高级检索

不同煤矸混合物的微波传播特性试验研究

司垒, 李嘉豪, 邢峰, 魏东, 戴剑博, 王忠宾

司 垒,李嘉豪,邢 峰,等. 不同煤矸混合物的微波传播特性试验研究[J]. 煤炭科学技术,2023,51(5):219−231

. DOI: 10.13199/j.cnki.cst.2022-0206
引用本文:

司 垒,李嘉豪,邢 峰,等. 不同煤矸混合物的微波传播特性试验研究[J]. 煤炭科学技术,2023,51(5):219−231

. DOI: 10.13199/j.cnki.cst.2022-0206

SI Lei,LI Jiahao,XING Feng,et al. Experimental study on microwave propagation characteristics of different coal-gangue mixtures[J]. Coal Science and Technology,2023,51(5):219−231

. DOI: 10.13199/j.cnki.cst.2022-0206
Citation:

SI Lei,LI Jiahao,XING Feng,et al. Experimental study on microwave propagation characteristics of different coal-gangue mixtures[J]. Coal Science and Technology,2023,51(5):219−231

. DOI: 10.13199/j.cnki.cst.2022-0206

不同煤矸混合物的微波传播特性试验研究

基金项目: 

国家自然科学基金面上资助项目(52074271);江苏省自然科学基金面上资助项目(BK20211245);江苏高校优势学科建设工程资助项目(苏政办发[2018]87号)

详细信息
    作者简介:

    司垒: (1987—),男,江苏徐州人,副教授,博士。Tel: 0516-83590777, E-mail:sileicool@163.com

    通讯作者:

    王忠宾: (1972—),男,安徽宿州人,教授,博士。Tel: 0516-83590798, E-mail:wzbcmee@163.com

  • 中图分类号: TD679

Experimental study on microwave propagation characteristics of different coal-gangue mixtures

Funds: 

National Natural Science Foundation of China (52074271); Natural Science Foundation of Jiangsu Province (BK20211245); Jiangsu University Superior Discipline Construction Project (Su Government Office [2018]87)

  • 摘要:

    煤矸识别问题是煤炭行业内长期未能有效解决的技术难题之一。通过分析现有煤矸识别方法的特点及局限性,探讨基于微波探测技术进行煤矸识别的可行性。首先,开展了对不同煤种和矸石的电磁参数测量分析,为后续的样本测试结果分析提供依据。然后,为探讨煤矸尺寸参数对微波传播的影响,开展了不同厚度、不同截面积的煤矸介质样本对不同频段电磁波的传播规律研究。由于煤矸混合物是由煤、矸石和空气组成的多尺度介质,其体积不等、形状各异,且空间分布及混合形式复杂多变,在微波照射区域内的散射效应非常复杂,导致电磁波在不同煤矸混合物中的传播特性具有明显的差异性。最后,为探究煤矸不同介质混合状态流的微波传播特性变化规律,开展了不同微波频段、不同煤矸粒度、不同含矸率工况下的煤矸混合物微波探测试验。结果表明:煤矸介质的电磁参数、厚度和截面积对微波在介质中的传播规律有明显影响;不同的粒度和含矸率对微波在煤矸混合物的传播规律有一定的影响。当频率大于4 GHz的微波照射在煤矸混合物时,粒度的增大会使回波损耗S11、插入损耗S21强度值和时域透射波O21信号幅值逐渐增大。当混合介质中煤和矸石的电磁参数差异较大时,在频率大于3.5 GHz后,粒度的增大使S21强度由−35.3 dB降低至−38.2 dB,O21信号幅值由1.6 mV减小至1.26 mV,且具有一定的时延特性。通过试验分析可以掌握敏感频点下透射波信号强度值、时域透射波信号幅值或透射波信号时延等特征的差异性,为放顶煤开采的煤矸精准识别提供一种新的思路和方法。

    Abstract:

    The problem of coal-gangue identification is one of the technical problems that have not been effectively solved for a long time in the coal industry. By analyzing the characteristics and limitations of existing coal-gangue identification methods, the feasibility of coal-gangue identification based on microwave detection technology is discussed. Firstly, the electromagnetic parameters of different coals and gangues are measured and analyzed to provide a basis for the subsequent analysis of sample test results. Then, in order to explore the influence of coal gangue size parameters on microwave propagation, the propagation law of coal gangue dielectric samples with different thickness and cross-sectional area on different frequency bands is studied. Because the coal-gangue mixture is a multi-scale medium composed of coal, gangue and air, the volume and shape are different, and the spatial distribution and mixing form are complex and changeable. The scattering effect in the microwave irradiation area is very complex, resulting in obvious differences in the transmission characteristics of electromagnetic waves in different coal-gangue mixtures. Finally, in order to explore the variation law of microwave propagation characteristics in different coal-gangue media, some microwave detection experiments of coal-gangue mixture under different microwave frequency bands, different particle sizes and different gangue contents are carried out. The results show that: the electromagnetic parameters, thickness and sectional area have obvious influence on the propagation law of microwave in the media. Different particle size and gangue rate have certain influence on microwave propagation in coal-gangue mixture. When microwave with frequency greater than 4 GHz irradiates the coal gangue mixture, the increase of particle size will gradually increase the intensity values ofS11 andS21 and the amplitude ofO21 signal. When the electromagnetic parameters of coal and gangue in the mixed medium are quite different, after the frequency is greater than 3.5 GHz, the increase of particle size reduces theS21 intensity from −35.3 dB to −38.2 dB, and theO21 signal amplitude from 1.6 mV to 1.26 mV, with certain time delay characteristics. Through the experimental analysis, the differences of the transmitted wave signal intensity value, the time-domain transmitted wave signal amplitude and the transmitted wave signal delay at the sensitive frequency points can be mastered, so as to provide a new idea and method for accurate identification of coal and gangue in top coal caving face.

  • 图  1   煤矸混合物散射模型

    Figure  1.   Scattering model for coal-gangue mixtures

    图  2   煤矸微波探测试验系统

    Figure  2.   Microwave detection experimental system for coal and gangue

    图  3   制作的煤和矸石试样

    Figure  3.   Prepared coal and gangue samples

    图  4   电磁波在煤矸试样中的反射与传输情况

    Figure  4.   Reflection and transmission of electromagnetic wave in coal-gangue sample

    图  5   不同煤矸试样的电磁参数测量结果

    Figure  5.   Measurement results of electromagnetic parameters of different coal-gangue samples

    图  6   不同煤矸介质的信号变化情况

    Figure  6.   Signal variation of different coal-gangue medium

    图  7   不同煤矸介质的O21时域波形

    Figure  7.   Time domain waveform of O21 with different coal-gangue medium

    图  8   不同厚度的煤样

    Figure  8.   Coal samples with different thickness

    图  9   不同煤样厚度的信号变化情况

    Figure  9.   Signal variation of different coal sample thickness

    图  10   不同截面积的煤样

    Figure  10.   Coal samples with different cross-sectional areas

    图  11   不同煤样截面积的信号变化情况

    Figure  11.   Signal variation of different cross-sectional areas

    图  12   不同粒度的煤矸混合物

    Figure  12.   Coal-gangue mixtures with different particle sizes

    图  13   不同粒度下煤矸混合物的S11曲线

    Figure  13.   S11 curves of coal-gangue mixtures with different particle sizes

    图  14   不同粒度下煤矸混合物的S21曲线

    Figure  14.   S21 curves of coal-gangue mixtures with different particle sizes

    图  15   不同粒度下煤矸混合物的O21曲线

    Figure  15.   O21 curves of coal-gangue mixtures with different particle sizes

    图  16   不同含矸率的煤矸混合物

    Figure  16.   Coal-gangue mixture with different gangue ratios

    图  17   煤矸混合物中不同含矸率的S11曲线

    Figure  17.   S11 curves with different gangue ratios in coal-gangue mixture

    图  18   煤矸混合物中不同含矸率的S21曲线

    Figure  18.   S21 curves with different gangue ratios in coal-gangue mixture

    图  19   3.5 GHz处不同煤种中不同含矸率的信号强度

    Figure  19.   Signal strength at different gangue-containing rates at 3.5 GHz

    图  20   煤矸混合物中不同含矸率的O21曲线

    Figure  20.   O21 curves with different gangue ratios in coal-gangue mixture

    图  21   12.4 ns左右不同含矸率O21曲线峰值点特征

    Figure  21.   Characteristics of the peak point of t he O21 curve with different gangue ratios around 12.4 ns

    表  1   煤和矸石的微波探测试验方案

    Table  1   Experimental scheme of coal-gangue microwave detection

    试验参数
    煤样类别无烟煤
    肥煤
    工作频率/GHz1~8
    试样厚度/cm10
    20
    40
    试样截面积/(cm×cm)10×10
    20×20
    40×40
    煤矸粒度/cm3~5
    8~12
    15~20
    含矸率(矸石占比)/%0
    10
    20
    30
    40
    50
    下载: 导出CSV

    表  2   不同粒度的微波照射参数

    Table  2   Microwave irradiation parameters of different particle sizes

    编号质量占比/%煤类别粒度/cm频率/GHz
    煤块矸石
    16030无烟煤3~51~8
    26030无烟煤8~101~8
    36030无烟煤15~201~8
    下载: 导出CSV

    表  3   不同含矸率的微波照射参数

    Table  3   Microwave irradiation parameters of different rate of gangue

    编号质量占比/%煤类别粒度/cm频率/GHz
    煤块矸石
    1900无烟煤8~121~8
    28010
    37020
    46030
    55040
    64050
    7900烟煤
    88010
    97020
    106030
    115040
    124050
    下载: 导出CSV
  • [1] 谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018(5):1187−1197.

    XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018(5):1187−1197.

    [2] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5−12.

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5−12.

    [3] 刘长友,张宁波,郭凤岐,等. 特厚煤层综放煤-矸-岩放落流动的时序规律及识别方法[J]. 煤炭学报,2022,47(1):137−151.

    LIU Changyou,ZHANG Ningbo,GUO Fengqi,et al. Sequential rules and identification method of coal-gangue-rock caving flow in fully mechanized top-coal-caving workface of extra thick coal seam[J]. Journal of China Coal Society,2022,47(1):137−151.

    [4] 赵明鑫. 综放煤矸放落的环境特征及自动识别的影响因素研究[D]. 徐州: 中国矿业大学, 2020.

    ZHAO Mingxin. Study on drawing environmental characteristics and influence factors of coal-gangue automatic identification in fully mechanized top coal caving ming [D]. Xuzhou: China University of Mining and Technology, 2020.

    [5] 张宁波,刘长友,陈现辉,等. 综放煤矸低水平自然射线的涨落规律及测量识别分析[J]. 煤炭学报,2015,40(5):988−993.

    ZHANG Ningbo,LIU Changyou,CHEN Xianhui,et al. Measurement analysis on the fluctuation characteristics of low level natural radiation from gangue[J]. Journal of China Coal Society,2015,40(5):988−993.

    [6] 张宁波. 综放开采煤矸自然射线辐射规律及识别研究[D]. 徐州: 中国矿业大学, 2015.

    ZHANG Ningbo. Study on natural ray radiation law and identification of coal and gangue in fully mechanized caving[D]. Xuzhou: China University of Mining and Technology, 2015.

    [7] 袁 源,汪嘉文,朱德昇,等. 顶煤放落过程煤矸声信号特征提取与分类方法[J]. 矿业科学学报,2020,6(6):711−720.

    YUAN Yuan,WANG Jiawen,ZHU Desheng,et al. Feature extraction and classification method of coal gangue acoustic signal during top coal caving[J]. Journal of Mining Science and Technology,2020,6(6):711−720.

    [8] 张守祥,张学亮,刘 帅,等. 智能化放顶煤开采的精确放煤控制技术[J]. 煤炭学报,2020,45(6):2008−2020.

    ZHANG Shouxiang,ZHANG Xueliang,LIU Shuai,et al. Intelligent precise control technology of fully mechanized top coal caving face[J]. Journal of China Coal Society,2020,45(6):2008−2020.

    [9] 窦希杰,王世博,刘后广,等. 基于EMD特征提取与随机森林的煤矸识别方法[J]. 工矿自动化,2021,47(3):60−65.

    DOU Xijie,WANG Shibo,LIU Houguang,et al. Coal and gangue identification method based on EMD feature extraction and random forest[J]. Industry and Mine Automation,2021,47(3):60−65.

    [10] 窦希杰,王世博,谢 洋,等. 基于IMF能量矩和SVM的煤矸识别[J]. 振动与冲击,2020,39(24):39−45.

    DOU Xijie,WANG Shibo,XIE Yang,et al. Coal and gangue identification based on IMF energy moment and SVM[J]. Journal of Vibration and Shock,2020,39(24):39−45.

    [11] 刘富强,钱建生,王新红,等. 基于图像处理与识别技术的煤矿矸石自动分选[J]. 煤炭学报,2000,25(5):534−537.

    LIU Fuqiang,QIAN Jiansheng,WANG Xinhong,et al. Automatic separation of waste rock in coal mine based on image procession and recognition[J]. Journal of China Coal Society,2000,25(5):534−537.

    [12] 司 垒,王忠宾,熊祥祥,等. 基于改进U-net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(S1):578−589.

    SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved u-net network model[J]. Journal of China Coal Society,2021,46(S1):578−589.

    [13] 田 妍,田 丰. 放顶煤开采过程煤矸识别技术发展现状及前景[J]. 煤炭工程,2018,50(10):142−145.

    TIAN Yan,TIAN Feng. Development status and prospect of coal gangue recognition technology in top-coal caving[J]. Coal Engineering,2018,50(10):142−145.

    [14] 郭辉萍, 刘学观. 电磁场与电磁波. 第5版[M]. 西安: 西安电子科技大学出版社, 2017.
    [15] 王晓明,陈军芳,倪志盛. 微波在非金属材料无损检测中的应用[J]. 微波学报,2004,20(2):70−76. doi: 10.3969/j.issn.1005-6122.2004.02.017

    WANG Xiaoming,CHEN Junfang,NI Zhisheng. The Application of Microwave to Nondestructive Testing of Nonmetallic Materials[J]. Journal of Microwaves,2004,20(2):70−76. doi: 10.3969/j.issn.1005-6122.2004.02.017

    [16]

    ALBISHI A M,RAMAHI O M. Microwaves-based high sensitivity sensors for crack detection in metallic materials[J]. IEEE Transactions on Microwave Theory & Techniques,2017(5):1−9.

    [17] 王 刚,陈雪畅,韩冬阳,等. 基于改进Otsu的煤体CT图像阈值分割算法的研究[J]. 煤炭科学技术,2021,49(1):264−271.

    WANG Gang,CHEN Xuechang,HAN Dongyang,et al. Research on threshold segmentation algorithm of coal CT images based on improved Otsu[J]. Coal Science and Technology,2021,49(1):264−271.

    [18] 李 梅,姜 展,姜龙飞,等. 三维可视化技术在智慧矿山领域的研究进展[J]. 煤炭科学技术,2020,48(8):153−162.

    LI Mei,JIANG Zhan,JIANG Longfei,et al. Research progress on 3D visualization technology for intelligent mine术[J]. Coal Science and Technology,2020,48(8):153−162.

    [19] 王 昕,丁恩杰,胡克想,等. 煤岩散射特性对探地雷达探测煤岩界面的影响[J]. 中国矿业大学学报,2016,45(1):34−41.

    WANG Xin,DING Enjie,HU Kexiang,et al. Effects of coal-rock scattering characteristics on the GPR detection of coal-rock interface[J]. Journal of China University of Mining & Technology,2016,45(1):34−41.

    [20] 贾成艳,常天英,樊 伟,等. 太赫兹波穿透煤层的衰减特性[J]. 煤炭学报,2015,40(S1):298−302.

    JIA Chengyan,CHANG Tianying,FAN Wei,et al. Attenuation characteristics of Terahertz wave penetrating coals[J]. Journal of China Coal Society,2015,40(S1):298−302.

    [21] 文 虎,张 铎,郑学召,等. 基于FDTD的电磁波在煤中传播特性[J]. 煤炭学报,2017,42(11):2959−2967.

    WEN Hu,ZHANG Duo,ZHENG Xuezhao,et al. Propagation characteristics of electromagnetic wave based on FDTD in coal[J]. Journal of China Coal Society,2017,42(11):2959−2967.

    [22] 岳 蕾. 电磁波在煤层中的传播规律与全波形概率反演方法研究[D]. 徐州: 中国矿业大学, 2016.

    YUE Lei. Study on the propagation law of electromagnetic wave in coal seam and its full waveform probabilistic inversion method [D]. Xuzhou: China University of Mining and Technology, 2016

    [23] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002.
  • 期刊类型引用(5)

    1. 刘素平,蔡的妹,黄文辉. 沁水盆地深煤层煤层气资源潜力评价. 煤炭与化工. 2025(02): 103-107 . 百度学术
    2. 张亚飞,李思达,乐平,段静,宁伟,王志彬. 上部含水层对煤层气开发效果影响的数值模拟研究. 非常规油气. 2023(02): 63-72 . 百度学术
    3. 林海飞,季鹏飞,孔祥国,李树刚,白杨,龙航,李柏,和递. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望. 煤炭学报. 2023(02): 730-749 . 百度学术
    4. 余杰,秦瑞宝,黄涛,李利. 基于核磁共振技术的煤层含气量评价方法. 煤炭科学技术. 2023(11): 158-165 . 本站查看
    5. 贺云超,翁炜,冯美贵,徐军军,郭强,吴烁,蒋睿. 煤层气水平井高效钻进关键技术研究——以山西沁水盆地某煤层气区块为例. 钻探工程. 2023(S1): 345-350 . 百度学术

    其他类型引用(2)

图(21)  /  表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  9
  • PDF下载量:  31
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-03-11
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回