Impacts of vegetation restoration type on abundant and rare microflora inreclaimed soil of open-pit mining area
-
摘要:
植被恢复可促进重构土壤发育,调控生物地球化学循环和发挥生态系统功能。因此深入研究露天矿区植物恢复下土壤丰富和稀有微生物类群变化对改善矿区生态环境至关重要。采集内蒙古准格尔旗黑岱沟露天矿东排土场裸地(CK)、苜蓿(GL)、沙棘(BL)、油松(CF)、杨树(BF)和杨树+油松(MF)6种复垦样地土壤,利用高通量测序、共现网络和相关性分析等探测植被类型对土壤丰富、稀有细菌和真菌群落结构组成和多样性的影响机制。结果表明:①不同植被恢复类型对土壤理化性质和酶活性影响存在显著性差异(P< 0.05),有机质(SOM)、铵态氮(AN)和亮氨酸氨基肽酶(LAP)酶活性等均显著高于CK。BL对土壤SOM、硝态氮(NN)和有效磷(AP)积累有优势,显著提高了脲酶(URE)、LAP和碱性磷酸酶(ALP)酶活性(P< 0.05)。②植被类型显著影响了土壤丰富和稀有微生物群落结构组成(P< 0.05),丰富和稀有细菌种类多于真菌,但真菌丰度变化更为显著,尤其是稀有真菌。不同植被恢复类型的丰富和稀有细菌,及稀有真菌群落Shannon指数高于CK,且与CK的群落结构间存在显著差异(P< 0.05)。③不同植被恢复类型均提高了丰富和稀有细菌、真菌的网络拓扑参数和复杂度。移除节点改变自然连通性的幅度测试结果表明BL增强了土壤丰富细菌、丰富和稀有真菌网络的稳定性和对外界干扰的抵抗力。④土壤URE、SOM和ALP是土壤微生物群落结构变化的主导因子。BL处理组中pH、SOM、AP、BG(β-葡萄糖苷酶)、URE和ALP均显著影响丰富和稀有微生物群落(P< 0.05)。综上认为,BL恢复模式对矿区复垦土壤质量改善效果更好,研究结果可为植被修复受损矿山复垦土壤及微生物资源的开发利用提供理论依据。
Abstract:Vegetation restoration is crucial for improving the ecological environment of mining areas, which could promote the development of reconstructed soil, thus regulating biogeochemical cycles, and exerting ecosystem functions. Therefore, it is essential and necessary to conduct in-depth research on the impact of vegetation restoration on soil microbial communities in open-pit mining areas. In this study, surface soil samples were collected from six typical reclamation plots, including bare land (CK),Medicago sativa(GL),Hippophae rhamnoides(BL),Pinus tabulaeformis(CF),Populus tomentosa(BF), andPopulus tomentosa+Pinus tabulaeformis(MF), located in the eastern waste dump of Heidaigou mining area of Zhungeer Banner, Inner Mongolia. High throughput sequencing, co-occurrence networks, and correlation analysis were used to explore the influential mechanism of vegetation types on soil abundant, rare bacterial and fungal community structural composition and diversity. Results showed that ① there were significant differences in the effects of different vegetation restoration types on soil physicochemical properties and enzyme activity (P<0.05). The soil organic matter content, ammonium nitrogen content, and leucine aminopeptidase activity were significantly higher than those of CK. BL performed the advantage in accumulating soil organic matter, nitrate nitrogen, and available phosphorus, while the urease, leucine aminopeptidase, and alkaline phosphatase activities were significantly increased (P<0.05). ② The vegetation type has significantly affected the composition of soil abundant and rare microbial communities (P<0.05), with more abundant and rare bacterial species than fungi, whereas the variation of fungal abundance was more significant, especially the rare fungi. The Shannon index of abundant and rare bacteria, and rare fungal communities in different vegetation restoration plots was higher than that in CK, while their community structures presented the significant differences (P<0.05). ③ Different vegetation restoration types have increased the network topology parameters and complexity of abundant and rare bacteria and fungi. The amplitude test results of removing nodes to change natural connectivity indicated that BL could enhance the stability of soil abundant bacterial network, abundant and rare fungal networks, as well as their resistance to external interferences. ④ Soil URE, SOM, and ALP were the dominant factors for changes of soil microbial community structure. For the BL plot, the pH value, SOM, AP, β- Glucosidase, URE, and ALP have significantly affected the abundant and rare microbial communities (P<0.05). In a word, the BL restoration model performed a better effect on improving soil quality during the ecological reclamation process in mining areas. The research results can provide theoretical basis for the development and utilization of soil microbial resources for vegetation restoration in the damaged mining areas.
-
Keywords:
- vegetation restoration /
- abundant bacteria /
- rare bacteria /
- abundant fungi /
- rare fungi /
- co-occurrence network
-
-
图 8 不同植被类型土壤理化性质、酶活性与丰富、稀有细菌与真菌分类群群落结构相关性
注:土壤理化性质、酶活性与微生物群落组成的相关性线宽对应部分Mantel的r值,线颜色表示基于999排列的统计显著性。土壤理化、酶活性与土壤微生物群落结构的相关性用Pearson相关系数的颜色梯度表示。
Figure 8. Soil physical and chemical properties, enzyme activities and community diversity of abundant, rare bacteria and fungi were correlated with different vegetation types
表 1 不同植被恢复模式土壤细菌共现网络的拓扑属性
Table 1 Topological properties of soil bacteria co-occurrence networks in different vegetation restoration modes
网络属性 节点数 连接数 网络度 网络中心紧密性 平均路径长度 网络直径 相对模块化程度 细菌 CK 丰富 112 442 14 0.43 4.36 13 0.64 稀有 172 893 38 0.63 4.60 14 0.59 GL 丰富 140 471 16 0.21 4.79 11 0.67 稀有 279 1771 62 0.43 3.67 12 0.55 BL 丰富 167 633 24 0.45 5.39 12 0.52 稀有 317 1 878 74 0.64 3.72 8 0.53 CF 丰富 134 545 15 0.53 4.36 12 0.62 稀有 258 1471 49 0.61 3.70 9 0.54 BF 丰富 138 601 16 0.58 4.03 12 0.58 稀有 267 1783 41 0.51 3.53 9 0.49 MF 丰富 139 588 16 0.46 3.75 11 0.56 稀有 273 1 973 54 0.49 3.67 11 0.47 表 2 不同植被恢复模式土壤真菌共现网络的拓扑属性
Table 2 Topological properties of soil fungi co-occurrence networks in different vegetation restoration modes
网络属性 节点数 连接数 网络度 网络中心紧密性 平均路径长度 网络直径 相对模块化程度 真菌 CK 丰富 64 124 7 0.45 2.54 4 0.81 稀有 102 243 26 0.56 2.15 7 0.82 GL 丰富 77 128 7 0.41 2.01 5 0.77 稀有 109 338 31 0.44 2.06 7 0.88 BL 丰富 92 183 11 0.55 4.79 11 0.76 稀有 280 1490 58 0.64 5.20 13 0.83 CF 丰富 72 174 8 0.41 2.15 5 0.78 稀有 129 379 42 0.57 3.93 12 0.83 BF 丰富 83 141 9 0.58 2.15 5 0.78 稀有 218 932 41 0.46 4.73 12 0.82 MF 丰富 74 174 7 0.52 5.01 12 0.78 稀有 240 1008 45 0.61 4.83 11 0.87 -
[1] ZHANG Q,MA J,YANG Y J,et al. Mining subsidence-induced microtopographic effects alter the interaction of soil bacteria in the sandy pasture,China[J]. Frontiers in Environmental Science,2021,9:656708. doi: 10.3389/fenvs.2021.656708
[2] 陈 浮,王思遥,于昊辰,等. 碳中和目标下煤炭变革的技术路径[J]. 煤炭学报,2022,47(4):1452−1461. CHEN Fu,WANG Siyao,YU Haochen,et al. Technological innovation paths of coal industry for achieving carbon neutralization[J]. Journal of China Coal Society,2022,47(4):1452−1461.
[3] 杨云礼,徐 明,邹 晓,等. 不同植被类型对黔中山地丘陵区土壤细菌群落特征的影响研究[J]. 生态与农村环境学报,2021,37(4):518−525. YANG Yunli,XU Ming,ZOU Xiao,et al. Effects of different vegetation types on the characteristics of soil bacterial communities in the hilly area of Central Guizhou[J]. Journal of Ecology and Rural Environment,2021,37(4):518−525.
[4] JOUSSET A,BIENHOLD C,CHATZINOTAS A,et al. Where less may be more:how the rare biosphere pulls ecosystems strings[J]. ISME Journal,2017,11(4):853−862. doi: 10.1038/ismej.2016.174
[5] 刘 蕾,史建硕,张国印,等. 长期施有机肥对设施番茄土壤稀有和丰富细菌亚群落的影响[J]. 中国农业科学,2023,56(18):3615−3628. doi: 10.3864/j.issn.0578-1752.2023.18.010 LIU Lei,SHI Jianshuo,ZHANG Guoyin,et al. Effects of long-term application of organic fertilizer on rare and abundant bacterial sub-communities in greenhouse tomato soil[J]. Scientia Agricultura Sinica,2023,56(18):3615−3628. doi: 10.3864/j.issn.0578-1752.2023.18.010
[6] SINGH B K,QUINCE C,MACDONALD C A,et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions[J]. Environmental Microbiology,2014,16(8):2408−2420. doi: 10.1111/1462-2920.12353
[7] JIAO S,WANG J,WEI G,et al. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances[J]. Chemosphere,2019,235:248−259. doi: 10.1016/j.chemosphere.2019.06.174
[8] PEDRÓS-ALIÓ C. The rare bacterial biosphere[J]. Annual Review of Marine Science,2011,4(1):449−466.
[9] CHEN Q L,DING J,ZHU D,et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils[J]. Soil Biology and Biochemistry,2020,141:107686. doi: 10.1016/j.soilbio.2019.107686
[10] YANG Y,CHAI Y,XIE H,et al. Responses of soil microbial diversity,network complexity and multifunctionality to three land-use changes[J]. Science of the Total Environment,2023,859:160255. doi: 10.1016/j.scitotenv.2022.160255
[11] CHANG Y Y,CHEN F,ZHU Y F,et al. Influence of revegetation on soil microbial community and its assembly process in the open-pit mining area of the Loess Plateau,China[J]. Frontiers in Microbiology,2022,13:992816. doi: 10.3389/fmicb.2022.992816
[12] FAUST K,RAES J. Microbial interactions:from networks to models[J]. Nature Reviews Microbiology,2012,10(8):538−550. doi: 10.1038/nrmicro2832
[13] 张 鹏,赵 洋,黄 磊,等. 植被重建对露天煤矿排土场土壤酶活性的影响[J]. 生态学报,2016,36(9):2715−2723. ZHANG Peng,ZHAO Yang,HUANG Lei,et al. Effect of revegetation on soil extracellular enzyme activity in the dumping site of an open-pit coal mine in Heidaigou[J]. Acta Ecologica Sinica,2016,36(9):2715−2723.
[14] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社:2000:39−236. [15] 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社:1986:274−339. [16] MO Y,ZHANG W,YANG J,et al. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes[J]. The ISME Journal,2018,12(9):2198−2210. doi: 10.1038/s41396-018-0153-6
[17] ZHOU X,WU F. Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities[J]. Science of The Total Environment,2021,788:147751. doi: 10.1016/j.scitotenv.2021.147751
[18] WANG X,WANG Z,LIU W,et al. Abundant and rare fungal taxa exhibit different patterns of phylogenetic niche conservatism and community assembly across a geographical and environmental gradient[J]. Soil Biology and Biochemistry,2023,186:109167. doi: 10.1016/j.soilbio.2023.109167
[19] 陈 浮,朱燕峰,马 静,等. 黄土高原矿区生态修复固碳机制与增汇潜力及调控[J]. 煤炭科学技术,2023,51(1):502−513. CHEN Fu,ZHU Yanfeng,MA Jing,et al. Mechanism,potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau[J]. Coal Science and Technology,2023,51(1):502−513.
[20] YANG M,YANG D,YU X. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages[J]. PLoS One,2018,13(1):e0190959. doi: 10.1371/journal.pone.0190959
[21] 王 晓,毕银丽,王 义,等. 沙棘林密度和丛枝菌根真菌接种对林下植物和土壤性状的影响[J]. 林业科学,2023,59(10):138−149. WANG Xiao,BI Yinli,WANG Yi,et al. Effects of planting density of Hippophae rhamnoides and inoculation of AMF on understory vegetation growth and soil improvement[J]. Scientia Silvae Sinicae,2023,59(10):138−149.
[22] 宋世杰,张玉玲,王双明,等. 陕北煤矿区采动地裂缝对土壤微生物和酶活性的影响[J]. 煤炭学报,2021,46(5):1630−1640. SONG Shijie,ZHANG Yuling,WANG Shuangming,et al. Influence of mining ground fissures on soil microorganism and enzyme activities in Northern Shaanxi coal mining area[J]. Journal of China Coal Society,2021,46(5):1630−1640.
[23] 宁岳伟,刘 勇,张 红,等. 煤矿矿区复垦植被类型对土壤微生物功能基因和酶活的影响[J]. 环境科学,2022,43(9):4647−4654. NING Yuewei,LIU Yong,ZHANG Hong,et al. Effects of different vegetation types on soil microbial functional genes and enzyme activities in reclaimed coal mine[J]. Environmental Science,2022,43(9):4647−4654.
[24] WU B,LUO H,WANG X,et al. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings[J]. Science of The Total Environment,2022,802:149899. doi: 10.1016/j.scitotenv.2021.149899
[25] 董文雪,马 静,何 环,等. 黄淮平原矿区土地复垦对微生物群落结构和功能的影响[J]. 煤炭科学技术,2023,51(11):223−233. DONG Wenxue,MA Jing,HE Huan,et al. Effects of land reclamation on soil microbial community structure and function in the Huang-Huai plain mining area[J]. Coal Science and Technology,2023,51(11):223−233.
[26] GUO Y F,CHENG S L,FANG H J,et al. Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils[J]. Science of the Total Environment,2022,844:157119. doi: 10.1016/j.scitotenv.2022.157119
[27] 马建军,姚 虹,刘 辉,等. 燕山矿区苜蓿恢复过程中土壤养分与微生物的演变特征[J]. 环境工程技术学报,2023,13(1):270−279. doi: 10.12153/j.issn.1674-991X.20210791 MA Jianjun,YAO Hong,LIU Hui,et al. Evolution characteristics of soil nutrients and microorganisms during alfalfa restoration of mining area in Yanshan Mountain[J]. Journal of Environmental Engineering Technology,2023,13(1):270−279. doi: 10.12153/j.issn.1674-991X.20210791
[28] BAI Y C,LI B X,XU C Y,et al. Intercropping walnut and tea:effects on soil nutrients,enzyme activity,and microbial communities[J]. Frontiers in Microbiology,2022,13:852342. doi: 10.3389/fmicb.2022.852342
[29] BASTIDA F,HERNANDEZ T,ALBALADEJO J,et al. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate[J]. Soil Biology & Biochemistry,2013,65:12−21.
[30] KONG J,HE Z,CHEN L,et al. Efficiency of biochar,nitrogen addition,and microbial agent amendments in remediation of soil properties and microbial community in Qilian Mountains mine soils[J]. Ecology and Evolution,2021,11(14):9318−9331. doi: 10.1002/ece3.7715
[31] LI P,ZHANG X,HAO M,et al. Effects of vegetation restoration on soil bacterial communities,enzyme activities,and nutrients of reconstructed soil in a mining area on the Loess Plateau,China[J]. Sustainability,2019,11(8):1−16.
[32] JIAO S,LU Y H. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology,2020,22(3):1052−1065. doi: 10.1111/1462-2920.14815
[33] CARLTON J D,LANGWIG,M V,GONG X,et al. Expansion of Armatimonadota through marine sediment sequencing describes two classes with unique ecological roles[J]. ISME Communications,2023,3:64. doi: 10.1038/s43705-023-00269-x
[34] 王泽铭,李传虹,马巧丽,等. 湿度盐度pH协同驱动锡林河景观疣微菌群空间异质性[J]. 微生物学报,2021,61(6):1728−1742. WANG Zeming,LI Chuanhong,MA Qiaoli,et al. Moisture,salinity and pH co-driving spatial heterogeneity of Verrucomicrobial populations in Xilin River landscape[J]. Acta Microbiologica Sinica,2021,61(6):1728−1742.
[35] 李文宝,张博尧,史玉娇,等. 乌梁素海东部流域非生长季草地土壤细菌群落结构的垂向差异[J]. 环境科学,2023,44(6):3364−6675. LI Wenbao,ZHANG Boyao,SHI Yujiao,et al. Vertical differences in grassland bacterial community structure during non-growing season in Eastern Ulansuhai Basin[J]. Environmental Science,2023,44(6):3364−6675.
[36] 喻召雄,陶先法,贾 睿,等. 2种稻虾共作模式对土壤有机氮矿化作用的影响[J]. 南方农业学报,2022,53(5):1357−1367. doi: 10.3969/j.issn.2095-1191.2022.05.018 YU Zhaoxiong,TAO Xianfa,JIA Rui,et al. Effects of two rice-shrimp co-cultural models on soil organic nitrogen mineralization[J]. Journal of Southern Agriculture,2022,53(5):1357−1367. doi: 10.3969/j.issn.2095-1191.2022.05.018
[37] YANG Y,DOU Y X,HUANG Y M,et al. Links between soil fungal diversity and plant and soil properties on the Loess Plateau[J]. Frontiers in Microbiology,2017,8:2198. doi: 10.3389/fmicb.2017.02198
[38] LYNCH M D J,NEUFELD J D. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology,2015,13(4):217−229. doi: 10.1038/nrmicro3400
[39] ZHENG H,LIU Y,CHEN Y,et al. Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau[J]. Geoderma,2020,360:113985. doi: 10.1016/j.geoderma.2019.113985
[40] YUAN M M,GUO X,WU L W,et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change,2021,11(4):343−357. doi: 10.1038/s41558-021-00989-9
[41] JIANG Y L,SONG H F,LEI Y B,et al. Distinct co-occurrence patterns and driving forces of rare and abundant bacterial subcommunities following a glacial retreat in the eastern Tibetan Plateau[J]. Biology and Fertility of Soils,2019,55(4):351−364. doi: 10.1007/s00374-019-01355-w
[42] 邢肖毅,倪 绯,张亚丽,等. 增温对土壤丰富和稀有微生物的差异性影响[J]. 环境科学与技术,2022,45(5):70−76. XING Xiaoyi,NI Fei,ZHANG Yali,et al. Effects of warming on diversity of abundant and rare microbial communities in soil[J]. Environmental Science & Technology,2022,45(5):70−76.
[43] FAN K K,WEISENHORN P,GILBERT J A,et al. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields[J]. Soil Biology & Biochemistry,2018,121:185−192.
[44] PAN C C,FENG Q,LI Y L,et al. Rare soil bacteria are more responsive in desertification restoration than abundant bacteria[J]. Environmental Science and Pollution Research,2022,29(22):33323−33334. doi: 10.1007/s11356-021-16830-x