Geochemical characteristics and sedimentary environment of coal during Middle Jurassic in Yima Basin
-
摘要:
为研究华北板块西南缘中侏罗世煤层地球化学特征及其沉积环境,以义马盆地中侏罗世义马组2-3号煤层为研究对象,借助X射线荧光光谱仪、等离子体质谱仪等手段,运用地球化学理论和方法,详细研究了煤中地球化学特征及其所反映的沉积环境。研究结果表明:研究区常量元素含量与中国煤相比,SiO2、P2O5和K2O显著偏高,而Al2O3含量较低;微量元素中Cs富集,Sb、Nb、Ta、Zr、Hf亏损;稀土元素整体为轻微富集,δEu负异常,而δCe正异常,表明采样煤层未受岩浆、热液、海水影响,物源主要是陆源碎屑;Th/U、V/ (V+Ni)、Ce异常、Sr/Cu及气候指数分析表明,采样煤层古泥炭堆积于还原环境,成煤期整体处于半干旱气候。
Abstract:In order to study the geochemical characteristics and sedimentary environment of the Middle Jurassic coal seam in the southwestern margin of the North China Plate, taking the coal of Yima Formation in Yima Basin as the research object to study the geochemical characteristics and sedimentary environment of Middle Jurassic coal seams in the southwest margin of the North China plate, based on the data from X-ray fluorescence spectrometer and plasma mass spectrometer. The results show that: The content of major element of SiO2, P2O5 and K2O are significantly higher, while the content of Al2O3 is lower compared with Chinese coals. Enrichment of Cs and deficit of Sb, Nb, Ta, Zr and Hf in trace elements. The rare earth elements are slightly enriched as a whole, with negative Eu anomalies and positive Ce anomalies, indicating that the coal seam was not affected by magma, hydrothermal and seawater, and the provenance is mainly terrigenous clastic. It shows that the coal forming environment in reductive environment, and the whole coal forming period is in semi-arid climate environment by the analysis of Th/U, V/ (V+Ni), Ce anomaly, Sr/Cu and climate index.
-
Keywords:
- middle jurassic /
- geochemistry /
- depositional environment /
- coal /
- Yima Basin
-
-
表 1 义马盆地中侏罗世煤样微量元素分析结果
Table 1 Content of trace elements in middle Jurassic coal from Yima Basin
项目 含量/(μg·g−1) Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Mo Cd In Sb Cs Ba W Re T1 Pb Bi Th U Nb Ta Zr Hf Sr/Cu Th/U V/(V+Ni) BLT-1 97.50 4.400 19.5 347 171 44.3 89.7 49.9 172 27.4 115 71.1 1.44 0.245 0.09 0.108 10.6 137 0.054 0.003 0.663 13.7 0.262 8.23 1.2 0.192 0.007 4.43 0.148 1.42 6.86 0.79 BLT-2 16.00 2.880 6.28 35.7 21.6 10 14.6 14.2 25.1 7.62 32.3 311 3.64 0.234 0.032 0.118 4.05 116 0.772 0.003 2.37 7.64 0.107 2.57 1.53 0.18 0.005 5.49 0.178 21.90 1.68 0.71 BLT-3 35.60 2.360 6.43 36 21.8 14.7 17 14.2 105 10.9 40.2 347 2.9 0.26 0.034 0.147 5.10 164 0.313 0.003 1.14 15.9 0.226 8.1 3.03 0.219 0.004 15.8 0.474 24.44 2.67 0.68 BLT-4 10.70 2.270 5.81 26.4 23.2 8.39 12.1 11.6 12.6 6.26 31.8 381 3.59 0.226 0.025 0.164 4.76 295 1.1 0.005 0.392 4.99 0.094 1.97 0.806 0.294 0.004 6.77 0.19 32.84 2.44 0.69 BLT-5 61.80 4.790 16.6 149 62.2 17.4 40.9 15.3 26.3 14.2 164 398 2.63 0.115 0.067 0.038 21.1 231 0.191 0.003 3.1 14.9 0.202 6.55 2.11 0.068 0.005 6.6 0.171 26.01 3.10 0.78 BLT-6 10.10 3.440 6.08 214 26.6 14.4 35.4 9.57 33.7 5.96 31.3 407 4.76 0.145 0.015 0.08 3.35 132 1.59 <0.002 1.99 2.95 0.05 1.49 0.565 0.174 0.003 4.54 0.122 42.53 2.64 0.86 BLT-7 60.90 5.810 15.9 103 56.2 19.3 46.5 19.1 31.8 13.3 126 610 2.33 0.142 0.065 0.037 19.4 1046 0.092 0.002 2.3 15.5 0.237 7.02 2.44 0.054 0.005 9 0.294 31.94 2.88 0.69 BLT-8 19.80 5.450 10.1 47.8 32.9 4.85 8.93 12.6 10.2 8.96 40.3 4176 2.56 0.074 0.058 0.042 6.13 989 0.445 0.007 0.306 35.2 0.267 5.46 1.11 0.121 0.008 13.6 0.484 331.43 4.92 0.84 BLT-9 7.23 1.040 3.89 29.7 15.9 5.8 8.51 8.6 8.67 4.6 12 1197 2.94 0.063 0.016 0.099 1.96 377 0.894 0.003 0.129 140 0.465 1.23 0.555 0.28 0.009 4.94 0.177 139.19 2.22 0.78 BLT-10 7.37 1.200 4.24 28.3 17.3 4.64 8.3 8.69 8.04 4.2 36 776 3.25 0.029 0.021 0.098 3.96 308 0.912 0.003 0.221 4.85 0.073 1.72 0.694 0.344 0.005 7.11 0.239 89.30 2.48 0.77 BLT-11 3.14 1.320 3.08 18.5 12.2 4.6 7.75 6.71 9.3 3.52 25.3 658 4.56 0.069 0.013 0.058 3.17 362 0.81 0.003 0.218 2.77 0.065 1.18 0.446 0.246 0.004 5.93 0.174 98.06 2.65 0.70 BLT-12 41.60 5.070 15.1 120 56.9 34.5 81.8 20.2 62.9 13.2 65.6 875 4.25 0.193 0.074 0.135 7.95 338 0.235 0.003 3.66 23.9 0.227 5.73 2.55 0.158 0.005 17 0.498 43.32 2.25 0.59 BLT-13 26.50 3.790 11.8 66.1 43.3 24.4 41.6 18.9 126 13.5 82.9 1284 5.55 0.295 0.055 0.199 10.9 473 0.655 0.004 1.58 33.6 0.267 4.52 2.24 0.295 0.005 15.5 0.486 67.94 2.02 0.61 BLT-14 10.70 4.590 13.2 89.3 33.3 40.7 78.8 19 26.2 14 46.8 1545 5.41 0.26 0.034 0.34 6.17 583 1.2 <0.002 5.53 9.37 0.162 2.65 3.3 0.762 0.007 16.6 0.487 81.32 0.80 0.53 BLT-15 19.00 5.170 14.1 331 50.9 5.67 11.2 15.6 10.5 12.8 42.8 1395 3.3 0.079 0.03 0.186 5.74 484 0.761 0.004 0.199 5.28 0.09 2.35 1.39 0.341 0.004 11.7 0.321 89.42 1.69 0.97 BLT-16 7.62 3.170 9.25 142 37 30.4 71 16 34.7 10 19.9 991 7.28 0.334 0.044 0.341 2.96 402 1.44 0.003 0.632 7.83 0.098 1.98 2.86 0.611 0.006 15.2 0.477 61.94 0.69 0.67 BLT-17 27.10 5.350 14.4 82.3 41.5 6.61 16 17 20.3 12.7 32.2 3232 3.21 0.133 0.05 0.101 4.41 1261 0.275 0.004 0.836 11.9 0.179 3.75 1.77 0.235 0.006 14.2 0.452 190.12 2.12 0.84 BLT-18 12.20 2.350 4.14 44.3 14.6 5.09 8.6 10.3 10.6 4.15 12.4 667 5.35 0.078 0.015 0.122 2.66 303 1.09 0.003 0.097 2.4 0.044 0.995 0.616 0.394 0.005 5.47 0.164 64.76 1.62 0.84 BLT-19 15.80 1.930 3.63 229 22.3 5.79 24.3 9.4 14.2 2.81 10.3 862 4.29 0.109 0.009 0.167 1.40 308 1.05 0.008 0.056 16.2 0.07 0.524 0.575 0.552 0.015 3.84 0.107 91.70 0.91 0.90 BLT-20 18.60 2.480 12.1 147 43 13 56.1 12.9 12.9 14.6 27.8 677 4.93 0.104 0.033 0.268 4.36 302 1.06 0.002 1.24 11.8 0.102 3.23 4.12 0.553 0.007 16.2 0.483 52.48 0.78 0.72 BLT-21 47.10 3.460 11.9 243 60.1 19.1 27.3 22.3 20.2 14.7 78.5 1331 2.93 0.116 0.054 0.126 10.3 831 0.415 0.002 0.981 12.2 0.213 4.77 2.29 0.292 0.003 20.4 0.569 59.69 2.08 0.90 BLT-22 32.00 5.080 10.2 274 46.1 6.39 11.4 11.8 10.2 9.33 47.3 1591 3.04 0.094 0.025 0.077 6.82 918 0.653 0.003 0.438 6.38 0.082 2.3 1.07 0.153 0.005 8.82 0.244 134.83 2.15 0.96 BLT-23 28.80 6.550 21.7 378 79 18.6 23.8 19 58 23.3 41.4 781 5.47 0.282 0.038 0.342 5.14 335 1.18 <0.002 0.847 9.84 0.111 3.58 4.41 0.591 0.005 25.9 0.658 41.11 0.81 0.94 BLT-24 193.00 6.780 22.1 114 83.8 11.2 32.6 26.2 55.9 30.3 201 690 2.04 0.103 0.149 0.029 23.7 399 0.046 0.003 2.18 29.6 0.42 15.3 2.12 0.056 0.005 11.7 0.361 26.34 7.22 0.78 BLT-25 41.60 12.700 30 216 91.3 9.76 16.4 23.5 19.9 17 22.1 1 861 11.9 0.146 0.089 0.376 2.78 1013 0.639 0.003 0.573 26 0.23 6.84 4.51 0.499 0.006 24.3 0.638 79.19 1.52 0.93 BLT-26 88.80 3.650 13.4 113 59.6 9.35 21.5 19.6 36.3 23.1 168 875 2.26 0.176 0.105 0.056 19.4 432 0.192 0.002 1.49 25.5 0.382 11.3 1.43 0.032 0.004 10.5 0.318 44.64 7.90 0.84 BLT-27 32.90 7.890 26.9 583 112 5.95 18.2 10.5 49.8 27.1 40.4 1 422 4.16 0.066 0.036 0.499 4.27 781 1.72 0.003 0.312 4.22 0.049 3.96 2.57 0.497 0.004 8.47 0.221 135.43 1.54 0.97 BLT-28 14.00 7.820 16.8 254 53.6 31.3 33.7 16.6 123 20.8 33.1 2 134 7.79 0.215 0.042 0.295 3.49 1024 0.851 0.003 0.8 10.8 0.154 3.32 6.08 0.54 0.008 18.9 0.557 128.55 0.55 0.88 BLT-29 41.20 9.620 19.3 90.5 66.5 9.01 16.5 18.2 18.6 14.4 69 1571 2.64 0.079 0.077 0.035 9.16 892 0.122 0.004 0.939 22.4 0.229 7.77 2.35 0.12 0.008 8.53 0.287 86.32 3.31 0.85 BLT-30 107.00 6.810 17.9 191 72.5 8.77 21.2 35.5 137 27.8 195 308 0.915 0.283 0.144 0.06 22 268 0.057 <0.002 1.88 27.3 0.403 13.9 2.99 0.066 0.006 8.6 0.25 8.68 4.65 0.90 BLT-31 37.60 3.600 14.9 58.4 51.5 8.85 19.8 20.3 75.6 20.4 143 213 2.14 0.072 0.088 0.04 16.3 188 0.047 <0.002 1.53 24.1 0.335 10.9 2.77 0.048 0.01 7.21 0.263 10.49 3.94 0.75 均值 37.85 4.61 12.93 154.88 50.96 14.61 29.73 17.20 44.05 13.96 65.60 1085.07 3.98 0.16 0.05 0.15 8.18 506.19 0.67 <0.003 1.25 18.68 0.19 5.01 2.15 0.29 0.01 11.40 0.34 75.40 2.68 0.79 地壳 23.0 1.73 16.0 143.0 127.0 24.7 81.3 56.0 76.3 16.7 108.0 382.0 1.43 0.177 0.097 0.51 1.23 463.0 1.13 — 0.73 14.0 0.19 7.6 2.07 18.3 1.6 148.0 4.5 — — — 中国煤值 31.80 2.11 4.38 35.10 15.40 7.08 13.70 17.50 41.40 6.55 9.25 140.00 3.08 0.25 0.05 0.84 1.13 159.00 1.08 — 0.47 15.10 0.79 5.48 2.43 9.44 0.62 89.50 3.71 — — — 世界煤值 12.00 1.60 3.90 25.00 16.00 5.10 13.00 16.00 23.00 5.80 14.00 110.00 2.20 0.22 0.03 0.92 1.00 150.00 1.10 — 0.63 7.80 0.97 3.30 2.40 3.70 0.28 36.00 1.20 — — — 中国J-K煤 5.00 2.40 3.00 13.00 12.00 8.00 11.00 9.00 33.00 4.00 7.00 79.00 2.00 0.10 — 0.90 1.80 150.00 1.90 — 0.40 9.00 0.30 4.00 2.00 8.00 0.50 39.00 1.00 — — — 富集系数(R1) 1.19 2.18 2.95 4.41 3.31 2.06 2.17 0.98 1.06 2.13 7.09 7.75 1.29 0.64 1.00 0.18 7.24 3.18 0.62 — 2.66 1.24 0.24 0.91 0.88 0.03 0.02 0.13 0.09 — — — 富集系数(R2) 3.15 2.88 3.32 6.20 3.19 2.86 2.29 1.08 1.92 2.41 4.69 9.86 1.81 0.73 1.67 0.16 8.18 3.37 0.61 — 1.98 2.39 0.20 1.52 0.90 0.08 0.04 0.32 0.28 — — — 富集系数(R3) 7.57 1.92 4.31 11.91 4.25 1.83 2.70 1.91 1.33 3.49 9.37 13.74 1.99 1.60 — 0.17 4.54 3.37 0.35 — 3.13 2.08 0.63 1.25 1.08 0.04 0.02 0.29 0.34 — — — 富集系数(R4) 1.65 2.66 0.81 1.08 0.40 0.59 0.37 0.31 0.58 0.84 0.61 2.84 2.78 0.90 0.52 0.29 6.65 1.09 0.59 — 1.71 1.33 1.00 0.66 1.04 0.02 0.01 0.08 0.08 — — — 富集系数(EF) 2.04 3.30 1.00 1.34 0.50 0.73 0.45 0.38 0.71 1.03 0.75 3.51 3.44 1.12 0.64 0.36 8.23 1.35 0.73 — 2.12 1.65 1.24 0.82 1.29 0.02 0.01 0.10 0.09 — — — 注: “—” 表示无数据;中国煤及世界煤数据据文献[13,17],中国J-K煤数据据来自文献[18],地壳数据据文献[19];EF=(Cx/CSc)e/(Cx/CSc)d,Cx为煤中某种元素平均含量值;CSc为煤中钪元素平均含量值;C'x为地壳中某元素平均含量值;C'Sc为地壳中钪元素平均含量值。 表 2 义马盆地中侏罗世煤样常量元素分析结果
Table 2 Content of major elements in middle Jurassic coal from Yima Basin
% 样品编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 平均值 中国煤 SiO2 62.93 5.39 10.98 5.86 29.56 3.92 29.87 11.76 3.54 4.46 3.49 16.38 16.05 6.40 7.10 3.55 8.78 2.62 1.18 3.95 9.95 8.42 5.36 48.46 6.20 55.09 6.56 5.18 18.18 54.55 67.37 16.87 8.47 Al2O3 15.24 2.65 5.36 1.67 10.24 1.48 10.39 4.54 1.46 1.55 1.18 5.41 5.23 2.09 2.48 1.35 4.23 0.91 0.49 1.89 4.52 3.71 2.41 18.70 3.42 17.49 3.28 2.38 6.45 18.07 16.63 5.71 5.98 Fe2O3 9.50 2.12 1.96 0.99 3.91 3.45 2.74 0.48 2.45 0.71 0.92 3.60 2.41 3.82 0.64 1.51 0.79 1.38 35.15 1.96 2.45 1.11 1.39 2.75 1.05 2.30 1.12 2.45 1.63 7.46 2.94 3.46 4.85 MgO 2.69 0.42 0.48 0.45 0.71 0.28 0.93 0.65 0.48 0.45 0.41 0.63 0.61 0.53 0.53 0.46 0.59 0.46 1.17 0.44 0.55 0.57 0.51 0.87 0.60 0.66 0.50 0.55 0.75 0.91 0.77 0.66 0.22 CaO 1.70 1.27 1.22 0.99 0.94 1.19 1.03 1.80 1.19 1.00 0.91 1.17 1.06 1.20 1.17 1.01 1.38 0.91 9.59 0.94 0.91 0.98 0.89 0.53 1.32 0.47 2.43 1.36 1.33 0.41 0.19 1.37 1.23 Na2O 0.16 0.08 0.27 0.10 0.17 0.09 0.16 0.10 0.13 0.08 0.10 0.11 0.09 0.09 0.08 0.08 0.10 0.10 0.08 0.09 0.14 0.14 0.10 0.15 0.10 0.15 0.11 0.09 0.11 0.16 0.18 0.12 0.16 K2O 2.58 0.19 0.26 0.21 1.39 0.15 1.26 0.03 0.13 0.18 0.14 0.53 0.75 0.24 0.23 0.12 0.21 0.08 0.05 0.17 0.43 0.38 0.23 2.09 0.15 2.45 0.27 0.18 0.55 3.47 4.68 0.77 0.19 MnO 0.07 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0 <0.004 0 0.01 0 0.01 0 <0.004 0 0.20 0 0.01 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.015 TiO2 0.97 0.08 0.14 0.09 0.43 0.07 0.47 0.23 0.07 0.09 0.07 0.29 0.29 0.13 0.14 0.09 0.17 0.06 0.03 0.08 0.15 0.13 0.11 0.76 0.11 0.78 0.10 0.10 0.33 0.83 0.85 0.27 0.33 P2O5 0.13 0.02 0.04 0.02 0.03 0.08 0.04 0.92 0.28 0.14 0.07 0.07 0.27 0.28 0.28 0.16 0.76 0.06 0.08 0.03 0.09 0.25 0.07 0.13 0.30 0.26 0.20 0.37 0.23 0.10 0.06 0.19 0.092 SiO2/Al2O3 4.13 2.03 2.05 3.51 2.89 2.65 2.87 2.59 2.42 2.88 2.96 3.03 3.07 3.06 2.86 2.63 2.08 2.89 2.43 2.09 2.20 2.27 2.22 2.59 1.81 3.15 2.00 2.18 2.82 3.02 4.05 2.69 1.42 注:中国煤数据据来自文献[13],BLT代表北露天矿。 表 3 义马盆地中侏罗世煤样稀土元素分析结果
Table 3 Content of rare earth elements in middle Jurassic coal from Yima Basin
ug/g 项目 含量/(μg·g−1) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REY δCe δEu (La/Yb)N (La/Sm)N (Gd/Yb)N BLT-1 33.5 60.5 7.44 28.7 5.36 1.07 4.65 0.756 3.42 0.594 1.46 0.215 1.2 0.154 33.9 149.02 0.92 0.66 18.82 3.93 3.13 BLT-2 9.54 18.4 2 7.86 1.48 0.282 1.29 0.216 1.16 0.229 0.604 0.103 0.654 0.088 14.1 43.91 1.01 0.62 9.83 4.05 1.59 BLT-3 11.6 23.1 2.54 9.5 1.73 0.333 1.49 0.249 1.21 0.227 0.611 0.1 0.592 0.082 13.5 53.36 1.02 0.63 13.21 4.22 2.03 BLT-4 6.89 13.6 1.62 6.53 1.34 0.316 1.19 0.214 1.17 0.224 0.608 0.106 0.652 0.091 13.2 34.55 0.98 0.77 7.12 3.23 1.47 BLT-5 30.7 60.3 6.86 26.7 4.74 0.867 3.8 0.6 2.68 0.466 1.25 0.192 1.13 0.149 26.2 140.43 1.00 0.62 18.32 4.07 2.71 BLT-6 6.12 13 1.57 6.74 1.47 0.319 1.44 0.267 1.48 0.288 0.761 0.123 0.745 0.102 18.7 34.43 1.01 0.67 5.54 2.62 1.56 BLT-7 30.6 63.3 7.29 28.6 5.08 1.14 4.17 0.677 3.09 0.538 1.37 0.209 1.22 0.157 30.7 147.44 1.02 0.76 16.91 3.79 2.76 BLT-8 17.2 34 4.06 17.9 4.11 0.942 3.36 0.586 3 0.523 1.29 0.186 1.05 0.138 30.8 88.35 0.98 0.78 11.04 2.63 2.58 BLT-9 5.1 10.8 1.31 5.55 0.979 0.258 0.856 0.149 0.747 0.141 0.387 0.066 0.394 0.055 8.95 26.79 1.01 0.86 8.73 3.28 1.75 BLT-10 3.91 9.47 1.34 6.36 1.21 0.287 1.01 0.18 0.928 0.177 0.471 0.078 0.476 0.063 11.0 25.96 1.00 0.79 5.54 2.03 1.71 BLT-11 4.31 9.33 1.08 4.39 0.97 0.264 0.87 0.154 0.855 0.162 0.445 0.075 0.455 0.062 10.7 23.42 1.04 0.88 6.39 2.79 1.54 BLT-12 15.9 28.1 3.15 12.5 2.72 0.571 2.33 0.431 2.26 0.416 1.1 0.179 1.06 0.144 24.2 70.86 0.96 0.69 10.11 3.68 1.77 BLT-13 27.8 59.1 6.61 24.4 4.17 0.823 3.64 0.567 2.63 0.465 1.2 0.186 1.13 0.147 25.0 132.87 1.05 0.65 16.59 4.19 2.60 BLT-14 25.7 58.1 6.53 24.1 4.02 0.836 3.73 0.603 3.02 0.539 1.41 0.218 1.35 0.169 28.6 130.33 1.08 0.66 12.83 4.02 2.23 BLT-15 20.4 44.7 4.94 18.1 3.21 0.691 2.89 0.484 2.36 0.421 1.06 0.173 1.03 0.13 25.4 100.59 1.07 0.69 13.35 4.00 2.26 BLT-16 6.64 14.4 1.79 8.43 1.88 0.453 1.58 0.299 1.66 0.316 0.83 0.137 0.835 0.111 18.8 39.36 1.01 0.80 5.36 2.22 1.53 BLT-17 66.5 128 12.5 43.4 6.94 1.43 6.15 0.861 3.66 0.557 1.42 0.181 1.06 0.135 30.3 272.79 1.07 0.67 42.30 6.03 4.68 BLT-18 2.72 6.63 0.943 4.18 0.847 0.235 0.828 0.164 0.931 0.19 0.519 0.088 0.543 0.075 11.8 18.89 1.00 0.86 3.38 2.02 1.23 BLT-19 4.37 10.2 1.13 4.19 0.767 0.203 0.723 0.135 0.661 0.125 0.336 0.057 0.344 0.047 8.81 23.29 1.00 0.83 8.56 3.58 1.70 BLT-20 4.54 9.38 1.06 4.19 1.16 0.306 1.10 0.242 1.49 0.306 0.841 0.152 0.957 0.134 16.1 25.86 1.03 0.83 3.20 2.46 0.93 BLT-21 14.1 25.8 2.81 10.2 1.94 0.53 1.76 0.303 1.6 0.305 0.833 0.14 0.853 0.117 17.2 61.29 0.99 0.88 11.14 4.57 1.66 BLT-22 16.7 35.9 4.5 18.8 3.59 0.849 3.06 0.506 2.41 0.43 1.09 0.171 0.995 0.129 26.6 89.13 1.00 0.78 11.32 2.93 2.48 BLT-23 8.72 20.1 2.27 8.71 2.07 0.507 2.05 0.435 2.52 0.5 1.32 0.23 1.39 0.189 29.2 51.01 1.09 0.75 4.23 2.65 1.19 BLT-24 42.2 77.7 9.09 34.9 6.26 1.13 4.79 0.758 3.31 0.566 1.48 0.215 1.29 0.157 30.4 183.85 0.95 0.63 22.06 4.24 3.00 BLT-25 43.7 85 9.19 33.1 5.11 1.12 4.72 0.773 3.62 0.644 1.66 0.255 1.52 0.196 37.6 190.61 1.02 0.70 19.38 5.38 2.51 BLT-26 46.4 83.3 9.4 35.1 6.04 1.08 4.78 0.716 2.99 0.49 1.21 0.165 0.994 0.12 26.5 192.79 0.96 0.61 31.47 4.83 3.88 BLT-27 13.8 27.2 3.11 12.1 2.31 0.599 2.06 0.385 2.06 0.387 1.08 0.181 1.15 0.159 23.5 66.58 1.00 0.84 8.09 3.76 1.45 BLT-28 61.8 123 13 44.9 6.9 1.35 6.23 0.881 3.82 0.646 1.66 0.249 1.49 0.199 34.5 266.13 1.04 0.63 27.96 5.63 3.37 BLT-29 38.7 78.5 8.2 30.3 5.61 1.15 4.78 0.783 3.85 0.693 1.81 0.283 1.67 0.226 37 176.56 1.06 0.68 15.62 4.34 2.31 BLT-30 58.1 107 12.4 47.4 8.32 1.5 7.04 1.08 4.52 0.73 1.84 0.253 1.49 0.191 43.1 251.86 0.96 0.60 26.29 4.39 3.81 BLT-31 52.7 95.2 11.1 41.3 6.85 1.18 5.50 0.808 3.3 0.54 1.35 0.181 1.03 0.126 27.5 221.17 0.95 0.59 34.50 4.84 4.31 均值 23.58 46.23 5.19 19.65 3.52 0.73 3.03 0.49 2.34 0.41 1.07 0.17 0.99 0.13 23.67 149.02 1.01 0.72 14.49 3.76 2.31 中国煤 22.50 46.70 6.42 22.30 4.07 0.84 4.65 0.62 3.74 18.20 0.96 1.79 0.64 0.38 2.08 136.00 — — — — — 世界煤 11.00 23.00 3.50 12.00 2.00 0.47 2.70 0.32 2.10 8.40 0.54 0.93 0.31 0.20 1.00 68.47 — — — — — 富集系数(CC) 2.14 2.01 1.48 1.97 1.76 1.55 1.12 1.53 1.11 0.049 1.98 0.18 3.19 0.65 23.67 2.18 — — — — — 注:中国煤数据与世界煤数据来源于文献[13],$\delta \text{Ce}\text{=}{\text{Ce}}_{\text{N}}/\sqrt{{\text{La}}_{\text{N}}\text{×}{\text{Pr}}_{\text{N}}} $,CeN、LaN、PrN为Ce、La、Pr元素球粒陨石标准化值;$\delta \text{Eu}\text{=}{\text{Eu} }_{\text{N} }/\sqrt{ {\text{Sm} }_{\text{N} }\text{×}{\text{Gd} }_{\text{N} } }$,EuN、SmN、GdN为元素球粒陨石标准化值[20];球粒陨石数据据文献[21];富集系数(CC)为样品中稀土元素含量/世界煤中稀土元素含量;“—” 为无数据。 -
[1] 任德贻, 赵峰华, 代世峰, 等. 煤的微量元素地球化学[M]. 北京: 科学出版社, 2006: 393−412. REN Deyi, ZHAO Fenghua, DAI Shifeng, et al. Geochemistry of trace elements in Coal[M]. Beijing: Science Press, 2006: 393−412.
[2] 马小敏. 黄县盆地古近系煤中元素地球化学特征及其沉积环境指示意义[J]. 科学技术与工程,2019,19(24):46−55. doi: 10.3969/j.issn.1671-1815.2019.24.007 MA Xiaomin. Geochemistry characteristics and sedimentary environment indicating significances of elements in Paleogene Coal from Huangxian Basin[J]. Science Technology and Engineering,2019,19(24):46−55. doi: 10.3969/j.issn.1671-1815.2019.24.007
[3] 张小浩. 洛伊盆地中新生代构造演化及其与油气的关系[D]. 西安: 西北大学, 2007. ZHANG Xiaohao. Formation and evolution of luoyangyichuan basin and its relation with hvdrocarbo[D]. Xi’an: Northwest University, 2007.
[4] 王运泉,阎琇璋,孟凡顺. 义马煤田义马组沉积环境及其演化[J]. 焦作矿业学院学报,1988,13(3):179−192. WANG Yunqian,YAN Xiuzhang,MENG Fanshun. Sedimentary environment and evolution of Yima Formation in Yima Coalfield[J]. Journal of Jiaozuo Institute of Mining and Technology,1988,13(3):179−192.
[5] 王运泉,孟凡顺. 义马煤田义马组沉积环境及其对聚煤作用的影响[J]. 岩相古地理,1994,14(1):24−33. WANG Yunqian,MENG Fanshun. Sedimenary environment of Yima Coalfield in Yima Formation and its influence on accumulation[J]. Lithofacies Paleogeography,1994,14(1):24−33.
[6] 赵治霞,孙玉震. 义马煤田成煤古地理环境和聚煤特征分析[J]. 西部探矿工程,2007,19(9):117−120. ZHAO Zhixia,SUN Yuzhen. Analysis of coal forming paleogeographic environment and coal accumulation characteristics in Yima Coalfield[J]. West-China Exploration Engineering,2007,19(9):117−120.
[7] 孙玉震. 义马煤田义马组地层沉积环境分析[J]. 煤矿现代化,2008(2):19−20. SUN Yuzhen. Sedimentary environment analysis of Yima Formation stratum at Yima Coal Mine[J]. Coal Mine Modernization,2008(2):19−20.
[8] 解东宁. 南华北盆地晚古生代以来构造沉积演化与天然气形成条件研究[D]. 西安: 西北大学, 2007. XIE Dongyu. Tectono-sedimentary evolution since the late paleozoic and natural gas formation in the southern north-china basin[D]. Xi’an: Northwest University, 2007.
[9] 康 明. 河南义马中生代含煤地层[J]. 地层学杂志,1988,12(2):18−92. KANG Ming. Mesozoic coal-bearing strata in Yima, Henan[J]. Journal of Stratigraphy,1988,12(2):18−92.
[10] 闫小雄. 鄂尔多斯中生代盆地古物源分析与沉积环境格局恢复[D]. 西安: 西北大学, 2001. YAN Xiaoxiong. The analysis of the sediment source and reconstrucation of the framework of the depositional environment in the mesozoic Ordos Basin[D]. Xi’an: Northwest University, 2001.
[11] 马晓军. 华北板块西南缘二叠系上石盒子组物源分析及其构造意义[D]. 西安: 长安大学, 2020. MA Xiaojun. Provenance and tectonic significance of the Permian Shangshihezi Formation at the southwestern margin of the North China Craton[D]. Xi’an: Chang’an University, 2020.
[12] 高 迪,邵龙义,王德伟,等. 华北板块西南缘义马盆地中侏罗世沉积相及古地理[J]. 沉积与特提斯地质,2016,36(4):7−13. GAO Di,SHAO Longyi,WANG Dewei,et al. Middle Jurassic sedimentary facies and palaeogeography of the Yima Basin on the southwestern margin of the North China Plate[J]. Sedimentation and Tethys Grology,2016,36(4):7−13.
[13] DAI Shifeng,REN Deyi,CHOU Chelin. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21. doi: 10.1016/j.coal.2011.02.003
[14] 张文斌,何 碧,陶 刚,等. 黔北新仁地区上二叠统龙潭组煤质地球化学特征及聚煤规律[J]. 西北地质,2020,53(4):51−65. doi: 10.19751/j.cnki.61-1149/p.2020.04.005 ZHANG Wenbin,HE Bi,TAO Gang,et al. Geochenmical characteristics and accumulation rules of Coal in the Upper Permian Longtan Formation of Xinren area, North Guizhou[J]. Northwestern Geology,2020,53(4):51−65. doi: 10.19751/j.cnki.61-1149/p.2020.04.005
[15] 田和明,代世峰,李大华,等. 重庆南川晚二叠世凝灰岩的元素地球化学特征[J]. 地质论评,2014,60(1):169−177. doi: 10.16509/j.georeview.2014.01.019 TIAN Heming,DAI Shifeng,LI Dahua,et al. Geochemical features of the late permian tuff in nanchuan district, chongqing, southwestern china[J]. Geological Review,2014,60(1):169−177. doi: 10.16509/j.georeview.2014.01.019
[16] FILIPPIDIS A,GEORGAKOPOULOS A,KASSOLI F A,et al. Trace element contents in composited samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece[J]. International Journal of Coal Geology,1996,29(4):219−234. doi: 10.1016/0166-5162(95)00032-1
[17] TAYLOR S R. Abundance of chemical elements in the continental crust: a new table[J]. Geochimicaet Cosmochimica Acta,1964,28:1273−1285. doi: 10.1016/0016-7037(64)90129-2
[18] 唐修义, 黄文辉. 中国煤中微量元素[M]. 北京: 商务印书馆, 2004. TANG Xiuyi, HUANG Wenhui. Trace elements in coal of china[M]. Beijing: The Commercial Press, 2004.
[19] 黎 彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学,1994,23(2):140−145. LI Tong. Element abundances of china’s continental crust and its sedimentary layer and upper continental crust[J]. Geochimica,1994,23(2):140−145.
[20] 何 静,黄 涛,冯 烁,等. 三塘湖煤田西山窑组煤地球化学特征及沉积环境意义[J]. 煤炭科学技术,2020,48(5):173−181. HE Jing,HUANG Tao,FENG Shuo,et al. Geochemical characteristics of coal and sedimentary environment significance in Xishanyao Formation of Santanghu Coalfield[J]. Coal Science and Technology,2020,48(5):173−181.
[21] BOYNTON W V. Cosmochemistry of the rare earth elements: meteorite studies[M]. Developments in geochemistry. Elsevier, 1984, 2: 63−114.
[22] GLUSKOTER H J,RUCH R R,MILLER W G,et al. Trace elements in coal: occurrence and distribution[J]. State Geol Surv Circ,1977,499:154−161.
[23] DAI S F,WANG X B,CHEN W M,et al. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs[J]. International Journal of Coal Geology,2010,83(4):430−445. doi: 10.1016/j.coal.2010.06.004
[24] 王珍珍, 李进孝, 张 珂, 等. 山西沁水煤田首阳山矿15#煤的稀土元素分布规律、赋存状态及其对成煤环境的指示[J]. 中国地质, 2021, 48(3): 777−784. WANG Zhenzhen, LI Jinxiao, ZHANG Ke, et al. Distribution and occurrence of rare earth elements in No. 15 coal in Shouyangshan Mine, Qinshui Coalfield, Shanxi Province and its indication to the coal-forming environment[J]. Geology in China, 48(3): 777−784
[25] 柳青青,迟清华,王学求,等. 中国东部大陆尺度地球化学走廊带碳酸盐岩稀土元素分布特征与影响因素[J]. 地学前缘,2018,25(4):99−115. doi: 10.13745/j.esf.yx.2017-12-28 LIU Qingqing,CHI Qinghua,WANG Xueqiu,et al. Distribution and influencing factors of rare earth elements in carbonate rocks along three continental-scale transects in eastern China[J]. Earth Science Frontiers,2018,25(4):99−115. doi: 10.13745/j.esf.yx.2017-12-28
[26] 车青松, 黄文辉, 久 博, 等. 霍州地区晚古生代煤中微量元素特征及沉积环境分析[J]. 煤炭科学技术, 2022, 50(9): 138−146. CHE Qingsong, HUANG Wenhui, JIU Bo, et al. Characteristics and sedimentary environment analysis of trace elements in Late Paleozoic coal in Huozhou area[J]. Coal Science and Technology, 2022, 50(9): 138−146.
[27] 范玉海,屈红军,王 辉,等. 微量元素分析在判别沉积介质环境中的应用: 以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质,2012,39(2):382−389. FAN Yuhai,QU HongJun,WANG Hui,et al. The application of trace elements analysis to identifying sedimentary media environment: a case study of Late Triassic strata in the middle part of western Ordos Basin[J]. Geology in China,2012,39(2):382−389.
[28] KIMURA H,WATANABE Y. Ocean anoxia at the Precambrian Cambrian boundary[J]. Geology,2001,29:995−998.
[29] 年秀清,韩凤清,韩继龙,等. 微量元素分析在判别沉积环境中的应用: 以柴达木盆地西部锶矿区富锶地层为例[J]. 盐湖研究,2019,27(1):66−72. NIAN Xiuqing,HAN Fengqing,HAN Jilong,et al. Application of trace elements in discriminsting sedimentary environment: A Case study of strontium-rich sedimentary rocks in the strontium ore area in the Western Qaidam Basin[J]. Sait Lake Research,2019,27(1):66−72.
[30] HATCH J R,LEVENTHAl J S. Relationshio between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale Menber of the Dennid Limestone, Wabaunsee Country, Kansas, U. S. A.[J]. Chemical Geology,1992,99:65−82. doi: 10.1016/0009-2541(92)90031-Y
[31] 刘 刚,周东升. 微量元素分析在判别沉积环境中的应用: 以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307−314. LIU Gang,ZHOU Dongsheng. Application of microelements analysis in identifying sedimentary environment-taking Qianjiang formation in the Jianghan Basin as an example[J]. Expermental Petroleum Geology,2007,29(3):307−314.
[32] ELDERFIELD H,PAGETT R. Rare earth elements in ichthyoliths: variationswith redox conditions and depositional environment[J]. Science of the Total Environment,1986,49:175−197. doi: 10.1016/0048-9697(86)90239-1
[33] Custodio E. Aquifer overexploitation: what dose it mean?[J]. Hydrogeology Journal,2002,10(2):254−277. doi: 10.1007/s10040-002-0188-6
[34] 金 明,李妩巍. 乌兰花地区下白垩统-上新统岩石地球化学特征及其古气候演变[J]. 铀矿地质,2003,19(6):349−354. JIN Ming,LI Wuwei. Petrogeochemical characteristics of Lower Cretaceous and Pliocence rocks and paleoclimate evolution in Wulanhua region[J]. Uranium Geology,2003,19(6):349−354.
[35] 邓宏文, 钱 凯. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社, 1993: 95−104. DENG Hongwen, QIAN Kai. Sedimentary geochemistry and environment analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 95−104.
[36] 雷开宇, 刘池洋, 张 龙, 等. 鄂尔多斯盆地北部侏罗系泥岩地球化学特征: 物源与古沉积环境恢复[J]. 沉积学报, 2017 , 35(3): 621−636. LEI Kaiyu, LIU Chiyang, ZHANG Long, et al. Element geochemical characteristics of the Jurassic mudstones in the Northern Ordos Basin: implication for tracing sediment sources and paleoenvironment restoration[J]Acta Sedimentologica Sinica, 2017, 35(3): 621−636.
[37] 赵增义,赵建华,王海静,等. 准噶尔盆地微量元素的分布特征及其应用[J]. 天然气勘探与开发,2007,30(2):30−32. ZHAO Zengyi,ZHAO Jianhua,WANG Haijing,et al. Distribution characteristics and applications of trace elements in junggar basin[J]. Natural Gas Exploration and Development,2007,30(2):30−32.
[38] LU Jing,ZHOU Kai,YANG Minfang,et al. Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China[J]. Global and Planetary Change,2020,195:103331. doi: 10.1016/j.gloplacha.2020.103331
[39] 邓胜徽, 卢远征, 赵 怡, 等. 中国侏罗纪古气候分区与演变[J]. 地学前缘, 2017, 24(1): 106−142. DENG Shenghui, LU Yuanzheng, ZHAO Yi, et al. The Jurassic palaeoclimate regionalization and evolution of China. Earth Science Frontiers, 2017, 24(1): 106−142.
[40] 王鸿祯, 楚旭春, 刘本培, 等. 中国古地理图集[M]. 北京: 地图出版社, 1985. WANG Hongzhen, CHU Xuchun, LIU Benpei, et al. Atlas of the paleogeography of China[M]. Beijing: Cartographic Publishing House, 1985.