高级检索

基于神经网络补偿的液压支架群推移系统直线度控制方法

王云飞, 赵继云, 张鹤, 王浩, 张阳

王云飞,赵继云,张 鹤,等. 基于神经网络补偿的液压支架群推移系统直线度控制方法[J]. 煤炭科学技术,2024,52(11):174−185. DOI: 10.12438/cst.2024-0951
引用本文: 王云飞,赵继云,张 鹤,等. 基于神经网络补偿的液压支架群推移系统直线度控制方法[J]. 煤炭科学技术,2024,52(11):174−185. DOI: 10.12438/cst.2024-0951
WANG Yunfei,ZHAO Jiyun,ZHANG He,et al. Straightness control method of hydraulic support group pushing system based on neural network compensation[J]. Coal Science and Technology,2024,52(11):174−185. DOI: 10.12438/cst.2024-0951
Citation: WANG Yunfei,ZHAO Jiyun,ZHANG He,et al. Straightness control method of hydraulic support group pushing system based on neural network compensation[J]. Coal Science and Technology,2024,52(11):174−185. DOI: 10.12438/cst.2024-0951

基于神经网络补偿的液压支架群推移系统直线度控制方法

基金项目: 国家自然科学基金重点资助项目(U1910212);国家自然科学基金青年基金资助项目(52404268)
详细信息
    作者简介:

    王云飞: (1993—),男,河北唐山人,讲师,博士。E-mail:yunfeiwang@cumt.edu.cn

  • 中图分类号: TD421

Straightness control method of hydraulic support group pushing system based on neural network compensation

  • 摘要:

    煤矿综采工作面的直线度控制是实现智能化开采的关键技术之一,液压支架推移油缸的位置控制性能直接影响着工作面直线度水平,但推移油缸电液系统的参数不确定性、建模误差和未知外部干扰等因素增加了液压支架推移系统的位置控制难度。针对此问题,首先,建立了液压支架推移油缸电液系统的数学模型,考虑到推移油缸仅有位置信息可测的实际工况,将其转化成Brunovsky标准型的形式。其次,设计了高阶滑模状态观测器利用可测的位置信息估计系统其他难以直接测量状态信息,同时,以系统状态信息为学习数据,设计了一种基于径向基神经网络的扰动观测器实时估计和补偿系统的未知扰动力。再次,结合反步设计原理,针对液压支架推移油缸拉架过程提出了一种鲁棒输出反馈控制器,并利用Lyapunov理论对整个闭环控制系统进行了稳定性验证。然后,基于ZY3200/08/18D液压支架推移油缸的实际物理参数建立了仿真模型,通过仿真测试发现所设计的鲁棒输出控制器的最终位置精度较传统比例积分控制器提高了77.19%,神经网络补偿器针对不同油缸载荷的估计精度分别为64.41%和75.38%。最后,为了进一步验证新型控制器的有效性,搭建了一个液压支架群多缸控制系统试验台,并开展了推移油缸拉架过程的模拟实验,实验结果表明:鲁棒输出反馈控制器较比例积分控制器的平均跟踪精度提高了47.23%,最终位置精度提高了75.00%,相邻推移油缸的平均同步误差提高了47.08%。研究结果为液压支架推移系统的动力学分析和直线度控制提供了一种思路。

    Abstract:

    Straightness control of fully mechanized mining face is one of the key technologies to realize intelligent mining, and the position control performance of the hydraulic support push cylinder directly affects the straightness level of the mining face, but the parameter uncertainty, the modeling error and the unknown external disturbances of the push cylinder electro-hydraulic system have increased the difficulty of the position control of the hydraulic support push system. Firstly, the mathematical model of the electro-hydraulic system of the hydraulic support push cylinder is established, which is transformed into Brunovsky standard form taking into account the actual working condition that the push cylinder has only measurable position information. Secondly, a high-order sliding mode state observer is designed to estimate other system states using the measurable position information, while a radial-based neural network-based disturbance observer is designed to estimate and compensate the unknown disturbance forces of the system in real time with using the estimated system state information as the learning data. Thirdly, an output feedback robust controller is proposed for the hydraulic support push cylinder with Backstepping design principle, and the stability of the whole closed-loop control system is verified by Lyapunov theory. Fourthly, a simulation model is established based on the actual physical parameters of the ZY3200/08/18D hydraulic support push cylinder, and the simulation results show that the final position accuracy of the designed controller is improved by 77.19% compared with traditional PI controller, and the estimation accuracy of the neural network compensator for the loads of different cylinders are 64.41% and 75.38%, respectively. Finally, to further verify the effectiveness of the proposed controller, a hydraulic support group multi-cylinder control system test rig is built and the pulling process experiments are carried out. The experimental results showed that the average tracking accuracy of the new controller is improved by 47.23%, the final position accuracy is improved by 75.00% and the average synchronization error of adjacent cylinders is improved by 47.08% compared with the PI controller. The research results provide an idea for the dynamic analysis and straightness control of hydraulic support pushing system.

  • 图  1   液压支架群多缸推移系统的示意

    Figure  1.   Hydraulic support group multi-cylinder system diagram

    图  2   控制器结构示意

    λn—HOSMO系数;n—系统状态估计值;vn—辅助变量;ŵn—估计权重;Wn*—理想权重;hj—隐藏层输出;ki—控制器系数;εN—测量噪音最大幅值

    Figure  2.   Schematic diagram of controller structure

    图  3   拉架过程轨迹跟踪

    Figure  3.   Trajectory tracking in frame drawing process

    图  4   拉架过程轨迹跟踪误差

    Figure  4.   Tracking error in frame drawing process

    图  5   拉架过程双缸同步误差

    Figure  5.   Synchronization error in frame drawing process

    图  6   高阶滑模状态观测器估计效果

    Figure  6.   High-order sliding mode state observer estimation performance

    图  7   神经网络补偿器估计效果

    Figure  7.   Neural network compensator estimation performance

    图  8   液压支架群多缸推移系统模拟实验台

    Figure  8.   Hydraulic support group multi-cylinder moving system simulation test bench

    图  9   推移油缸轨迹跟踪

    Figure  9.   Trajectory tracking performance of moving cylinder

    图  10   推移油缸轨迹跟踪误差

    Figure  10.   Tracking error of moving cylinder

    图  11   推移系统双缸同步误差

    Figure  11.   Synchronization error of moving cylinder

    图  12   推移油缸状态估计

    Figure  12.   Estimation performance of system states

    图  13   推移油缸未知扰动力估计

    Figure  13.   Estimation performance of unknown disturbance force

    表  1   推移油缸物理量参数

    Table  1   Moving cylinder physical parameters

    参数 取值
    质量m/kg 320
    供油压力Ps/MPa 31.5
    回油压力Pr/Pa 0
    阻尼系数b/(N·m) 2000
    无杆腔面积A1/m2 0.0154
    有杆腔面积A2/m2 0.0083
    进油腔初始体积V01/m3 0.02
    回油腔初始体积V02/m3 0.02
    体积模量βe/Pa 7×108
    内部泄露系数Ct/(m3·Pa·s−1 4×10–13
    下载: 导出CSV
  • [1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    [2] 葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774−788.

    GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774−788.

    [3] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34−53.

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34−53.

    [4] 方新秋,陈宁宁,冯豪天,等. 刮板输送机直线度光纤精准感知与调直关键技术[J]. 采矿与安全工程学报,2023,40(5):1043−1056.

    FANG Xinqiu,CHEN Ningning,FENG Haotian,et al. Key technologies of optical fiber accurate perception and straightening of straightness of the scraper conveyor[J]. Journal of Mining & Safety Engineering,2023,40(5):1043−1056.

    [5] 王世博,葛世荣,王世佳,等. 长壁综采工作面无人自主开采发展路径与挑战[J]. 煤炭科学技术,2022,50(2):231−243.

    WANG Shibo,GE Shirong,WANG Shijia,et al. Development and chanllege of unmanned autonomous longwall fully-mechanized coal mining face[J]. Coal Science and Technology,2022,50(2):231−243.

    [6] 王雪松,王世博,王世佳,等. 刮板输送机直线度误差预测模型[J]. 中国矿业大学学报,2023,52(1):168−177.

    WANG Xuesong,WANG Shibo,WANG Shijia,et al. Prediction model of straightness error of scraper conveyor[J]. Journal of China University of Mining & Technology,2023,52(1):168−177.

    [7] 王宇卓,常宗旭,高飞,等. 液压支架的调直方法研究[J]. 机电工程,2021,38(5):645−649. doi: 10.3969/j.issn.1001-4551.2021.05.020

    WANG Yuzhuo,CHANG Zongxu,GAO Fei,et al. Study on the alignment method of hydraulic support[J]. Journal of Mechanical & Electrical Engineering,2021,38(5):645−649. doi: 10.3969/j.issn.1001-4551.2021.05.020

    [8] 王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652−666.

    WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652−666.

    [9] 任怀伟,张帅,张德生,等. 液压支架精准推移与快速跟机技术研究现状及发展趋势[J]. 工矿自动化,2022,48(8):1−9,15.

    REN Huaiwei,ZHANG Shuai,ZHANG Desheng,et al. Research status and development trend of hydraulic support precision pushing and fast follow-up technology[J]. Journal of Mine Automation,2022,48(8):1−9,15.

    [10]

    WANG Y F,ZHAO J Y,WANG H,et al. Output feedback control for the driving cylinder of hydraulic support with error constraint[J]. Journal of Vibration and Control,2023,29(13-14):3126−3136. doi: 10.1177/10775463221091336

    [11] 庞义辉,刘新华,王泓博,等. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法[J]. 采矿与安全工程学报,2023,40(6):1231−1242.

    PANG Yihui,LIU Xinhua,WANG Hongbo,et al. Support attitude and height analysis method of hydraulic support based on jack stroke drive[J]. Journal of Mining & Safety Engineering,2023,40(6):1231−1242.

    [12] 张卜文,寇子明,吴娟,等. 基于双速缓冲阀推移系统的压力特性研究[J]. 机电工程,2024,41(6):1002−1010. doi: 10.3969/j.issn.1001-4551.2024.06.006

    ZHANG Buwen,KOU Ziming,WU Juan,et al. Pressure characteristics of two-speed buffer valve pushing system[J]. Journal of Mechanical & Electrical Engineering,2024,41(6):1002−1010. doi: 10.3969/j.issn.1001-4551.2024.06.006

    [13] 张鹤,赵继云,王云飞,等. 双阀芯增量式高水基数字阀的设计及试验研究[J/OL]. 工程科学与技术:1−10[2024-11-01]. https://doi.org/10.15961/j.jsuese.202300256.

    ZHANG He,ZHAO Jiyun,WANG Yunfei,et al. Design and Experimental Study of Dual-spool Incremental High-water-based Digital Valve[J/OL]. Advanced Engineering Sciences:1−10[2024-11-01]. https://doi.org/10.15961/j.jsuese.202300256.

    [14] 刘尧,罗艳蕾,周大帅,等. 矿用电磁先导阀自适应电流驱动控制策略研究[J]. 机床与液压,2023,51(8):61−68. doi: 10.3969/j.issn.1001-3881.2023.08.009

    LIU Yao,LUO Yanlei,ZHOU Dashuai,et al. Research on adaptive current drive control strategy of mine-used solenoid pilot valve[J]. Machine Tool & Hydraulics,2023,51(8):61−68. doi: 10.3969/j.issn.1001-3881.2023.08.009

    [15] 廖瑶瑶,陶泽,廉自生. 三芯随动式水基比例阀位置跟随特性[J]. 机械工程学报,2023,59(6):131−140. doi: 10.3901/JME.2023.06.131

    LIAO Yaoyao,TAO Ze,LIAN Zisheng. Position control characteristics of the water proportional valve with three-core follow-up mechanism[J]. Journal of Mechanical Engineering,2023,59(6):131−140. doi: 10.3901/JME.2023.06.131

    [16]

    WANG H,ZHAO J Y,CAO C,et al. Modeling and simulation analysis of a novel proportional water flow valve with a digital pilot stage[J]. Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2024:267139169.

    [17] 赵瑞豪,廉自生,廖瑶瑶,等. 新型矿用比例方向阀动态特性及控制方法分析[J]. 液压与气动,2021,45(12):38−44. doi: 10.11832/j.issn.1000-4858.2021.12.005

    ZHAO Ruihao,LIAN Zisheng,LIAO Yaoyao,et al. Dynamic characteristics and control method analysis of a novel mine proportional directional valve[J]. Chinese Hydraulics & Pneumatics,2021,45(12):38−44. doi: 10.11832/j.issn.1000-4858.2021.12.005

    [18] 王峰. 液压支架精确推移控制方案研究与应用[J]. 工矿自动化,2017,43(5):6−9.

    WANG Feng. Research of precise pushing control scheme for hydraulic support and its application[J]. Industry and Mine Automation,2017,43(5):6−9.

    [19] 孙铭泽,王永强,常亚军,等. 液压支护机器人群组移架一致性分布式协同控制[J/OL]. 煤炭学报,1−16[2024-11-01]. https://doi.org/10.13225/j.cnki.jccs.2023.1516.

    SUN Mingze,WANG Yongqiang,CHANG Yajun,et al. Distributed Cooperative Control of Consistency of Hydraulic Support Robot Group Moving Frame[J/OL]. Journal of China Coal Society,2024,1−16[2024-11-01]. https://doi.org/10.13225/j.cnki.jccs.2023.1516.

    [20] 闫泽文,谢嘉成,李素华,等. 基于虚拟现实与数字孪生技术的综采工作面直线度求解[J]. 工矿自动化,2023,49(2):31−37.

    YAN Zewen,XIE Jiacheng,LI Suhua,et al. Straightness solution of the fully mechanized working face based on VR and DT technology[J]. Journal of Mine Automation,2023,49(2):31−37.

    [21] 赵叔吉,周杰,张帅,等. 基于AMESim的液压缸活塞位置超调量仿真分析[J]. 液压与气动,2023,47(1):138−145. doi: 10.11832/j.issn.1000-4858.2023.01.016

    ZHAO Shuji,ZHOU Jie,ZHANG Shuai,et al. Simulation on position overshoot of hydraulic cylinder piston based on AMESim[J]. Chinese Hydraulics & Pneumatics,2023,47(1):138−145. doi: 10.11832/j.issn.1000-4858.2023.01.016

    [22] 宋单阳,卢春贵,陶心雅,等. 基于最大熵卡尔曼滤波算法的液压支架调直方法[J]. 工矿自动化,2022,48(11):119−124.

    SONG Danyang,LU Chungui,TAO Xinya,et al. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation,2022,48(11):119−124.

    [23] 孟令宇,周如林,郭资鉴. 液压缸精准推移试验系统设计研究[J]. 煤炭科学技术,2023,51(6):237−245.

    MENG Lingyu,ZHOU Rulin,GUO Zijian. Design and research of hydraulic cylinder precise control test system[J]. Coal Science and Technology,2023,51(6):237−245.

    [24] 刘晓宾. 基于推移控制逻辑阀的液压支架推移控制系统优化研究[J]. 液压气动与密封,2021,41(12):13−15. doi: 10.3969/j.issn.1008-0813.2021.12.004

    LIU Xiaobin. Optimization of hydraulic support pushing control system with pushing control logic valve[J]. Hydraulics Pneumatics & Seals,2021,41(12):13−15. doi: 10.3969/j.issn.1008-0813.2021.12.004

    [25] 王世博,张辉. 综采工作面推移动力学模型与仿真分析[J]. 机械工程学报,2022,58(7):117−130. doi: 10.3901/JME.2022.07.117

    WANG Shibo,ZHANG Hui. Dynamic model and simulation analysis of advancement of fully mechanized mining face[J]. Journal of Mechanical Engineering,2022,58(7):117−130. doi: 10.3901/JME.2022.07.117

    [26] 田劼,李阳,张磊,等. 基于PSO-BP神经网络的临时支架支撑力自适应控制[J]. 工矿自动化,2023,49(7):67−74.

    TIAN Jie,LI Yang,ZHANG Lei,et al. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation,2023,49(7):67−74.

    [27] 汤裕,解辉,沈刚,等. 矿井提升机电液制动非线性控制方法[J]. 液压与气动,2023,47(7):46−54. doi: 10.11832/j.issn.1000-4858.2023.07.006

    TANG Yu,XIE Hui,SHEN Gang,et al. Nonlinear electro-hydraulic braking control method for mine hoists[J]. Chinese Hydraulics & Pneumatics,2023,47(7):46−54. doi: 10.11832/j.issn.1000-4858.2023.07.006

    [28] 曹萌萌,胡健,周海波,等. 基于神经网络的机电作动器滑模输出反馈控制[J]. 机械工程学报,2023,59(10):357−365. doi: 10.3901/JME.2023.10.357

    CAO Mengmeng,HU Jian,ZHOU Haibo,et al. Sliding mode output feedback control of electromechanical actuator based on neural network[J]. Journal of Mechanical Engineering,2023,59(10):357−365. doi: 10.3901/JME.2023.10.357

    [29] 葛文庆,李德同,宋亚东,等. 基于改进滑模观测器的电磁直线执行器无位移传感器控制[J/OL]. 北京航空航天大学学报,1−10[2024−11−01]. https://doi.org/10.13700/j.bh.1001-5965.2024.0291.

    GE Wenqing,LI Detong,SONG Yadong,et al. Displacement Sensorlesscontrol of Electromagnetic Linear Actuator Based on Improved Sliding Mode Observer[J/OL]. Journal of Beijing University of Aeronautics and Astronautics,1−10[2024−11−01]. https://doi.org/10.13700/j.bh.1001-5965.2024.0291.

    [30] 乌云嘎,徐会希,姜志斌. 基于RBF神经网络的新型AUV自抗扰控制方法[J]. 舰船科学技术,2023,45(18):85−91.

    WU Yunga,XU Huixi,JIANG Zhibin. Active disturbance rejection control method for AUV based on RBF neural network[J]. Ship Science and Technology,2023,45(18):85−91.

图(13)  /  表(1)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  3
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 网络出版日期:  2024-11-03
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回