Research progress and prospect of coal gangue slurry backfilling technology in goaf
-
摘要:
煤矸石浆体充填是一种低干扰条件下矸石无害化规模处置的重要技术手段,是实现煤炭绿色开采的重要途径之一,符合国家绿色发展理念。但针对浆体充填材料制备缓存、浆体长距离输送及采空区充填处置等方面的研究仍不完善,部分问题的研究尚属空白,严重制约浆体充填技术在煤矸石固废处置领域的发展。通过近年来研究,煤矸石浆体充填在基础理论及关键技术均取得了大量的成果。文章系统性地梳理了多种煤矸石充填固废处置技术及其发展历程,总结了其适用性及优缺点,阐述了浆体充填诞生的技术背景及科学内涵,明确了浆体充填关键技术与工艺原理。从大规模推广应用角度出发,总结了浆体材料精准制备与流变特性、矸石浆体长距离管输特征、采空区空隙空间浆体介入规律3项关键科学问题,围绕以上关键科学问题,重点开展了精准制浆技术、管道输送技术、浆体多位充填技术等方面的研究。分析了多因素耦合条件矸石浆体流变特性,揭示了矸石浆体成浆机理,构建了矸石浆体精准制备模型,提出了矸石浆体管道输送关键参数确定方法,总结了高位、低位、邻位3种形式的浆体流动扩散规律,进而指导浆体充填工程实践。在以上研究基础上,分析了浆体充填技术当前研究的不足及未来研究的重点难度,并对“双碳”背景下煤矸石浆体充填技术的发展趋势进行了展望,认为以下3个方向是今后研究的重点:①矿化CO2制备负碳浆体技术;②基于MICP技术的浆体重构岩层技术;③浆体置换难采煤体流态化开采技术。
Abstract:Coal gangue slurry backfilling is an important technical means of harmless large-scale disposal of gangue under low disturbance conditions, and is one of the important ways to achieve green coal mining, in line with the national green development concept. But for the preparation, long-distance transportation, and goaf disposal of the slurry backfilling material and other aspects of the research is still imperfection, part of the problem of research is still blank, seriously restricting the development of slurry backfilling technology in the field of coal gangue solid waste disposal. Through recent years, coal gangue slurry backfilling in the basic theory and key technology has made a lot of results. The article systematically composes a variety of coal gangue backfilling solid waste disposal technology and its development history, summarizes its applicability and advantages and disadvantages, elaborates the technical background and scientific connotation of the birth of slurry backfilling, and clarifies the key technology and process principle of slurry backfilling. From the perspective of large-scale promotion and application, the three key scientific issues of precise preparation and rheological characteristics of slurry backfilling materials, long-distance pipeline transport characteristics of gangue slurry, spatial dynamic evolution of goaf and the law of slurry intervention have been summarized, and research on precise slurry production technology, pipeline transport technology, and multi-position backfilling technology of slurry has been focused around the above key scientific issues. The rheological characteristics of gangue slurry under multi-factor coupling conditions are analyzed, the mechanism of gangue slurry formation is revealed, the precise preparation model of gangue slurry is constructed, the determination method of key parameters of gangue slurry pipeline transportation is proposed, and the flow and diffusion laws of three forms of slurry-high, low and adjacent are summarized, which in turn to guide the slurry backfilling engineering practice. Based on the above research, the shortcomings and the focus of the future research of the current research on slurry backfilling technology are analyzed, and the development trend of coal gangue slurry backfilling technology under the background of Dual Carbon has prospected, and the following three directions are considered to be the focus of future research: ①mineralized CO2 preparation of carbon-negative slurry technology; ②slurry reconstruction rock layer technology based on MICP technology; ③slurry replacement fluidized mining technology for hard-to-mine coal bodies.
-
Keywords:
- coal gangue /
- solid waste backfilling /
- slurry backfilling /
- gob backfilling /
- backfilling mining
-
-
表 1 输送阻力计算经验公式统计
Table 1 Statistics of empirical formula for conveying resistance calculation
来源 公式 适用对象 参数 Druand(1950)[33] ${i_{\rm{m} } } = {i_{\rm{w} } } + 82C{i_{\rm{w} } }{\left[ {\dfrac{ {v_{\rm{m}}^2\sqrt { {C_D} } } }{ {gD(S - 1)} } } \right]^{ - 1.5} }$ 浆体;基于重力理论及大量试验结果得到 共同参数:
${i}_{{\rm{m}}}$为总阻力损失;${C}$为浓度;$ {i}_{{\rm{w}}} $为水流阻力损失;${D}$为管径;$ {v}_{{\rm{m}}} $为平均速度;$ {\rho }_{{\rm{m}}} $为平均密度;${g} $为重力加速度;${d}$为粒径;${s}$为固液相密度比;
独有参数:
$ {C}_{{\rm{D}}} $为阻力系数;$ \Delta i $为不完全悬移增阻率;$ {i}_{{\rm{b}}} $为不悬浮时阻力;$ {i}_{{\rm{s}}} $为完全悬浮时阻力;$ \Delta {p}_{{\rm{u}}} $,$ \Delta {p}_{{\rm{d}}} $为等长上升管和下降管的压降值;$ R $为成层比率;$ {i}_{{\rm{mh}}} $,$ {i}_{{\rm{ms}}} $为悬移、层移阻力梯度;$ A $,$ B $为与流体阻力、机械阻力有关的无量纲系数;$ {S}_{{\rm{m}}} $为混合物相对密度;$ f $为液相摩阻系数;$ \omega $为颗粒沉降速度;$ \xi $为附加相对压力梯度;$ i $为活塞流阻力梯度;$ {\mu }_{{\rm{s}}} $为机械滑动系数;${C}_{{\rm{i}}}$为当地体积浓度;$ \gamma $为颗粒碰撞能耗。Newitt D M(1961)[34] ${i_{\rm{m} } } = {i_{\rm{w} } } + 1\;100C{i_{\rm{w} } }(S - 1)\dfrac{ { {v_{\rm{t} } }gD} }{ {v_{\rm{m} }^2} }$ 浆体;根据条件不同,系数会发生变化 戴继岚(1985)[35] $\Delta i = \dfrac{ { {i_{\rm{b} } } - {i_{\rm{s} }} } }{ { {i_{\rm{s} } } } }$,其中${i_{\rm{s} } } = \dfrac{ {\Delta {p_{\rm{n}}} - \Delta {p_{\rm{d}}} } }{ {2{\rho _{\rm{m} } }g} }$ 粗颗粒;$ d > $0.2 mm;基于试验得到 Wlison K C(1990)[36] ${i_{\rm{m}}} = R{i_{{\rm{ms}}} } + (1 - R){i_{{\rm{mh}}} }$
其中,${i_{{\rm{mh}}} } = {i_{\rm{w}}}\left[ {1 + A({S_{\rm{m}}} - 1)} \right]$
${i_{{\rm{ms}}} } = {i_{\rm{w}}} + B({S_{\rm{m}}} - 1)$最大粒径不超过2.5 mm的浆体;试验、理论相结合 陈广文(1994)[36] $\begin{gathered} {i_{\rm{m}}} = \dfrac{ {2fv_{\rm{m}}^2} }{ {gD} } + C(S - 1)\dfrac{w}{ { {v_{\rm{m}}} } } + \\ \dfrac{ {d{v_{\rm{m}}}C} }{ { {D^2}{ {(1 - C/{C_{\rm{m}}})}^{2.5C} } } } \\ \end{gathered}$ 浆体;理论分析为主,讨论阻力损失的组成 Sundqvist A(1996)[37] ${i_{\rm{m}}} = \xi i + {i_{\rm{w}}}$
其中,$i = 2{\mu _{\rm{s}}}(S - 1)C$浆体;理论推导为主,结合数据验证 夏建新(2002)[38] ${i_{\rm{m} } } = {i_{\rm{w} } } + {C_{\rm{i}}}(S - 1) + \dfrac{\gamma }{ { {\rho _{\rm{m} } }g} }$ 粗颗粒;理论推导为主,结合数据验证 -
[1] 刘 峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15. LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
[2] 王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8. doi: 10.13199/j.cnki.cst.2021.09.001 WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of“dual carbon”target[J]. Coal Science and Technology,2021,49(9):1−8. doi: 10.13199/j.cnki.cst.2021.09.001
[3] 谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2021,49(5):1−8. doi: 10.13225/j.cnki.jccs.2018.0517 XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science andtechnology development[J]. Journal of China Coal Society,2021,49(5):1−8. doi: 10.13225/j.cnki.jccs.2018.0517
[4] 齐 晔. 低碳发展的中国逻辑: 煤炭消费达峰是前提[J]. 环境经济,2017(16):16−20. QI Ye. The logic of low carbon development: The peak of coal consumption is the premise[J]. Environmental Economy,2017(16):16−20.
[5] 彭苏萍,张 博,王 佟. 我国煤炭资源“井”字形分布特征与可持续发展战略[J]. 中国工程科学,2015,17(9):29−35. doi: 10.3969/j.issn.1009-1742.2015.09.006 PENG Suping,ZHANG Bo,WANG Tong. China’s coal resources: Octothorpe shaped distribution characteristics and sustainable devel-opment strategies[J]. Engineering Sciences,2015,17(9):29−35. doi: 10.3969/j.issn.1009-1742.2015.09.006
[6] 李泽红,柏永青,孙九林,等. 西部生态脆弱贫困区生态文明建设战略研究[J]. 中国工程科学,2019,21(5):80−86. doi: 10.15302/J-SSCAE-2019.05.012 LI Zehong,BAI Yongqing,SUN Jiulin,et al. Ecological civilization construction in ecologically fragile poverty-stricken areas in Western China[J]. Chinese Engineering Science,2019,21(5):80−86. doi: 10.15302/J-SSCAE-2019.05.012
[7] 中华人民共和国中央人民政府. 中华人民共和国固体废物污染环境防治法[EB/OL]. [2020-04-30]/(2022-09-25). http://www.gov.cn/xinwen/2020-04/30/content_5507561.htm. [8] 全国人民代表大会, 中华人民共和国民法典[EB/OL]. [2020-06-01]/(2022-09-25).http://www.gov.cn/xinwen/2020-06/01/content_5516649.htm. [9] 王双明,申艳军,孙 强,等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报,2020,2(4):5−19. WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Eenineering,2020,2(4):5−19.
[10] 王双明,段中会,马 丽,等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术,2019,45(2):1−6. doi: 10.13199/j.cnki.cst.2019.02.001 WANG Shuangming,DUAN Zhonghui,MA Li,et al. Research status and future trends of geological assurance technology for coal greendevelopment in Western China[J]. Coal Science and Technology,2019,45(2):1−6. doi: 10.13199/j.cnki.cst.2019.02.001
[11] 王双明. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京: 煤炭工业出版社, 1996. [12] 朱玉高. 陕北煤矿区农田土壤重金属污染现状及修复研究[J]. 洁净煤技术,2014,20(5):105−108. doi: 10.13226/j.issn.1006-6772.2014.05.026 ZHU Yugao. Contamination and control of heavy metals in farmland around coal mining area in Northern Shaanxi[J]. Clean Coal Technology,2014,20(5):105−108. doi: 10.13226/j.issn.1006-6772.2014.05.026
[13] 刘建功,李新旺,何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150. doi: 10.13225/j.cnki.jccs.YG19.1063 LIU Jiangong,LI Xinwang,HE Tuan,et al. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150. doi: 10.13225/j.cnki.jccs.YG19.1063
[14] 许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 2020, 48(9): 1-15. XU Jialin. Research and progress of coal mine green mining in 20 years. [J]. Coal Science and Technology, 2020, 48(9): 1-15.
[15] 杨胜利,白亚光,李 佳. 煤矿充填开采的现状综合分析与展望[J]. 煤炭工程,2013,45(10):4−6. doi: 10.11799/ce201310002 YANG Shengli,BAI Yaguang,LI Jia. Comprehensive analysis onpresent status of mine backfill mining and prospects[J]. Coal Engineering,2013,45(10):4−6. doi: 10.11799/ce201310002
[16] 朱 磊,潘 浩,古文哲,等. 垮落带矸石浆体充填模拟试验研究[J]. 煤炭学报,2021,46(S2):629−638. doi: 10.13225/j.cnki.jccs.2021.0247 ZHU Lei,PAN Hao,GU Wenzhe,et al. Experimental study on flow and diffusion law of gangue backfilling slurryin caving zone[J]. Journal of China Coal Society,2021,46(S2):629−638. doi: 10.13225/j.cnki.jccs.2021.0247
[17] 朱 磊,宋天奇,古文哲. 煤基固废浆体管道充填技术研究与应用[J]. 煤炭技术,2021,40(10):47−51. doi: 10.13301/j.cnki.ct.2021.10.011 ZHU Lei,SONG Tianqi,GU Wenzhe. Research and application on pipeline backfill technology of slurrycomprsing coal-based solid waste[J]. Coal Technology,2021,40(10):47−51. doi: 10.13301/j.cnki.ct.2021.10.011
[18] 朱卫兵,许家林,赖文奇,等. 覆岩离层分区隔离注浆充填减沉技术的理论研究[J]. 煤炭学报,2007,32(5):458−462. doi: 10.3321/j.issn:0253-9993.2007.05.003 ZHU Weibing,XU Jialin,LAI Wenqi,et al. Research of isolated section -grouting technology for overburden bed separation space to reduce subsidence[J]. Journal of China Coal Society,2007,32(5):458−462. doi: 10.3321/j.issn:0253-9993.2007.05.003
[19] 周华强,侯朝炯,孙希奎,等. 固体废物膏体充填不迁村采煤[J]. 中国矿业大学学报,2004,33(2):30−34, 53. doi: 10.3321/j.issn:1000-1964.2004.02.007 ZHOU Huaqiang,HOU Chaojiong,SUN Xikui,et al. Solid waste paste backfilling for none-village-relocation coal mining[J]. Journal of China University of Mining & Technology,2004,33(2):30−34, 53. doi: 10.3321/j.issn:1000-1964.2004.02.007
[20] 缪协兴,张吉雄,郭广礼. 综合机械化固体充填采煤方法与技术研究[J]. 煤炭学报,2010,35(1):1−6. doi: 10.13225/j.cnki.jccs.2010.01.006 MIAO Xiexing,ZHANG Jixiong,GUO Guangli,et al. Study on waste-backfilling method and technology in fully-mechanized coal mining[J]. Journal of China Coal Society,2010,35(1):1−6. doi: 10.13225/j.cnki.jccs.2010.01.006
[21] 吴 凡,杨发光,肖柏林,等. 基于扩展度表征高浓度混合骨料充填料浆流变特性及应用[J]. 中南大学学报(自然科学版),2022,53(8):3104−3112. WU Fan,YANG Faguang,XIAO Bolin,et al. Characterization of rheological property and its application of highconcentration and mixed aggregate backfilling slurry based on spread[J]. Journal of Central South University(Science and Technology,2022,53(8):3104−3112.
[22] 国家能源局. 煤矿充填开采工作指导意见[EB/OL]. [2013-01-09]/(2022-09-25). http://zfxxgk.nea.gov.cn/auto85/201302/t20130204_1580.htm. [23] 国家发展改革委, 国家能源局. 能源技术革命创新行动计划(2016—2030年)[EB/OL].[2016-04-07]/(2022-09-25). http://www.nea.gov.cn/2016-06/01/c_135404377.htm. [24] 国家发展改革委. 关于“十四五”大宗固体废弃物综合利用的指导意见[EB/OL]. [2021-03-18]/(2022-09-25).https://www.ndrc.gov.cn/xxgk/zcfb/tz/202103/t20210324_1270286.html. [25] 杨晓炳. 低品质多固废协同制备充填料浆及其管输阻力研究[D]. 北京: 北京科技大学, 2020: 21-22. YANG Xiaobing. Study on the collaborative preparation of backfillingmaterials with low quality and multi-solid wastes and their pressure drop in pipeline transportation[D]. Beijing: University of Science and Technology Beijing, 2020: 21−22.
[26] 薛 娜. 超细铁尾砂充填料浆流变特性研究[D]. 唐山: 华北理工大学, 2020: 34-36. XUE Na. Study on rheological properties of superfine iron tailings backfilling slurry[D]. Tangshan: North China University of Science and Technology, 2020: 34-36.
[27] 范永亮,崔继强,张元坤,等. 混合粗骨料配比对充填体强度及浆体流动性能的影响规律[J]. 黄金科学技术,2022,30(2):263−271. doi: 10.11872/j.issn.1005-2518.2022.02.146 FAN Yongliang,CUI Jiqiang,ZHANG Yuankun,et al. Influence of mixed coarse aggregate ratio on strength and fluidity of backfillingslurry[J]. Gold Science and Technolog,2022,30(2):263−271. doi: 10.11872/j.issn.1005-2518.2022.02.146
[28] 郝宇鑫,黄玉诚,李育松,等. 矸石似膏体充填料浆临界流速影响因素研究[J]. 煤炭工程,2022,54(4):128−133. HAO Yuxin,HUANG Yucheng,LI Yusong,et al. Influencing factors of critical flow rate of gangue paste-like filler slurry[J]. Coal Engineering,2022,54(4):128−133.
[29] 马 妍,陈家琪,门著铭,等. 管道输煤参数优化研究[J]. 煤炭工程,2017,49(5):107−111. doi: 10.11799/ce201705032 MA Yan,CHEN Jiaqi,MEN Zhuming,et al. Optimization of coal pipeline transportation parameters[J]. Coal Engineering,2017,49(5):107−111. doi: 10.11799/ce201705032
[30] 甘德清,闫泽鹏,薛振林,等. 考虑壁面滑移效应的充填料浆管道输送阻力研究[J]. 金属矿山,2020(9):26−32. doi: 10.19614/j.cnki.jsks.202009003 GAN Deqing,YAN Zepeng,XUE Zhenlin,et al. Study on the resistance of cemented paste backfill slurry pipeline transport consideringwall slip effect[J]. Metal Mine,2020(9):26−32. doi: 10.19614/j.cnki.jsks.202009003
[31] 蔡嗣经. 充填力学基础[M]. 北京: 治金工业出版社, 2009: 63-70. [32] 杨天雨. 膏体管道输送边界层效应及阻力特性[D]. 昆明: 昆明理工大学, 2021: 137−164. YANG Tianyu. Boundary layer effect and resistance characteristics of paste pipeline transportation[D]. Kunming: Kunming University of Science and Technology, 2021: 137−164.
[33] 吴爱祥, 王洪江. 金属矿膏体充填理论与技术[M]. 北京: 科学出版社, 2015. [34] 高 锋. 管径对全尾砂充填料浆管道输送特性影响研究[D]. 唐山: 华北理工大学, 2015: 43−44. GAO Feng. Study on affections of pipeline diameter to the transportation characteristics of backfilling slurry of unclassified tailings inner pipe[D]. Tangshan: North China University of Science and Technology, 2015: 43−44.
[35] 戴继岚,夏震寰. 悬移质与推移质分层管流的阻力特性[J]. 中国科学,1987(12):1328−1340. DAI Jilan,XIA Zhenhuan. Resistance characteristics of suspended and bedload stratified pipe flow[J]. China science,1987(12):1328−1340.
[36] 陈广文,古德生. 浆体水平管道输送阻力损失计算探讨[J]. 中南矿冶学院学报,1994,25(2):162−165. CHEN Guangwen,GU Desheng. Exploration of drag losses calculation inslurry horizontal pipeline transportation[J]. Central south Institute of Mining and Metallurgy,1994,25(2):162−165.
[37] 杜加法,刘晓光,王京生,等. 基于L管实验的全尾砂膏体流变特性研究[J]. 金属矿山,2020,8:20−24. DU Jiafa,LIU Xiaoguang,WANG Jingsheng,et al. Rheological properties of unclassified tailings paste slurry based on l-tube pipeline test[J]. Metal Mine,2020,8:20−24.
[38] 夏建新,倪晋仁,黄家桢. 锰结核在垂直管路输送过程中的压力损失[J]. 泥沙研究,2002(2):23−28. doi: 10.3321/j.issn:0468-155X.2002.02.004 XIA Jianxin,NI Jinren,HUANG Jiazhen. Pressure loss in solid-liquid flow with coarse manganese nodules in vertical pipeline[J]. Journal of Sediment Research,2002(2):23−28. doi: 10.3321/j.issn:0468-155X.2002.02.004
[39] 吴爱祥,刘晓辉,王洪江,等. 结构流充填料浆管道输送阻力特性[J]. 中南大学学报(自然科学版),2014,45(12):4325−4330. WU Aixiang,LIU Xiaohui,WANG Hongjiang,et al. Resistance characteristics of structure fluid backfilling slurry in pipeline transport[J]. Journal of Central South University (Science and Technology),2014,45(12):4325−4330.
[40] 朱 磊,宋天奇,古文哲,等. 矸石浆体输送阻力特性及采空区流动规律试验研究[J]. 煤炭学报,2021,47(S1):39−48. doi: 10.13225/j.cnki.jccs.2021.1298 ZHU Lei,SONG Tianqi,GU Wenzhe,et al. Experimental research on transport-resistance characteristics of gangue slurry and its flow trend in the goaf[J]. Journal of China Coal Society,2021,47(S1):39−48. doi: 10.13225/j.cnki.jccs.2021.1298