高级检索

矿用超前液压支架吸能构件仿真及试验研究

肖晓春, 李子阳, 丁鑫, 徐军, 朱恒, 丁振

肖晓春,李子阳,丁 鑫,等. 矿用超前液压支架吸能构件仿真及试验研究[J]. 煤炭科学技术,2024,52(12):247−258. DOI: 10.12438/cst.2024-0088
引用本文: 肖晓春,李子阳,丁 鑫,等. 矿用超前液压支架吸能构件仿真及试验研究[J]. 煤炭科学技术,2024,52(12):247−258. DOI: 10.12438/cst.2024-0088
XIAO Xiaochun,LI Ziyang,DING Xin,et al. Simulation and experimental study on energy absorption components of advanced hydraulic support for mining[J]. Coal Science and Technology,2024,52(12):247−258. DOI: 10.12438/cst.2024-0088
Citation: XIAO Xiaochun,LI Ziyang,DING Xin,et al. Simulation and experimental study on energy absorption components of advanced hydraulic support for mining[J]. Coal Science and Technology,2024,52(12):247−258. DOI: 10.12438/cst.2024-0088

矿用超前液压支架吸能构件仿真及试验研究

基金项目: 国家自然科学基金资助项目(52274203, 51974186, 52204092)
详细信息
    作者简介:

    肖晓春: (1979—),男,内蒙古化德人,教授,博士。E-mail:xxc7902@163.com

  • 中图分类号: TD355

Simulation and experimental study on energy absorption components of advanced hydraulic support for mining

  • 摘要:

    为了提高液压支架的能量吸收性能以解决巷道冲击地压发生时支架立柱爆缸等问题,提出了将一种方管与圆管互相嵌套的多胞管吸能构件与立柱串联应用于液压支架中。基于简化的超折叠单元理论剖析了多胞管的能量耗散途径,推导出了不同截面形状多胞管的等效轴向载荷预测公式;采用数值模拟获得了不同截面形状多胞管在轴向压溃作用下的能量吸收性能及其屈曲变形形态,发现多胞方管(SS类型)具备相对吸能优势,并通过试验验证了数值模拟的可靠性,同时将数值模拟与试验得到载荷均值与理论预测的等效轴向载荷进行对比,验证了等效轴向载荷预测公式具有较高的预测精度;依托课题组多胞方管中泡沫铝填充方式研究基础,选择具备相对吸能优势的25%填充率的填充方式,开展不同孔隙度泡沫铝填充多胞方管的轴向准静态压缩试验。结果表明:泡沫铝的填充有助于提升多胞方管抵抗变形的能力,其中71.18%孔隙度泡沫铝填充多胞方管载荷波动最小,有效变形长度和吸能量最大,能量吸收效果最好,可使吸能让位过程更加稳定;当冲击速度保持不变时,在不同冲击能量条件下,泡沫铝填充多胞方管防冲支架与未添加吸能构件的传统液压支架相比,支架部分的塑性能降低了87%左右,冲击时间延长了307%左右,让位距离增加了282%左右,通过吸能构件的屈曲变形有效减少了防冲支架的塑性变形,为支架立柱安全阀的开启提供了充足的时间。泡沫铝填充多胞方管的应用减小了支架立柱发生爆缸的危险性,提高了立柱的抗冲击性能。

    Abstract:

    In order to improve the energy absorption performance of hydraulic support and solve the problems such as cylinder explosion of support column when roadway rock burst occurs, a kind of multi-cell tube energy absorption component with square tube and round tube nested with each other is proposed and applied in series to the hydraulic support. Based on the simplified super folding element theory, the energy dissipation path of multi-cell tubes is analyzed, and the equivalent axial load prediction formula of multi-cell tubes with different section shapes is derived. The energy absorption performance and buckling deformation morphology of multi-cell tubes with different section shapes under axial crushing were obtained by numerical simulation. It was found that multi-cell square tubes (SS type) had relative energy absorption advantages, and the reliability of numerical simulation was verified by experiments. Meanwhile, the average load obtained by numerical simulation and experiment was compared with the equivalent axial load predicted by theory. It is proved that the equivalent axial load prediction formula has high prediction accuracy. Based on the research foundation of aluminum foam filling method in multi-cell square tube, the filling method with 25% filling rate with relative energy absorption advantage was selected to carry out axial quasi-static compression test of aluminum foam filling multi-cell square tube with different porosity. The results show that the aluminum foam filling can improve the deformation resistance of the multicellular square tube. Among them, the load fluctuation of the multi-cell square tube with 71.18% porosity is the smallest, the effective deformation length and energy absorption are the largest, and the energy absorption effect is the best, which can make the energy absorption and displacement process more stable. When the impact velocity remains unchanged, under different impact energy conditions, compared with the with the traditional hydraulic support without adding energy absorbing components, the plastic energy of the support part is reduced by about 87%, the impact time is extended by about 307%, and the yield distance is increased by about 282%. The plastic deformation of the support is effectively reduced through the buckling deformation of the energy absorption component. Sufficient time is provided for the opening of the support column safety valve. The application of aluminum foam filled multi-cell square tube reduces the risk of cylinder explosion of the support column and improves the impact resistance of the column.

  • 图  1   吸能构件安装方案

    Figure  1.   Installation scheme of energy absorption component

    图  2   多胞管截面形状

    Figure  2.   Shape of cross section of multi-cell tubes

    图  3   简化超折叠单元理论变形过程

    Figure  3.   Deformation processs of implified super folding element theory

    图  4   多胞管的基本单元

    Figure  4.   Basic unit of multi-cell tubes

    图  5   不同类型基本单元

    Figure  5.   Different types of basic units

    图  6   多胞方管构件有限元模型

    Figure  6.   Finite element model of multi-cell square tube component

    图  7   不同类型多胞管反力–位移曲线

    Figure  7.   Reaction-displacement curves of different types of multi-cell tubes

    图  8   多胞管变形过程

    Figure  8.   Deformation process of multi-cell tubes

    图  9   不同类型多胞管等效轴向载荷预测结果及误差

    Figure  9.   Prediction result and error of equivalent axial load for different types of multi-cell tubes

    图  10   准静态压缩试验装置

    Figure  10.   Quasi-static compression experimental device

    图  11   SS型多胞方管准静态压缩变形形态

    Figure  11.   Quasi-static compression deformation morphology of SS-type multi-cell square tube

    图  12   SS型多胞方管数值模拟与准静态压缩试验反力–位移曲线对比

    Figure  12.   Comparison of reaction-displacement curves between numerical simulation and quasi-static compression experiment of SS-type multi-cell square tube

    图  13   不同填充率下泡沫铝填充多胞方管示意

    Figure  13.   Schematic diagram of aluminum foam filled multi-cell square tubes with under different filling rates

    图  14   泡沫铝试件

    Figure  14.   Specimen of aluminum foam

    图  15   泡沫铝压缩形态

    Figure  15.   Compressed form of aluminum foam

    图  16   不同孔隙度泡沫铝反力–位移曲线

    Figure  16.   Reaction-displacement curves of aluminum foam with different porosity

    图  17   不同孔隙率泡沫铝吸能量–位移曲线

    Figure  17.   Energy absorption-displacement curves of aluminum foam with different porosity

    图  18   准静态压缩试验装置

    Figure  18.   Quasi-static compression experimental device

    图  19   不同孔隙度泡沫铝填充多胞方管反力–位移曲线

    Figure  19.   Reaction-displacement curve of multi-cell square tube filled with aluminum foam with different porosity

    图  20   不同孔隙率泡沫铝填充多胞方管准静态压缩变形形态

    Figure  20.   Quasi-static compression deformation morphology of multi-cell square tube filled with aluminum foam with different porosity

    图  21   ZQ4000型防冲支架有限元模型

    Figure  21.   Finite element model of ZQ4000 anti-impact support

    图  22   泡沫铝填充多胞方管防冲支架防冲性能

    Figure  22.   Anti-impact performance of foam-filled multi-cell square tube anti-impact support

    图  23   传统支架防冲性能

    Figure  23.   Anti-impact performance of traditional support

    图  24   冲击能量800 kJ时防冲支架和传统支架屈服位置

    Figure  24.   Yield position of the anti-impact support and the traditional support when the impact energy is 800 kJ

    表  1   不同结构多胞管等效轴向载荷预测公式

    Table  1   Equivalent axial load prediction formula for multi-cell tubes with different structures

    类型 圆型单元 T型单元 板型单元 Y型单元 Pmean
    SC 1 4 4 $ 6.40\dfrac{{{\sigma _0}}}{k}\sqrt {4D + \pi d + 2\sqrt 2 D - 2d} {T^{1.5}} $
    SS 4 4 $ 5.56\dfrac{{{\sigma _0}}}{k}\sqrt {4D + 4d + \sqrt 2 D} {T^{1.5}} $
    CC 2 8 $ 7.64\dfrac{{{\sigma _0}}}{k}\sqrt {\pi D + \pi d + 2D - 2d} {T^{1.5}} $
    CS 1 4 4 $ 6.94\dfrac{{{\sigma _0}}}{k}\sqrt {\pi D + 4d + 2D - 2\sqrt 2 d} {T^{1.5}} $
    下载: 导出CSV

    表  2   不同结构多胞管能量吸收性能

    Table  2   Energy absorption performance of multi-cell tubes with different structures

    类型 Pmax/kN Pmean/kN Etotal/kJ σ/kN δ/mm
    SC 1 980 1 523 330 205 217
    SS 1 989 1 511 331 200 219
    CC 1 885 1 549 342 216 221
    CS 1 839 1 538 330 207 215
    下载: 导出CSV

    表  3   SS型多胞方管数值模拟与准静态压缩试验的吸能性能

    Table  3   Energy absorption performance of SS-type multi-cell square tube under numerical simulation and quasi-static compression experiment

    Pmax Pmean Etotal σ δ
    仿真/kN试验/kN误差/%仿真/kN试验/kN误差/%仿真/kJ试验/kJ误差/%仿真/kN试验/kN误差/%仿真/mm试验/mm误差/%
    474.52501.645.41338.14309.509.2532.9130.876.6155.6765.3214.7797.1296.310.84
    下载: 导出CSV

    表  4   不同孔隙率泡沫铝填充多胞方管能量吸收性能

    Table  4   Energy absorption performance of multi-cellular square tubes filled with aluminum foam with different porosity

    孔隙率/% Pmax/kN Pmean/kN σ/kN Etotal/kJ δ/mm
    84.60 514.65 330.27 54.78 31.21 94.51
    80.52 546.40 340.50 54.73 32.12 94.33
    74.30 550.08 345.09 57.64 32.67 94.68
    71.18 569.70 354.60 54.14 33.55 94.61
    下载: 导出CSV

    表  5   泡沫铝填充多胞方管防冲支架与传统支架防冲性能对比

    Table  5   Comparison of anti-impact performance of aluminum foam filled multi-cell square tube support and traditional support

    冲击能量/kJ冲击时间冲击位移支架部分塑性能
    传统支架/s防冲支架/s提升量/%传统支架/mm防冲支架/mm提升量/%传统支架/kJ防冲支架/kJ降低量/%
    8000.009 70.035 826947.48175.912706118985
    9000.010 80.045 031752.93199.502777079187
    1 0000.011 90.050 432458.47224.672848049988
    1 1000.013 20.054 631464.00249.4729089510788
    1 2000.014 10.057 931169.56269.3828799811489
    下载: 导出CSV
  • [1] 王国法,潘一山,赵善坤,等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术,2024,52(1):1−14.

    WANG Guofa,PAN Yishan,ZHAO Shankun,et al. How to realize safe-efficient-intelligent mining of rock burst coal seam[J]. Coal Science and Technology,2024,52(1):1−14.

    [2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27.

    [3] 姜福兴,张翔,朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术,2023,51(1):203−213.

    JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213.

    [4] 姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2188−2204.

    JIANG Yaodong,ZHAO Yixin. State of the art:investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188−2204.

    [5] 潘一山,肖永惠,李忠华,等. 冲击地压矿井巷道支护理论研究及应用[J]. 煤炭学报,2014,39(2):222−228.

    PAN Yishan,XIAO Yonghui,LI Zhonghua,et al. Study of tunnel support theory of rockburst in coal mine and its application[J]. Journal of China Coal Society,2014,39(2):222−228.

    [6] 马箫,潘一山,张建卓,等. 防冲支架的核心吸能构件设计与吸能性能研究[J]. 煤炭学报,2018,43(4):1171−1178.

    MA Xiao,PAN Yishan,ZHANG Jianzhuo,et al. Design and performance research on core energy absorption component of anti-impact support[J]. Journal of China Coal Society,2018,43(4):1171−1178.

    [7]

    MA X,PAN Y S,XIAO Y H. Study on application of the mine anti-impact and energy-absorption device[J]. Applied Mechanics and Materials,2013,470:598−603. doi: 10.4028/www.scientific.net/AMM.470.598

    [8] 田立勇,周禹鹏,孙业新,等. 防冲支架立柱多胞薄壁吸能构件能量吸收性能[J]. 煤炭学报,2023,48(5):2224−2235.

    TIAN Liyong,ZHOU Yupeng,SUN Yexin,et al. Energy absorption performance of multicellular thin-walled energy-absorbing components of anti-shock support columns[J]. Journal of China Coal Society,2023,48(5):2224−2235.

    [9] 郝志勇,刘亚强,潘一山. 矿用缓冲吸能装置及其填充材料试验研究[J]. 采矿与安全工程学报,2018,35(3):620−628.

    HAO Zhiyong,LIU Yaqiang,PAN Yishan. Experimental study on filling material of mining buffer energy absorption device[J]. Journal of Mining & Safety Engineering,2018,35(3):620−628.

    [10]

    GUO C H,HAN J Q. Research on energy absorbing components of ZQL hydraulic support[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(3):176. doi: 10.1007/s40430-022-03999-6

    [11] 王春华,安达,韩冲,等. 冲击地压新型加肋板圆管式吸能防冲构件的仿真与试验[J]. 振动与冲击,2019,38(11):203−210,241.

    WANG Chunhua,AN Da,HAN Chong,et al. Simulation and tests for new tubular type energy-absorbing and anti-impact members with stiffened plate under rock burst[J]. Journal of Vibration and Shock,2019,38(11):203−210,241.

    [12] 张建卓,刘欢,王洁. 直纹管外翻式构件设计与吸能特性研究[J]. 振动与冲击,2020,39(9):49−56.

    ZHANG Jianzhuo,LIU Huan,WANG Jie. Design and energy-absorbing properties of the everting components of straight corrugated tubes[J]. Journal of Vibration and Shock,2020,39(9):49−56.

    [13]

    LIU Q,MA J B,HE Z H,et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes[J]. Composites Part B:Engineering,2017,121:134−144. doi: 10.1016/j.compositesb.2017.03.034

    [14]

    CHEN J X,XIE J,ZHU H,et al. Integrated honeycomb structure of a beetle forewing and its imitation[J]. Materials Science and Engineering:C,2012,32(3):613−618.

    [15]

    CHEN J X,GU C L,GUO S J,et al. Integrated honeycomb technology motivated by the structure of beetle forewings[J]. Materials Science and Engineering:C,2012,32(7):1813−1817.

    [16]

    CHEN J X,HE C L,GU C L,et al. Compressive and flexural properties of biomimetic integrated honeycomb plates[J]. Materials & Design,2014,64:214−220.

    [17]

    CHEN W G,WIERZBICKI T. Relative merits of single-cell,multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures,2001,39(4):287−306. doi: 10.1016/S0263-8231(01)00006-4

    [18] 潘一山,齐庆新,王爱文,等. 煤矿冲击地压巷道三级支护理论与技术[J]. 煤炭学报,2020,45(5):1585−1594.

    PAN Yishan,QI Qingxin,WANG Aiwen,et al. Theory and technology of three levels support in bump-prone roadway[J]. Journal of China Coal Society,2020,45(5):1585−1594.

    [19] 煤矿用液压支架 第1部分:通用技术条件:GB 25974.1—2010[S].
    [20]

    JIN M Z,YIN G S,HAO W Q,et al. Energy absorption characteristics of multi-cell tubes with different cross-sectional shapes under quasi-static axial crushing[J]. International Journal of Crashworthiness,2022,27(2):565−580. doi: 10.1080/13588265.2020.1826825

    [21]

    QIU N,GAO Y K,FANG J G,et al. Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing[J]. Thin-Walled Structures,2016,102:111−121. doi: 10.1016/j.tws.2016.01.023

    [22]

    WIERZBICKI T,ABRAMOWICZ W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied Mechanics,1983,50:727. doi: 10.1115/1.3167137

    [23] 潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    PAN Yishan,LI Zhonghua,ZHANG Mengtao. Distribution,type,mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    [24] 肖晓春,朱恒,徐军,等. 含泡沫铝填充多胞方管吸能立柱防冲特性数值研究[J]. 煤炭科学技术,2023,51(10):302−311.

    XIAO Xiaochun,ZHU Heng,XU Jun,et al. Numerical study on anti-impact characteristics of energy absorbing column with multicellular square tube filled with aluminum foam[J]. Coal Science and Technology,2023,51(10):302−311.

    [25] 宋嘉祺. 冲击地压巷道支架防冲性能及优化设计[D]. 北京:北方工业大学,2020.

    SONG Jiaqi. Anti-scour performance and optimal design of roadway support in rockburst[D]. Beijing:North China University of Technology,2020.

图(24)  /  表(5)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  13
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 网络出版日期:  2024-12-13
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回