Research on data management technology of shearer based on protocol matching and data compression
-
摘要:
采煤机作为综采工作面的关键装备,其智能化水平的提升对提高矿山智能化体系建设具有重要作用。当前,复合传感与精细化监控技术日益成为智能化采煤机研制的主流方向,导致所需监控的数据量明显提升,对采煤机数据管理系统提出了更高的要求。采煤机远程监控系统的应用效果受协议适配度与监控数据传输及储存能力影响严重。为了提高采煤机远程管控系统的适配性和数据管理的时效性,降低采煤机远程监控系统开发及部署难度,开展了通讯协议匹配解析和实时数据压缩存储相关研究。首先构建采煤机通讯协议树模型,提出基于子树匹配的采煤机通讯协议相似度计算方法,设计了采煤机通讯协议匹配算法,实现了不同型号采煤机通讯协议点表自适应匹配与解析;其次设计了基于相同状态字的开关传感量压缩算法和基于变长编码的模拟传感量压缩算法,提高了采煤机实时数据的压缩比,降低了数据存储子系统开销;最后,构建了基于协议匹配和数据压缩的采煤机远程监控系统,并进行实验测试。测试结果表明:本次实验中,所提出的基于子树匹配的采煤机通讯协议相似度计算方法与专家参考值一致,协议匹配吻合度可达100%;所提出的面向采煤机的数据压缩算法对开关量和模拟量的压缩率分别达到了99.16%和91.80%。
Abstract:Shearer as the key equipment of fully mechanized mining face, its improvement of the intelligence level plays an important role in improving the construction of the coal-mine intelligence. At present, composite sensing and fine monitoring technologies have increasingly become the mainstream direction of the development of intelligent shearer, resulting in a significant increase in the amount of data required to monitor, and higher requirements for the data management system of shearer are put forward. The application effect of shearer remote monitoring system is seriously affected by the suitability of the communication protocol and the capacities for the transmission and storage of the monitoring data. In order to improve the adaptability of the shearer remote control system and the timeliness of data management, and reduce the difficulty of development and deployment of the shearer remote monitoring system, the relevant research was carried out on communication protocol matching analysis and real-time data compression storage. Firstly, the shearer communication protocol tree model is constructed, the similarity calculation method of shearer communication protocol based on sub-tree matching is proposed. Then the matching algorithm of shearer communication protocol is designed, and the adaptive matching and parsing of communication protocol point table of different types of shearer is realized. Next, the switching sensor data compression algorithm based on the same state word and the analog sensor data compression algorithm based on the variable length coding are designed to improve the compression ratio of the real-time data of the shearer and reduce the overhead of the data storage subsystem. Finally, a remote monitoring system of shearer based on protocol matching and data compression was constructed and tested. The experimental results show that: the similarity calculation method of shearer communication protocol based on sub-tree matching proposed in this paper is consistent with the expert reference value, and the protocol matching coincidence can reach 100%. The proposed data compression algorithm for shearer achieves 99.16% and 91.80% compression rates for switching and analog data, respectively.
-
-
表 1 编码数字映射
Table 1 Encoding digital mapping table
原始数字 编码数字 0 000 1 001 2 010 3 011 4 100 5 101 6 1100 7 1101 8 1110 9 1111 表 2 标识数字编码映射
Table 2 Identifies the digital encoding mapping table
标准编码位数 标识数字 0 00 1 01 2 10 3 11 表 3 CAN数据帧
Table 3 CAN data frame
CAN帧 CAN帧信息 b`\x08\x00\x00\x04\xa0\x08\x00\x00\x00\x00\x00\x00\x00` 右牵155温度正常 b`\x08\x00\x00\x04\xa0\x04\x00\x00\x00\x00\x00\x00\x00` 左牵155温度正常 b`\x08\x00\x00\x04\xa0\x02\x00\x00\x00\x00\x00\x00\x00` 顺停 b`\x08\x00\x00\x04\xa0\x01\x00\x00\x00\x00\x00\x00\x00` 顺启 b`\x08\x00\x00\x04\xa0\x00\x08\x00\x00\x00\x00\x00\x00` 左截割停止 b`\x08\x00\x00\x04\xa0\x00\x04\x00\x00\x00\x00\x00\x00` 左截割启动 b`\x08\x00\x00\x04\xa0\x01\x04\x00\x00\x00\x00\x00\x00` 顺启、左截割启动 b`\x08\x00\x00\x04\xa0\x02\x04\x00\x00\x00\x00\x00\x00` 顺停、左截割启动 … … 表 4 协议匹配测试结果
Table 4 Protocol matching test results
新CAN通讯协议XML
树对应CAN-ID新通讯协议点表CAN-ID
匹配结果4A0 Y 4A1 Y 4A2 Y 4A3 Y 4A4 Y 4A5 Y 4A6 Y 4A7 Y 4A8 Y 4A9 Y 表 5 实时数据测试数据集
Table 5 Real-time data test data sets
时刻 数据字典 2024-04-06 18:06: 14.846413 {'象限编号': 1, '煤机在工作面位置': 3973 , '右牵': 1, '牵引变压器温度': 16.3, '输入左升': 0, '左滚筒采高': 0}2024-04-06 18:06: 15.103265 {'象限编号': 1, '煤机在工作面位置': 3974 , '右牵': 1, '牵引变压器温度': 15.6, '输入左升': 0, '左滚筒采高': 0}2024-04-06 18:06: 15.367207 {'象限编号': 1, '煤机在工作面位置': 3975 , '右牵': 1, '牵引变压器温度': 16.3, '输入左升': 0, '左滚筒采高': 0}2024-04-06 18:06: 15.629675 {'象限编号': 1, '煤机在工作面位置': 3975 , '右牵': 1, '牵引变压器温度': 15.7, '输入左升': 0, '左滚筒采高': 0}2024-04-06 18:06: 15.890272 {'象限编号': 1, '煤机在工作面位置': 3976 , '右牵': 1, '牵引变压器温度': 15.1, '输入左升': 0, '左滚筒采高': 0}2024-04-06 18:06: 16.178315 {'象限编号': 1, '煤机在工作面位置': 3977 , '右牵': 1, '牵引变压器温度': 16.8, '输入左升': 0, '左滚筒采高': 0}… … 表 6 压缩性能测试结果
Table 6 Compression performance test results
存储方式 模拟量
数据简
单存储模拟量数据
变长编码压
缩存储开关量
数据简
单存储开关量相
同状态字
压缩存储数据表行数 54712 228 27356 114 数据表大小/kB 6470.38 533 3249.69 27.1 -
[1] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[N]. 人民日报,2024-03-01(010). [2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001 WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
[3] 连东辉,袁瑞甫,崔科飞,等. 综采工作面自动化生产工艺研究与应用[J/OL]. 煤炭科学技术,1−11[2024-10-31]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240613.1512.005.html. LIAN Donghui,YUAN Ruifu,CUI Kefei,et al. Research and Application of Automatic Production Technology of Fully Mechanized Longwall Working Face for Complex Condition Coal Seam[J/OL]. 1−11[2024-10-31]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240613.1512.005.html.
[4] LI C Q,CHEN Y Q,SHANG Y L. A review of industrial big data for decision making in intelligent manufacturing[J]. Engineering Science and Technology,An International Journal,2022,29:101021.
[5] 徐卫鹏. 我国采煤机技术创新发展研究[J]. 煤矿机械,2021,42(1):27−29. XU Weipeng. Study on innovation and development of shearer technology in China[J]. Coal Mine Machinery,2021,42(1):27−29.
[6] 赵亦辉,赵友军,周展. 综采工作面采煤机智能化技术研究现状[J]. 工矿自动化,2022,48(2):11−18,28. ZHAO Yihui,ZHAO Youjun,ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Industry and Mine Automation,2022,48(2):11−18,28.
[7] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践:纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18. WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of coal science and technology[J]. Coal Science and Technology,2023,51(1):1−18.
[8] 葛世荣. 采煤机技术发展历程(五):自动化技术[J]. 中国煤炭,2020,46(10):1−15. doi: 10.3969/j.issn.1006-530X.2020.10.001 GE Shirong. The development history of coal shearer technology (part five):automation technology[J]. China Coal,2020,46(10):1−15. doi: 10.3969/j.issn.1006-530X.2020.10.001
[9] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284. YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.
[10] 李福兴,李璐爔. 面向煤炭开采的大数据处理平台构建关键技术[J]. 煤炭学报,2019,44(S1):362−369. LI Fuxing,LI Luxi. Key technologies of big data processing platform construction for coal mining[J]. Journal of China Coal Society,2019,44(S1):362−369.
[11] 汪佳彪,王忠宾,张霖,等. 基于以太网和CAN总线的液压支架电液控制系统研究[J]. 煤炭学报,2016,41(6):1575−1581. WANG Jiabiao,WANG Zhongbin,ZHANG Lin,et al. Research on electro-hydraulic control system of hydraulic support based on Ethernet and CAN-Bus[J]. Journal of China Coal Society,2016,41(6):1575−1581.
[12] 薛霜思,曹晖,贾立新,等. 矿用电机分布式远程智能在线监测系统设计[J]. 煤炭学报,2023,48(S1):368−380. XUE Shuangsi,CAO Hui,JIA Lixin,et al. Design of distributed remote intelligent online monitoring system for mining motors[J]. Journal of China Coal Society,2023,48(S1):368−380.
[13] 张林强. 煤矿掘进机新型智能电控系统设计与研究[J]. 煤炭技术,2024,43(1):245−248. ZHANG Linqiang. Design and research of new intelligent electric control system for coal mine boring machine[J]. Coal Technology,2024,43(1):245−248.
[14] 赵海伟. 基于CANopen的煤矿多设备协同控制方法[J]. 煤炭技术,2022,41(8):221−223. ZHAO Haiwei. CANopen-based coal mine multi-equipment linkage control method[J]. Coal Technology,2022,41(8):221−223.
[15] 徐化岩,初彦龙. 基于influxDB的工业时序数据库引擎设计[J]. 计算机应用与软件,2019,36(9):33−36,40. doi: 10.3969/j.issn.1000-386x.2019.09.006 XU Huayan,CHU Yanlong. Design of industrial time series database engine based on influxdb[J]. Computer Applications and Software,2019,36(9):33−36,40. doi: 10.3969/j.issn.1000-386x.2019.09.006
[16] 丁小欧,于晟健,王沐贤,等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报,2020,31(3):726−747. DING Xiaoou,YU Shengjian,WANG Muxian,et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software,2020,31(3):726−747.
[17] 丁远. 基于无主通信方式的煤矿监控系统传感器关键技术[J]. 煤矿安全,2023,54(6):207−211. DING Yuan. Key technology of sensor in coal mine monitoring system based on hostless communication[J]. Safety in Coal Mines,2023,54(6):207−211.
[18] 符大利. 基于数字孪生驱动的综采工作面远程监控系统[J]. 煤炭技术,2022,41(4):175−178. FU Dali. Remote Monitoring System of Fully Mechanized Mining Face Based on Digital Twin Drive[J]. Coal Technology,2022,41(4):175−178.
[19] 苗青. 多种方式数据采集及通讯技术的需求分析[J]. 工业控制计算机,2023,36(10):124−125,142. doi: 10.3969/j.issn.1001-182X.2023.10.048 MIAO Qing. Requirement analysis of various data collection and communication technologies[J]. Industrial Control Computer,2023,36(10):124−125,142. doi: 10.3969/j.issn.1001-182X.2023.10.048
[20] 张丽霞. 数据开放平台无线传感网络能耗在线监测方法[J]. 信息技术,2024,48(3):70−74,82. ZHANG Lixia. Online monitoring method for energy consumption of wireless sensor network on data open platform[J]. Information Technology,2024,48(3):70−74,82.