 . 百度学术
    4. 李慧,李敏超,崔丽珍,马宝良,张清宇,潘冰冰. 露天煤矿三维激光雷达运动畸变算法. 煤炭科学技术. 2025(04): 373-382 . 本站查看
    5. 李倩,陈付龙,郑亮,赵法龙,陈智君. IMU紧耦合的多激光雷达定位与建图方法. 电子测量技术. 2024(09): 26-32 . 百度学术
    6. 崔邵云,鲍久圣,胡德平,袁晓明,张可琨,阴妍,王茂森,朱晨钟. SLAM技术及其在矿山无人驾驶领域的研究现状与发展趋势. 工矿自动化. 2024(10): 38-52 . 百度学术
    7. 胡泽广,金新宇,王婧. 基于可拓学评价模型的露天煤矿矿山地质环境综合评价. 能源与环保. 2024(12): 140-147 . 百度学术

    其他类型引用(2)

图(21)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  20
  • PDF下载量:  87
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-10-31
  • 网络出版日期:  2024-03-31
  • 刊出日期:  2024-04-24

目录

/

返回文章
返回