高级检索

冻融循环下页岩孔裂隙和渗透率演化特征研究

蒋长宝, 李琳, 殷文明, 李佰城

蒋长宝,李 琳,殷文明,等. 冻融循环下页岩孔裂隙和渗透率演化特征研究[J]. 煤炭科学技术,2023,51(S1):18−26. DOI: 10.13199/j.cnki.cst.QNTK21-1135
引用本文: 蒋长宝,李 琳,殷文明,等. 冻融循环下页岩孔裂隙和渗透率演化特征研究[J]. 煤炭科学技术,2023,51(S1):18−26. DOI: 10.13199/j.cnki.cst.QNTK21-1135
JIANG Changbao,LI Lin,YIN Wenming,et al. Research on evolution characteristics of shale pore-fracture and permeability under freeze-thaw cycles[J]. Coal Science and Technology,2023,51(S1):18−26. DOI: 10.13199/j.cnki.cst.QNTK21-1135
Citation: JIANG Changbao,LI Lin,YIN Wenming,et al. Research on evolution characteristics of shale pore-fracture and permeability under freeze-thaw cycles[J]. Coal Science and Technology,2023,51(S1):18−26. DOI: 10.13199/j.cnki.cst.QNTK21-1135

冻融循环下页岩孔裂隙和渗透率演化特征研究

基金项目: 

国家自然科学基金资助项目(52074044,52274111)

详细信息
    作者简介:

    蒋长宝: (1982—),男,江苏兴化人,教授,博士生导师。E-mail:jcb@cqu.edu.cn

    通讯作者:

    殷文明: (1984—),男,江苏南京人,高级工程师,博士。E-mail:154632650@qq.com

  • 中图分类号: TE311

Research on evolution characteristics of shale pore-fracture and permeability under freeze-thaw cycles

Funds: 

National Natural Science Foundation of China (52074044,52274111)

  • 摘要:

    页岩气储层具有超低渗特性,液氮(LN2)致裂作为一种很有前景的储层增透技术备受关注。以四川南部龙马溪组页岩为研究对象,研究了含水页岩岩芯在受低温流体——液氮冻融循环下的物理响应。针对含水状态下的页岩进行LN2冻融循环处理,运用扫描电子显微镜(SEM)对LN2冻融循环前后的页岩样品进行微观孔裂隙结构的定点观察,采用数字图像处理技术和分形理论对同一位置的孔隙变化进行了定量化分析,测试了孔隙度和渗透率,运用计算机断层扫描(CT)展示了页岩样品随LN2冻融循环的宏观断裂破坏过程,探讨了液氮冻融的致裂机理。结果表明,液氮冻融循环处理可以有效促进孔隙、裂隙的萌生和扩展。液氮冻融时页岩在热应力和冻胀力的作用下产生新裂纹,随冻融循环次数的增多页岩孔裂隙稳定发展,冻融循环下页岩孔隙度累积增长幅度为54.6%,渗透率的提高非常显著(高达3个数量级)。

    Abstract:

    Shale gas reservoirs have ultra-low permeability, and liquid nitrogen fracturing has attracted much attention as a promising reservoir permeability enhancement technology. This paper took the Longmaxi Formation shale in southern Sichuan as the research object, and studied the physical response of the water-bearing shale core under the freezing-thawing cycle of liquid nitrogen (LN2), which was a cryogenic fluid. The LN2 freeze-thaw cycle treatment was carried out for the shale in the water-bearing state, scanning electron microscope (SEM) was used to observe the microscopic pore and fracture structure of shale samples before and after the LN2 freeze-thaw cycle, digital image processing technology and fractal theory were used to quantitatively analyze the pore-fracture changes at the same location, and then porosity and permeability tests were performed, computer tomography (CT) was used to show the macroscopic fracture failure process of shale samples with the LN2 freeze-thaw cycle, finally discussed the cracking mechanism of liquid nitrogen freezing and thawing. The results showed that the liquid nitrogen freeze-thaw cycle treatment could effectively promote the initiation and expansion of pores and cracks. When the liquid nitrogen froze and thawed, the shale generated new cracks under the action of thermal stress and frost heave force, and the pores and cracks developed steadily increased with the number of freeze-thaw cycles. The cumulative increase in shale porosity under the freeze-thaw cycle was 54.6%, and the increase in permeability was very significant (up to 3 orders of magnitude).

  • 图  1   试验所用试件

    Figure  1.   Samples used in the test

    图  2   页岩X射线衍射光谱图

    Figure  2.   X-ray diffraction spectrum of shale

    图  3   岩石区域1、区域2在低倍数下的电镜图片

    Figure  3.   Electron microscope pictures of rock area 1 and area 2 at low magnification

    图  4   岩石区域1在冻融一次后微观结构变化

    Figure  4.   The microstructure of rock zone 1 changes after one freeze-thaw cycle

    图  5   岩石区域2微观结构随LN2冻融循环次数变化

    Figure  5.   The microstructure of rock zone 2 changes with the number of freeze-thaw cycles of liquid nitrogen

    图  6   样品孔隙结构的分形维数

    Figure  6.   Fractal dimensions of pore structures of sample

    图  7   岩石面孔隙度、分形维数随LN2冻融循环次数变化

    Figure  7.   The porosity and fractal dimension of rock face change with the number of freeze-thaw cycles of liquid nitrogen

    图  8   页岩孔隙度随LN2冻融循环次数变化

    Figure  8.   Shale porosity changes with the number of liquid nitrogen freeze-thaw cycle

    图  9   页岩渗透率随LN2冻融循环次数变化

    Figure  9.   Shale permeability changes with the number of liquid nitrogen freeze-thaw cycle

    图  10   CT扫描图像下页岩随LN2冻融循环次数的变化

    Figure  10.   The changes of shale with the number of freeze-thaw cycles of liquid nitrogen in CT scan images

    图  11   冻融循环下页岩孔裂隙结构演化及致裂机制

    Figure  11.   Shale pore fracture structure evolution and fracture mechanism under freeze-thaw cycle

    表  1   试样基本物理参数

    Table  1   Basic physical parameters of samples

    试件编号直径/mm高度/mm质量/g密度/(g·cm−3
    D01030.582.453
    W124.1249.054.22.450
    W224.2150.756.42.456
    下载: 导出CSV

    表  2   页岩矿物成分组成

    Table  2   Mineral composition of shale

    矿物
    成分
    石英钠长石方解石白云石黄铁矿高岭石伊利石
    热膨胀系数
    /
    10−6−1
    24.39.6−3.23.227.39.139.13
    质量分数/%6047.87.52.62.215.9
    下载: 导出CSV

    表  3   页岩面孔隙度、分形维数

    Table  3   Shale surface porosity and fractal dimension

    冻融
    次数
    电镜下
    图像面积
    /μm2
    孔隙面积
    /μm2
    面孔隙度
    /%
    分形维数
    拟合公式
    分形
    维数
    R2
    02 920.78189.676.49y=−1.258x+11.011.2580.997
    32 803.19309.58211.04y=−1.364x+11.621.3640.998
    52 994.11336.9011.44y=−1.378x+11.711.3780.998
    73 146.64436.47513.87y=−1.424x+11.951.4240.998
    下载: 导出CSV

    表  4   页岩孔隙度、渗透率

    Table  4   Shale porosity and permeability

    冻融次数孔隙度/%增长率/%渗透率/%相对增长率/%
    04.626.61×10−19
    16.6343.541.32×10−1613 012.66
    36.7045.061.61×10−1613 100.61
    56.9450.182.38×10−1621 383.47
    77.1454.606.48×10−1681 865.77
    下载: 导出CSV
  • [1]

    KONTOROVICH A E,EPOV M I,EDER L V. Long-term and medium-term scenarios and factors in world energy perspectives for the 21st century[J]. Russian Geology & Geophysics,2014,55(5/6):534−543.

    [2]

    BENTLEY R W. Global oil & gas depletion: An overview[J]. Energy Policy,2002,30(3):189−205. doi: 10.1016/S0301-4215(01)00144-6

    [3] 刘慧芳,安海忠,梅 洁. 美国页岩气开发状况及影响分析[J]. 资源与产业,2012,14(6):81−87. doi: 10.3969/j.issn.1673-2464.2012.06.015

    LIU Huifang,AN Haizhong,MEI Jie. Development and effect of shale gas in the united states[J]. Resources & Industries,2012,14(6):81−87. doi: 10.3969/j.issn.1673-2464.2012.06.015

    [4]

    VIDIC R D,Brantley S L,VANDENBOSSCHE J M,et al. Impact of shale gas development on regional water quality[J]. Science,2013,340:826−826.

    [5]

    JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology,2009,48(8):16−21. doi: 10.2118/09-08-16-DA

    [6]

    CHEN Y F,JIANG C B,YIN G Z,et al. Permeability evolution under true triaxial stress conditions of Longmaxi shale in the Sichuan Basin, Southwest China[J]. Powder Technology,2019,354:601−614. doi: 10.1016/j.powtec.2019.06.044

    [7] 孙张涛,吴西顺. 页岩气开采中的水力压裂与无水压裂技术[J]. 国土资源情报,2014(5):51−55.

    SUN Zhangtao,WU Xishun. Review on hydraulic fracturing and non-aqueous fracturing in shale gas development[J]. Land and Resources Information,2014(5):51−55.

    [8] 黄中伟, 李根生, 蔡承政, 等. 岩石液氮低温致裂实验及在油气开采中应用前景[A]. 第十二届全国岩石破碎工程学术大会[C]. 沈阳, 2014: 158-162.

    HUANG Zhongwei, LI Gensheng, CAI Chengzheng, et al. Experiment of liquid nitrogen cryogenic cracking on rock and its application prospect in oil & gas exploration and production[A]. The 12th National Academic Conference on Rock Crushing Engineering[C]. Shenyang, 2014: 158-162.

    [9]

    CAI C Z,HUANG Z W,LI G S,et al. Feasibility of reservoir fracturing stimulation with liquid nitrogen jet[J]. Journal of Petroleum Science & Engineering,2016,144:59−65.

    [10]

    WU X G,HUANG Z W,LI R,et al. Investigation on the damage of high-temperature shale subjected to liquid nitrogen cooling[J]. Journal of Natural Gas Science and Engineering,2018,57:284−294. doi: 10.1016/j.jngse.2018.07.005

    [11]

    GRUNDMANN S R , RODVELT G D , DIALS G A , et al. Cryogenic nitrogen as a hydraulic fracturing fluid in the devonian shale[A]. SPE Eastern Regional Meeting. Society of Petroleum Engineers[C]. Pittsburgh, 1998, 51067.

    [12]

    JIANG L,CHENG Y F,HAN Z Y,et al. Effect of liquid nitrogen cooling on the permeability and mechanical characteristics of anisotropic shale[J]. Journal of Petroleum Exploration & Production Technology,2019,9(1):111−124.

    [13]

    CAI C Z,LI G S,HUANG Z W,et al. Experiment of coal damage due to super-cooling with liquid nitrogen[J]. Journal of Natural Gas Science & Engineering,2015,22:42−48.

    [14]

    QIN L,ZHAI C,LIU S M,et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw-A nuclear magnetic resonance investigation[J]. Fuel,2017,194:102−114. doi: 10.1016/j.fuel.2017.01.005

    [15] 翟 成,徐吉钊. 液氮循环致裂技术强化煤层气抽采的研究与应用展望[J]. 工矿自动化,2020,46(10):1−8. doi: 10.13272/j.issn.1671-251x.17669

    ZHAI Cheng,XU Jizhao. Research on cyclic liquid nitrogen fracturing technology for enhancing coalbed methane drainage and its application prospect[J]. Industry and Mine Automation,2020,46(10):1−8. doi: 10.13272/j.issn.1671-251x.17669

    [16]

    LI Z F,XU H F,ZHANG C Y. Liquid nitrogen gasification fracturing technology for shale gas development[J]. Journal of Petroleum Science and Engineering,2016,138:253−256. doi: 10.1016/j.petrol.2015.10.033

    [17] 陶 静. 液氮预注后页岩压裂的损伤破裂机理研究[D]. 徐州: 中国矿业大学, 2020.

    TAO Jing. Study on damage mechanics of shale nitrogen fracturing after liquid nitrogen pre-conditioning[D]. Xuzhou: China University of Mining and Technology, 2020.

    [18]

    VINEGAR H J. X-Ray CT and NMR imaging of rocks[J]. Journal of Petroleum Technology,1986,38(3):257−259. doi: 10.2118/15277-PA

    [19]

    JIANG C B,LIU X D,WANG W S,et al. Three-dimensional visualization of the evolution of pores and fractures in reservoir rocks under triaxial stress[J]. Powder Technology,2021,378(PA):585−592.

    [20] 王 豪. 页岩热致裂缝形成机理及数值模拟研究[D]. 西安: 西安石油大学, 2021.

    WANG Hao. The formation mechanism and numerical simulation of thermally induced fractures in shale[D]. Xi'an: Xi'an Shiyou University, 2021.

    [21]

    DEBASHIS D,BRIJES M,Neel G. Understanding the influence of petrographic parameters on strength of differently sized shale specimens using XRD and SEM[J]. International Journal of Mining Science and Technology,2021,31(5):953−961. doi: 10.1016/j.ijmst.2021.07.004

    [22]

    YANG R,SHENG H,YI J Z. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology,2016,70:27−45. doi: 10.1016/j.marpetgeo.2015.11.019

    [23]

    LIU X F,NIE B S. Fractal characteristics of coal samples utilizing image analysis and gas adsorption[J]. Fuel,2016,182:314−322. doi: 10.1016/j.fuel.2016.05.110

    [24]

    MAJID B,OMID A H,LEVI K J,et al. Quantitative analysis of statistical properties of organic-rich mudstone using large field-of-view SEM images[J]. Journal of Natural Gas Science and Engineering,2021,95:104238. doi: 10.1016/j.jngse.2021.104238

    [25]

    SUI W B,TIAN Y Y,YAO C H. Investigation of microscopic pore structure variations of shale due to hydration effects through SEM fixed-point observation experiments[J]. Petroleum Exploration and Development,2018,45(5):955−962. doi: 10.1016/S1876-3804(18)30099-5

    [26] 孙文峰. 页岩储层多尺度结构特征及表征方法研究[D]. 大庆: 东北石油大学, 2017.

    SUN Wenfeng. Research on multi-scale structural characteristics and characterization methods of shale reservoirs[D]. Daqing: Northeast Petroleum University, 2017.

    [27]

    SONG Y J,TAN H,YANG H M,et al. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography[J]. Engineering Geology,2021,294:106370. doi: 10.1016/j.enggeo.2021.106370

    [28] 贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D]. 武汉: 中国地质大学, 2016.

    JIA Hailiang. Theoretical damage models of porous rocks and hard jointed rocks subjected to frost action and further experimental verifications[D]. Wuhan: China University of Geosciences, 2016.

    [29]

    JIANG C B,WANG Y F,DUAN M K,et al. Experimental study on the evolution of pore-fracture structures and mechanism of permeability enhancement in coal under cyclic thermal shock[J]. Fuel,2021,304:121455. doi: 10.1016/j.fuel.2021.121455

    [30] 刘泉声,黄诗冰,康永水,等. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. 岩土力学,2016,37(6):1530−1542. doi: 10.16285/j.rsm.2016.06.002

    LIU Quansheng,HUANG Shibing,KANG Yongshui,et al. Preliminary study of frost heave pressure and its influence on crack and deterioration mechanisms of rock mass[J]. Rock and Soil Mechanics,2016,37(6):1530−1542. doi: 10.16285/j.rsm.2016.06.002

    [31] 乔 趁,王 宇,宋正阳,等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学,2021,42(8):2141−2150.

    QIAO Chen,WANG Yu,SONG Zhengyang,et al. Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite[J]. Rock and Soil Mechanics,2021,42(8):2141−2150.

图(11)  /  表(4)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  23
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 网络出版日期:  2023-05-19
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回