高级检索

基于协议匹配和数据压缩的采煤机数据管理技术研究

王忠宾, 魏东, 司垒, 梁超权, 谭超, 赵亦辉

王忠宾,魏 东,司 垒,等. 基于协议匹配和数据压缩的采煤机数据管理技术研究[J]. 煤炭科学技术,2024,52(11):89−102. DOI: 10.12438/cst.2024-1138
引用本文: 王忠宾,魏 东,司 垒,等. 基于协议匹配和数据压缩的采煤机数据管理技术研究[J]. 煤炭科学技术,2024,52(11):89−102. DOI: 10.12438/cst.2024-1138
WANG Zhongbin,WEI Dong,SI Lei,et al. Research on data management technology of shearer based on protocol matching and data compression[J]. Coal Science and Technology,2024,52(11):89−102. DOI: 10.12438/cst.2024-1138
Citation: WANG Zhongbin,WEI Dong,SI Lei,et al. Research on data management technology of shearer based on protocol matching and data compression[J]. Coal Science and Technology,2024,52(11):89−102. DOI: 10.12438/cst.2024-1138

基于协议匹配和数据压缩的采煤机数据管理技术研究

基金项目: 国家自然科学基金资助项目(52174152, 52204179);江苏省自然科学基金资助项目(BK20221128)
详细信息
    作者简介:

    王忠宾: (1972-),男,江苏徐州人,教授,博士。E-mail:wzbcmee@163.com

    通讯作者:

    魏东: (1992-),男,辽宁阜新人,讲师,博士。E-mail:weidongcmee@cumt.edu.cn

  • 中图分类号: TD421

Research on data management technology of shearer based on protocol matching and data compression

  • 摘要:

    采煤机作为综采工作面的关键装备,其智能化水平的提升对提高矿山智能化体系建设具有重要作用。当前,复合传感与精细化监控技术日益成为智能化采煤机研制的主流方向,导致所需监控的数据量明显提升,对采煤机数据管理系统提出了更高的要求。采煤机远程监控系统的应用效果受协议适配度与监控数据传输及储存能力影响严重。为了提高采煤机远程管控系统的适配性和数据管理的时效性,降低采煤机远程监控系统开发及部署难度,开展了通讯协议匹配解析和实时数据压缩存储相关研究。首先构建采煤机通讯协议树模型,提出基于子树匹配的采煤机通讯协议相似度计算方法,设计了采煤机通讯协议匹配算法,实现了不同型号采煤机通讯协议点表自适应匹配与解析;其次设计了基于相同状态字的开关传感量压缩算法和基于变长编码的模拟传感量压缩算法,提高了采煤机实时数据的压缩比,降低了数据存储子系统开销;最后,构建了基于协议匹配和数据压缩的采煤机远程监控系统,并进行实验测试。测试结果表明:本次实验中,所提出的基于子树匹配的采煤机通讯协议相似度计算方法与专家参考值一致,协议匹配吻合度可达100%;所提出的面向采煤机的数据压缩算法对开关量和模拟量的压缩率分别达到了99.16%和91.80%。

    Abstract:

    Shearer as the key equipment of fully mechanized mining face, its improvement of the intelligence level plays an important role in improving the construction of the coal-mine intelligence. At present, composite sensing and fine monitoring technologies have increasingly become the mainstream direction of the development of intelligent shearer, resulting in a significant increase in the amount of data required to monitor, and higher requirements for the data management system of shearer are put forward. The application effect of shearer remote monitoring system is seriously affected by the suitability of the communication protocol and the capacities for the transmission and storage of the monitoring data. In order to improve the adaptability of the shearer remote control system and the timeliness of data management, and reduce the difficulty of development and deployment of the shearer remote monitoring system, the relevant research was carried out on communication protocol matching analysis and real-time data compression storage. Firstly, the shearer communication protocol tree model is constructed, the similarity calculation method of shearer communication protocol based on sub-tree matching is proposed. Then the matching algorithm of shearer communication protocol is designed, and the adaptive matching and parsing of communication protocol point table of different types of shearer is realized. Next, the switching sensor data compression algorithm based on the same state word and the analog sensor data compression algorithm based on the variable length coding are designed to improve the compression ratio of the real-time data of the shearer and reduce the overhead of the data storage subsystem. Finally, a remote monitoring system of shearer based on protocol matching and data compression was constructed and tested. The experimental results show that: the similarity calculation method of shearer communication protocol based on sub-tree matching proposed in this paper is consistent with the expert reference value, and the protocol matching coincidence can reach 100%. The proposed data compression algorithm for shearer achieves 99.16% and 91.80% compression rates for switching and analog data, respectively.

  • 图  1   采煤机实时工况数据采集

    Figure  1.   Shearer real-time working condition data collection

    图  2   采煤机通讯协议匹配算法过程

    Figure  2.   Shearer communication protocol matching algorithm process

    图  3   采煤机CAN通讯协议树

    Figure  3.   Overall CAN communication protocol tree

    图  4   采煤机CAN通讯协议XML树

    Figure  4.   CAN communication protocol XML tree

    图  5   测试数据帧子树匹配

    Figure  5.   Test data frame subtree matching

    图  6   相似度散点图

    Figure  6.   Similarity scatter plot

    图  7   原CAN通讯协议树中CAN帧子树的差异点

    Figure  7.   The difference point of CAN frame subtree in the original CAN communication protocol tree

    图  8   采煤机实时数据压缩存取过程

    Figure  8.   Shearer real-time data compression and access process

    图  9   相同状态字压缩算法操作过程

    Figure  9.   Operation process of the same status word compression algorithm

    图  10   相同状态字压缩算法流程

    Figure  10.   Flow chart of the same status word compression algorithm

    图  11   开关量数据

    Figure  11.   Switch data

    图  12   模拟量数据

    Figure  12.   Analog data

    图  13   采煤机开关量数据压缩算法对比

    Figure  13.   Comparison of compression algorithms for shearer switch data

    图  14   采煤机模拟量数据压缩算法对比

    Figure  14.   Comparison of compression algorithms for shearer analog data

    图  15   采煤机远程监控系统架构

    Figure  15.   System architecture design

    图  16   系统功能设计

    Figure  16.   System function design

    图  17   CAN通讯协议XML树

    Figure  17.   CAN communication protocol XML tree

    图  18   存储结果

    Figure  18.   Store results

    表  1   编码数字映射

    Table  1   Encoding digital mapping table

    原始数字编码数字
    0000
    1001
    2010
    3011
    4100
    5101
    61100
    71101
    81110
    91111
    下载: 导出CSV

    表  2   标识数字编码映射

    Table  2   Identifies the digital encoding mapping table

    标准编码位数标识数字
    000
    101
    210
    311
    下载: 导出CSV

    表  3   CAN数据帧

    Table  3   CAN data frame

    CAN帧CAN帧信息
    b`\x08\x00\x00\x04\xa0\x08\x00\x00\x00\x00\x00\x00\x00`右牵155温度正常
    b`\x08\x00\x00\x04\xa0\x04\x00\x00\x00\x00\x00\x00\x00`左牵155温度正常
    b`\x08\x00\x00\x04\xa0\x02\x00\x00\x00\x00\x00\x00\x00`顺停
    b`\x08\x00\x00\x04\xa0\x01\x00\x00\x00\x00\x00\x00\x00`顺启
    b`\x08\x00\x00\x04\xa0\x00\x08\x00\x00\x00\x00\x00\x00`左截割停止
    b`\x08\x00\x00\x04\xa0\x00\x04\x00\x00\x00\x00\x00\x00`左截割启动
    b`\x08\x00\x00\x04\xa0\x01\x04\x00\x00\x00\x00\x00\x00`顺启、左截割启动
    b`\x08\x00\x00\x04\xa0\x02\x04\x00\x00\x00\x00\x00\x00`顺停、左截割启动
    下载: 导出CSV

    表  4   协议匹配测试结果

    Table  4   Protocol matching test results

    新CAN通讯协议XML
    树对应CAN-ID
    新通讯协议点表CAN-ID
    匹配结果
    4A0Y
    4A1Y
    4A2Y
    4A3Y
    4A4Y
    4A5Y
    4A6Y
    4A7Y
    4A8Y
    4A9Y
    下载: 导出CSV

    表  5   实时数据测试数据集

    Table  5   Real-time data test data sets

    时刻 数据字典
    2024-04-06 18:06:14.846413 {'象限编号': 1, '煤机在工作面位置': 3973, '右牵': 1, '牵引变压器温度': 16.3, '输入左升': 0, '左滚筒采高': 0}
    2024-04-06 18:06:15.103265 {'象限编号': 1, '煤机在工作面位置': 3974, '右牵': 1, '牵引变压器温度': 15.6, '输入左升': 0, '左滚筒采高': 0}
    2024-04-06 18:06:15.367207 {'象限编号': 1, '煤机在工作面位置': 3975, '右牵': 1, '牵引变压器温度': 16.3, '输入左升': 0, '左滚筒采高': 0}
    2024-04-06 18:06:15.629675 {'象限编号': 1, '煤机在工作面位置': 3975, '右牵': 1, '牵引变压器温度': 15.7, '输入左升': 0, '左滚筒采高': 0}
    2024-04-06 18:06:15.890272 {'象限编号': 1, '煤机在工作面位置': 3976, '右牵': 1, '牵引变压器温度': 15.1, '输入左升': 0, '左滚筒采高': 0}
    2024-04-06 18:06:16.178315 {'象限编号': 1, '煤机在工作面位置': 3977, '右牵': 1, '牵引变压器温度': 16.8, '输入左升': 0, '左滚筒采高': 0}
    下载: 导出CSV

    表  6   压缩性能测试结果

    Table  6   Compression performance test results

    存储方式 模拟量
    数据简
    单存储
    模拟量数据
    变长编码压
    缩存储
    开关量
    数据简
    单存储
    开关量相
    同状态字
    压缩存储
    数据表行数 54712 228 27356 114
    数据表大小/kB 6470.38 533 3249.69 27.1
    下载: 导出CSV
  • [1] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[N]. 人民日报,2024-03-01(010).
    [2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    [3] 连东辉,袁瑞甫,崔科飞,等. 综采工作面自动化生产工艺研究与应用[J/OL]. 煤炭科学技术,1−11[2024-10-31]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240613.1512.005.html.

    LIAN Donghui,YUAN Ruifu,CUI Kefei,et al. Research and Application of Automatic Production Technology of Fully Mechanized Longwall Working Face for Complex Condition Coal Seam[J/OL]. 1−11[2024-10-31]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240613.1512.005.html.

    [4]

    LI C Q,CHEN Y Q,SHANG Y L. A review of industrial big data for decision making in intelligent manufacturing[J]. Engineering Science and Technology,An International Journal,2022,29:101021.

    [5] 徐卫鹏. 我国采煤机技术创新发展研究[J]. 煤矿机械,2021,42(1):27−29.

    XU Weipeng. Study on innovation and development of shearer technology in China[J]. Coal Mine Machinery,2021,42(1):27−29.

    [6] 赵亦辉,赵友军,周展. 综采工作面采煤机智能化技术研究现状[J]. 工矿自动化,2022,48(2):11−18,28.

    ZHAO Yihui,ZHAO Youjun,ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Industry and Mine Automation,2022,48(2):11−18,28.

    [7] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践:纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18.

    WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of coal science and technology[J]. Coal Science and Technology,2023,51(1):1−18.

    [8] 葛世荣. 采煤机技术发展历程(五):自动化技术[J]. 中国煤炭,2020,46(10):1−15. doi: 10.3969/j.issn.1006-530X.2020.10.001

    GE Shirong. The development history of coal shearer technology (part five):automation technology[J]. China Coal,2020,46(10):1−15. doi: 10.3969/j.issn.1006-530X.2020.10.001

    [9] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.

    [10] 李福兴,李璐爔. 面向煤炭开采的大数据处理平台构建关键技术[J]. 煤炭学报,2019,44(S1):362−369.

    LI Fuxing,LI Luxi. Key technologies of big data processing platform construction for coal mining[J]. Journal of China Coal Society,2019,44(S1):362−369.

    [11] 汪佳彪,王忠宾,张霖,等. 基于以太网和CAN总线的液压支架电液控制系统研究[J]. 煤炭学报,2016,41(6):1575−1581.

    WANG Jiabiao,WANG Zhongbin,ZHANG Lin,et al. Research on electro-hydraulic control system of hydraulic support based on Ethernet and CAN-Bus[J]. Journal of China Coal Society,2016,41(6):1575−1581.

    [12] 薛霜思,曹晖,贾立新,等. 矿用电机分布式远程智能在线监测系统设计[J]. 煤炭学报,2023,48(S1):368−380.

    XUE Shuangsi,CAO Hui,JIA Lixin,et al. Design of distributed remote intelligent online monitoring system for mining motors[J]. Journal of China Coal Society,2023,48(S1):368−380.

    [13] 张林强. 煤矿掘进机新型智能电控系统设计与研究[J]. 煤炭技术,2024,43(1):245−248.

    ZHANG Linqiang. Design and research of new intelligent electric control system for coal mine boring machine[J]. Coal Technology,2024,43(1):245−248.

    [14] 赵海伟. 基于CANopen的煤矿多设备协同控制方法[J]. 煤炭技术,2022,41(8):221−223.

    ZHAO Haiwei. CANopen-based coal mine multi-equipment linkage control method[J]. Coal Technology,2022,41(8):221−223.

    [15] 徐化岩,初彦龙. 基于influxDB的工业时序数据库引擎设计[J]. 计算机应用与软件,2019,36(9):33−36,40. doi: 10.3969/j.issn.1000-386x.2019.09.006

    XU Huayan,CHU Yanlong. Design of industrial time series database engine based on influxdb[J]. Computer Applications and Software,2019,36(9):33−36,40. doi: 10.3969/j.issn.1000-386x.2019.09.006

    [16] 丁小欧,于晟健,王沐贤,等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报,2020,31(3):726−747.

    DING Xiaoou,YU Shengjian,WANG Muxian,et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software,2020,31(3):726−747.

    [17] 丁远. 基于无主通信方式的煤矿监控系统传感器关键技术[J]. 煤矿安全,2023,54(6):207−211.

    DING Yuan. Key technology of sensor in coal mine monitoring system based on hostless communication[J]. Safety in Coal Mines,2023,54(6):207−211.

    [18] 符大利. 基于数字孪生驱动的综采工作面远程监控系统[J]. 煤炭技术,2022,41(4):175−178.

    FU Dali. Remote Monitoring System of Fully Mechanized Mining Face Based on Digital Twin Drive[J]. Coal Technology,2022,41(4):175−178.

    [19] 苗青. 多种方式数据采集及通讯技术的需求分析[J]. 工业控制计算机,2023,36(10):124−125,142. doi: 10.3969/j.issn.1001-182X.2023.10.048

    MIAO Qing. Requirement analysis of various data collection and communication technologies[J]. Industrial Control Computer,2023,36(10):124−125,142. doi: 10.3969/j.issn.1001-182X.2023.10.048

    [20] 张丽霞. 数据开放平台无线传感网络能耗在线监测方法[J]. 信息技术,2024,48(3):70−74,82.

    ZHANG Lixia. Online monitoring method for energy consumption of wireless sensor network on data open platform[J]. Information Technology,2024,48(3):70−74,82.

图(18)  /  表(6)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  7
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-04
  • 网络出版日期:  2024-11-01
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回