高级检索

单轴压缩下不同层理煤能量演化及红外辐射特征

张国宁, 赵毅鑫, 孙远东, 宫智馨

张国宁,赵毅鑫,孙远东,等. 单轴压缩下不同层理煤能量演化及红外辐射特征[J]. 煤炭科学技术,2024,52(12):48−59. DOI: 10.12438/cst.2023-1639
引用本文: 张国宁,赵毅鑫,孙远东,等. 单轴压缩下不同层理煤能量演化及红外辐射特征[J]. 煤炭科学技术,2024,52(12):48−59. DOI: 10.12438/cst.2023-1639
ZHANG Guoning,ZHAO Yixin,SUN Yuandong,et al. Energy evolution and infrared radiation characteristics of different bedded coal under uniaxial compression[J]. Coal Science and Technology,2024,52(12):48−59. DOI: 10.12438/cst.2023-1639
Citation: ZHANG Guoning,ZHAO Yixin,SUN Yuandong,et al. Energy evolution and infrared radiation characteristics of different bedded coal under uniaxial compression[J]. Coal Science and Technology,2024,52(12):48−59. DOI: 10.12438/cst.2023-1639

单轴压缩下不同层理煤能量演化及红外辐射特征

基金项目: 国家自然科学基金资助项目(52225402)
详细信息
    作者简介:

    张国宁: (1992—),男,内蒙古商都人,博士研究生。E-mail:zhang_guoning@163.com

    通讯作者:

    赵毅鑫: (1977—),男,河南洛阳人,教授,博士生导师,博士。E-mail:zhaoyx@cumtb.edu.cn

  • 中图分类号: TD313

Energy evolution and infrared radiation characteristics of different bedded coal under uniaxial compression

  • 摘要:

    为了研究不同层理煤变形破坏过程中能量演化及红外辐射响应特征,以红庆河煤矿3-1煤层的煤样为研究对象,开展了4种不同层理角度(0°、30°、60°及90°)单轴压缩试验,并利用红外热成像仪监测煤样变形破坏过程中的红外温度场特征。试验结果表明:随着层理角度的增加,试样的抗压强度及应变能均呈“V”形变化趋势,60°时达到最小值,层理对峰前阶段的弹性应变能Ue及峰后阶段的耗散能Ud影响显著;不同层理角度煤样整体上表现为升温趋势,平均红外温度前兆点为0.84σp;试样破坏模式导致温度变化范围不同,0°和30°试样以张−剪破坏为主,升温幅度分别为1.12、1.30 ℃,而60°试样以单一剪切破坏为主,升温幅度较低为0.46 ℃,90°试样破坏以拉伸破坏为主,升温幅度最低为0.4 ℃;应变能与平均红外辐射温度呈正相关关系,相关程度排序为总应变能U<弹性应变能Ue<耗散能Ud。研究结果可以为煤岩动力灾害预警提供参考。

    Abstract:

    In order to study the energy evolution and infrared radiation response characteristics during the deformation and failure process of coal with different bedding angles, uniaxial compression tests with four different bedding angles (0°, 30°, 60° and 90°) were carried out on a strong burst liability coal samples from 3-1 coal seam of Hongqinghe coal mine. The infrared temperature field characteristics of the coal samples during deformation and damage were monitored using an infrared thermal imaging camera. The test results show that as the bedding angle increases the compressive strength and strain energy of the sample show a “V” shaped trend, reaching the minimum value at 60°. The bedding has a significant impact on the elastic strain Ue in the pre-peak stage and dissipation energy Ud in the post-peak stage; The coal samples showed an overall warming trend with different bedding angles, with an average infrared temperature precursor point of 0.84σp.The bedding structure seriously affects the infrared radiation temperature and the difference of failure patterns lead to different temperature ranges. The 0° and 30° specimens are dominated by shear-tension composite failure, with a high temperature rise of 1.12 and 1.30 ℃, respectively, while the 60° specimen is dominated by single shear failure, with a low temperature rise of 0.46 ℃. The failure of 90° specimen is tensile failure, and the temperature rise is the lowest 0.4 ℃. The strain energy was positively correlated with the mean IR radiation temperature, and the correlation degree was ranked as U<Ue<Ud. The research results can provide reference for early warning of coal dynamic disasters.

  • 图  1   试验系统

    Figure  1.   Experimental system diagram

    图  2   单轴压缩能量演化示意

    Figure  2.   Uniaxial compression energy evolution diagram

    图  3   不同层理角度试样应力−应变曲线

    Figure  3.   Stress-strain curves of specimen with different bedding angles

    图  4   单轴抗压强度随层理角度变化规律

    Figure  4.   Variations of uniaxial compressive strength with different bedding angles

    图  5   不同层理试样应力及应变能变化曲线

    Figure  5.   Variation curves of stress and strain energy with different bedding specimens

    图  6   不同应变能随层理角度变化规律

    Figure  6.   Variation of strain energy with different bedding specimens

    图  7   不同层理试样平均红外辐射温度及温差演化规律

    Figure  7.   Evolution of the average infrared radiation temperature temperature difference with different bedding angle

    图  8   红外热像图处理方法

    Figure  8.   Infrared thermogram processing method

    图  9   不同层理角度红外差值热像演化过程

    Figure  9.   Evolution process of infrared differential thermal image with different bedding angles

    图  10   试样不同监测区域

    Figure  10.   Different monitoring areas of specimen

    图  11   不同监测区域平均红外辐射温度(0°试样为例)

    Figure  11.   Average infrared radiation temperature in different monitoring areas(0° specimen as an example)

    表  1   不同层理角度试样力学参数测定结果

    Table  1   Measurement results of mechanical parameters of samples with different bedding angles

    编号 密度ρ/
    (g·cm−3
    峰值强度σp/
    MPa
    峰值应变εp 弹性模量E/
    GPa
    0°−1 1.27 34.66 0.0219 1.75
    0°−2 1.29 28.20 0.0205 1.72
    0°−3 1.29 33.51 0.0237 1.88
    30°−1 1.28 33.33 0.0233 1.60
    30°−2 1.28 31.01 0.0241 1.58
    30°−3 1.28 26.03 0.0180 1.67
    60°−1 1.24 14.16 0.0096 1.79
    60°−2 1.24 14.32 0.0126 1.72
    60°−3 1.24 13.41 0.0096 1.94
    90°−1 1.29 20.17 0.0140 1.85
    90°−2 1.28 13.95 0.0134 1.31
    90°−3 1.27 17.17 0.0118 1.74
    下载: 导出CSV

    表  2   不同层理角度试样峰值及破坏阶段应变能

    Table  2   Strain energy at peak stress and failure stage with different bedding angles

    煤样编号 应力峰值阶段 破坏阶段
    U/
    (J·cm−3
    Ue/
    (J·cm−3
    Ud/
    (J·cm−3
    能量积累率
    $\dfrac{{{U}^{\text{e}}}}{U} $/%
    能量释放率
    $\dfrac{{{U}^{\text{d}}}}{U} $/%
    U/
    (J·cm−3
    Ue/
    (J·cm−3
    Ud/
    (J·cm−3
    能量积累率
    $\dfrac{{{U}^{\text{e}}}}{U} $/%
    能量释放率
    $\dfrac{{{U}^{\text{d}}}}{U} $/%
    0°−1 0.3305 0.3164 0.0143 95.72 4.28 0.3311 0.0022 0.3288 0.67 99.33
    0°−2 0.2638 0.2094 0.0544 79.37 20.63 0.2642 0.0016 0.2626 0.60 99.40
    0°−3 0.2862 0.2807 0.0055 98.09 1.91 0.2869 0.0024 0.2846 0.83 99.17
    30°−1 0.3511 0.3366 0.0145 95.86 4.14 0.3515 0.0006 0.3509 0.18 99.82
    30°−2 0.3071 0.2915 0.0156 94.92 5.08 0.3072 0.0001 0.3071 0.01 99.99
    30°−3 0.2105 0.1993 0.0112 94.68 5.32 0.2106 0.0008 0.2098 0.38 99.62
    60°−1 0.0611 0.0542 0.0069 88.74 11.26 0.0704 0.0012 0.0692 1.73 98.22
    60°−2 0.0657 0.0539 0.0118 82.06 17.94 0.0696 0.0207 0.0489 29.77 70.23
    60°−3 0.0567 0.0451 0.0118 79.29 20.71 0.0576 0.0001 0.0575 0.02 99.98
    90°−1 0.1104 0.1071 0.0033 97.02 2.98 0.1127 0.0039 0.1087 3.5 96.50
    90°−2 0.0669 0.0572 0.0097 85.55 14.45 0.0672 0.0143 0.0529 21.27 78.73
    90°−3 0.0957 0.0776 0.0181 80.09 19.91 0.0973 0.0185 0.0788 19.05 80.95
    下载: 导出CSV

    表  3   不同层理煤样冲击倾向性指标

    Table  3   Impact tendency index of different bedding coal samples

    煤样编号 判定指标
    冲击能
    KE
    峰值强度
    σp/MPa
    动态破坏时间
    TD/ms
    0°−1 550 34.66 100
    0°−2 659 28.20 74
    0°−3 358 33.51 190
    30°−1 877 33.33 82.2
    30°−2 3071 31.01 48
    30°−3 2105 26.03 32
    60°−1 7 14.16 2230
    60°−2 17 14.32 3000
    60°−3 63 13.41 5846
    90°−1 48 20.17 340
    90°−2 223 13.95 237
    90°−3 7 17.17 823
    下载: 导出CSV

    表  4   相关系数与相关强弱程度关系[37]

    Table  4   Relationships between correlation coefficient and degree of correlation[37]

    相关系数绝对值 相关程度强弱
    0 不相关
    (0~0.3] 微弱
    (0.3~0.5] 低度
    (0.5~0.8] 显著
    (0.8~1.0] 高度
    1.0 完全
    下载: 导出CSV

    表  5   应变能与平均红外辐射温度之间相关系数计算结果

    Table  5   Calculation results on correlation coefficient between strain energy and average infrared radiation temperature

    层理角度/(°)能量类型相关系数相关程度
    0总应变能U0.835高度
    弹性应变能Ue0.800显著
    耗散能Ud0.970高度
    30总应变能U0.818高度
    弹性应变能Ue0.789显著
    耗散能Ud0.886高度
    60总应变能U0.863高度
    弹性应变能Ue0.829高度
    耗散能Ud0.930高度
    90总应变能U0.555显著
    弹性应变能Ue0.877高度
    耗散能Ud0.885高度
    下载: 导出CSV
  • [1] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:Establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.

    [2] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.

    [3] 杨起,韩德馨. 中国煤田地质学−上册−煤田地质基础理论[M]. 北京:煤炭工业出版社,1979:22-54.
    [4]

    TIEN Y M,KUO M C,JUANG C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(8):1163−1181. doi: 10.1016/j.ijrmms.2006.03.011

    [5]

    YOUNG R P,NASSERI M H B,SEHIZADEH M. Mechanical and seismic anisotropy of rocks from the ONKALO underground rock characterization facility[J]. International Journal of Rock Mechanics and Mining Sciences,2020,126:104190. doi: 10.1016/j.ijrmms.2019.104190

    [6] 牟宏伟,何学秋,宋大钊,等. 不同节理夹角煤单轴压缩力学和声发射响应及影响机制[J]. 煤炭学报,2020,45(5):1726−1732.

    MU Hongwei,HE Xueqiu,SONG Dazhao,et al. Response characteristics and influence mechanism of uniaxial compression mechanics and AE of coal with different joint angles[J]. Journal of China Coal Society,2020,45(5):1726−1732.

    [7] 郝宪杰,袁亮,王少华,等. 硬煤冲击倾向性的层理效应研究[J]. 煤炭科学技术,2018,46(5):1−7.

    HAO Xianjie,YUAN Liang,WANG Shaohua,et al. Study on bedding effect of bump tendency for hard coal[J]. Coal Science and Technology,2018,46(5):1−7.

    [8]

    SONG H H,ZHAO Y X,ELSWORTH D,et al. Anisotropy of acoustic emission in coal under the uniaxial loading condition[J]. Chaos,Solitons & Fractals,2020,130:109465.

    [9]

    SONG H H,ZHAO Y X,WANG J H,et al. Loading rates dependency of strength anisotropy in coal:based on the three-dimensional reconstruction modeling technology[J]. Energy Science & Engineering,2021,9(6):855−864.

    [10] 龚爽,赵毅鑫,王震,等. 层理对煤岩动态裂纹扩展分形特征的影响[J]. 煤炭学报,2021,46(8):2574−2582.

    GONG Shuang,ZHAO Yixin,WANG Zhen,et al. Effect of bedding on the fractal characteristics of dynamic crack propagation in coal rocks[J]. Journal of China Coal Society,2021,46(8):2574−2582.

    [11] 张朝鹏,张茹,张泽天,等. 单轴受压煤岩声发射特征的层理效应试验研究[J]. 岩石力学与工程学报,2015,34(4):770−778.

    ZHANG Zhaopeng,ZHANG Ru,ZHANG Zetian,et al. Experimental research on effects of bedding plane on coal acoustic emission under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(4):770−778.

    [12] 刘晓辉,戴峰,刘建锋,等. 考虑层理方向煤岩的静动巴西劈裂试验研究[J]. 岩石力学与工程学报,2015,34(10):2098−2105.

    LIU Xiaohui,DAI Feng,LIU Jianfeng,et al. Brazilian splitting tests on coal rock considering bedding direction under static and dynamic loading rate[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(10):2098−2105.

    [13] 刘恺德,刘泉声,朱元广,等. 考虑层理方向效应煤岩巴西劈裂及单轴压缩试验研究[J]. 岩石力学与工程学报,2013,32(2):308−316. doi: 10.3969/j.issn.1000-6915.2013.02.012

    LIU Kaide,LIU Quansheng,ZHU Yuanguang,et al. Experimental study of coal considering directivity effect of bedding plane under Brazilian splitting and uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):308−316. doi: 10.3969/j.issn.1000-6915.2013.02.012

    [14]

    XIAO F K,HE J,LIU Z J,et al. Analysis on warning signs of damage of coal samples with different water contents and relevant damage evolution based on acoustic emission and infrared characterization[J]. Infrared Physics & Technology,2019,97:287−299.

    [15]

    WANG C L,LU Z J,LIU L,et al. Predicting points of the infrared precursor for limestone failure under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2016,88:34−43. doi: 10.1016/j.ijrmms.2016.07.004

    [16] 陈健民. 地应力与岩体红外辐射现象理论初探[J]. 煤炭学报,1995,20(3):256−259. doi: 10.3321/j.issn:0253-9993.1995.03.007

    CHEN Jianmin. Theory of ground stress and infrared radiation of rockmass[J]. Journal of China Coal Society,1995,20(3):256−259. doi: 10.3321/j.issn:0253-9993.1995.03.007

    [17]

    LUONG Minh Phono. Infrared thermovision of damage processes in concrete and rock[J]. Engineering Fracture Mechanics,1990,35(1-3):291−301. doi: 10.1016/0013-7944(90)90207-W

    [18]

    SHEN R X,LI H R,WANG E Y,et al. Infrared radiation characteristics and fracture precursor information extraction of loaded sandstone samples with varying moisture contents[J]. International Journal of Rock Mechanics and Mining Sciences,2020,130:104344. doi: 10.1016/j.ijrmms.2020.104344

    [19]

    CAO K W,MA L Q,ZHANG D S,et al. An experimental study of infrared radiation characteristics of sandstone in dilatancy process[J]. International Journal of Rock Mechanics and Mining Sciences,2020,136:104503. doi: 10.1016/j.ijrmms.2020.104503

    [20]

    LI B,HE Y Z,LI L,et al. Damage evolution of rock containing prefabricated cracks based on infrared radiation and energy dissipation[J]. Theoretical and Applied Fracture Mechanics,2023,125:103853. doi: 10.1016/j.tafmec.2023.103853

    [21] 赵毅鑫,姜耀东,韩志茹. 冲击倾向性煤体破坏过程声热效应的试验研究[J]. 岩石力学与工程学报,2007,26(5):965−971. doi: 10.3321/j.issn:1000-6915.2007.05.014

    ZHAO Yixin,JIANG Yaodong,HAN Zhiru. Experimental study on acoustic and thermal infrared characteristics of bump-prone coal[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(5):965−971. doi: 10.3321/j.issn:1000-6915.2007.05.014

    [22] 杨桢,齐庆杰,叶丹丹,等. 复合煤岩受载破裂内部红外辐射温度变化规律[J]. 煤炭学报,2016,41(3):618−624.

    YANG Zhen,QI Qingjie,YE Dandan,et al. Variation of internal infrared radiation temperature of composite coal-rock fractured under load[J]. Journal of China Coal Society,2016,41(3):618−624.

    [23] 徐子杰,齐庆新,李宏艳,等. 冲击倾向性煤体加载破坏的红外辐射特征研究[J]. 中国安全科学学报,2013,23(10):121−125. doi: 10.3969/j.issn.1003-3033.2013.10.021

    XU Zijie,QI Qingxin,LI Hongyan,et al. Research on infrared radiation characteristics of outburst proneness coal’s failure by loading[J]. China Safety Science Journal,2013,23(10):121−125. doi: 10.3969/j.issn.1003-3033.2013.10.021

    [24] 刘斌,赵毅鑫,张汉,等. 单轴压缩及劈裂试验下煤的声发射特征研究[J]. 采矿与安全工程学报,2020,37(3):613−621.

    LIU Bin,ZHAO Yixin,ZHANG Han,et al. Acoustic emission characteristics of coal under uniaxial compression and Brazilian splitting[J]. Journal of Mining & Safety Engineering,2020,37(3):613−621.

    [25] 国际岩石力学学会实验室和现场试验标准化委员会. 岩石力学试验建议方法−上集[M]. 北京:煤炭工业出版社,1982.
    [26] 滕腾,高峰,张志镇,等. 含瓦斯原煤三轴压缩变形时的能量演化分析[J]. 中国矿业大学学报,2016,45(4):663−669.

    TENG Teng,GAO Feng,ZHANG Zhizhen,et al. Analysis of energy evolution on gas saturated raw coal under triaxial compression[J]. Journal of China University of Mining & Technology,2016,45(4):663−669.

    [27]

    LIANG C Y,WU S R,LI X,et al. Effects of strain rate on fracture characteristics and mesoscopic failure mechanisms of granite[J]. International Journal of Rock Mechanics and Mining Sciences,2015,76:146−154. doi: 10.1016/j.ijrmms.2015.03.010

    [28] 张艳博,梁鹏,刘祥鑫,等. 基于多参量归一化的花岗岩巷道岩爆预测试验研究[J]. 岩土力学,2016,37(1):96−104.

    ZHANG Yanbo,LIANG Peng,LIU Xiangxin,et al. An experimental study of predicting rockburst in granitic roadway based on multiparameter normalization[J]. Rock and Soil Mechanics,2016,37(1):96−104.

    [29] 宋月歆,任富强,刘冬桥. 大理岩应变型岩爆红外前兆特征试验研究[J]. 岩土工程学报,2023,45(3):609−617.

    SONG Yuexin,REN Fuqiang,LIU Dongqiao. Experimental study on infrared precursors of marble strain burst[J]. Chinese Journal of Geotechnical Engineering,2023,45(3):609−617.

    [30]

    SUN X M,XU H C,HE M C,et al. Experimental investigation of the occurrence of rockburst in a rock specimen through infrared thermography and acoustic emission[J]. International Journal of Rock Mechanics and Mining Sciences,2017,93:250−259. doi: 10.1016/j.ijrmms.2017.02.005

    [31] 杜园园,孙海,马立强,等. 煤损伤演化过程中的红外辐射响应特征研究[J]. 煤炭科学技术,2022,50(9):67−74.

    DU Yuanyuan,SUN Hai,MA Liqiang,et al. Characteristics of infrared radiation response during coal damage evolution[J]. Coal Science and Technology,2022,50(9):67−74.

    [32] 汪懋骅. 快传播裂缝尖周围的温度场[J]. 应用数学和力学,1984,5(6):873−878.

    WANG Maohua. The temperature fields around the tip of a fast running crack[J]. Applied Mathematics and Mechanics,1984,5(6):873−878.

    [33] 张俊彦,张淳源. 裂纹扩展条件及其温度场研究[J]. 湘潭大学自然科学学报,1996,18(1):102−105.

    ZHANG Junyan,ZHANG Chunyuan. Investigation on the conditions of a running crack and the temperature fields of the tip of a running crack[J]. Natural Science Journal of Xiangtan University,1996,18(1):102−105.

    [34] 李磊,李宏艳,李凤明,等. 层理角度对硬煤冲击倾向性影响的实验研究[J]. 采矿与安全工程学报,2019,36(5):987−994.

    LI Lei,LI Hongyan,LI Fengming,et al. Experimental study of the effect of bedding angle on hard coal bursting liability[J]. Journal of Mining & Safety Engineering,2019,36(5):987−994.

    [35] 陈国庆,张岩,李阳,等. 岩石真三轴加载破坏的热–声前兆信息链初探[J]. 岩石力学与工程学报,2021,40(9):1764−1776.

    CHEN Guoqing,ZHANG Yan,LI Yang,et al. Thermal-acoustic precursor information chain of rock failure under true triaxial loading[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1764−1776.

    [36]

    JIN J,CAO P,CHEN Y,et al. Influence of single flaw on the failure process and energy mechanics of rock-like material[J]. Computers and Geotechnics,2017,86:150−162. doi: 10.1016/j.compgeo.2017.01.011

    [37] 张科,李娜,陈宇龙,等. 裂隙砂岩变形破裂过程中应变场及红外辐射温度场演化特征研究[J]. 岩土力学,2020,41(S1):95−105.

    ZHANG Ke,LI Na,CHEN Yulong,et al. Evolution characteristics of strain field and infrared radiation temperature fieldduring deformation and rupture process of fractured sandstone[J]. Rock and Soil Mechanics,2020,41(S1):95−105.

图(11)  /  表(5)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  12
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 网络出版日期:  2024-12-05
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回