Dynamic control of working slope shape and optimization of advance speed in seasonally stripped open-pit coal mine
-
摘要:
季节性剥离露天煤矿由于剥离工程的不连续性使得工作帮超前推进距离巨大,为了减小超前剥离、节省剥离运距,从季节性剥离露天煤矿工作帮形态动态控制、工作帮极限推进强度优化确定进行研究。阐述了季节性剥离露天煤矿工作帮形态及作业程序,分析了工作帮形态及推进强度影响因素。根据季节性剥离露天煤矿工作帮结构形式和采剥作业方式,建立了工作帮形态优化工程模型,论述了工作帮循环推进距离与作业平盘宽度和采场露煤方式的关系;计算了组合台阶循环推进工程量和分层设备生产能力,给出了工作帮循环推进时间以及端帮运输系统可靠性计算方法。以最小化剥离物运输功为优化目标、剥采工程时空接续为约束条件建立了季节性剥离露天煤矿工作帮形态优化数学模型并引入序列二次规划算法(SQP)进行非线性规划求解。提出通过确定剥离台阶组合方式和作业平盘宽度实现季节性剥离露天煤矿工作帮形态动态控制的方法、剥离工作帮极限推进度优化确定方法。以胜利西二号露天煤矿为工程背景,将上述优化控制方法进行应用研究,通过建立剥离工作帮形态优化模型并将西二露天矿实际参数代入进行计算求解。结果表明:当组合台阶中台阶数目为5、作业平盘宽度为89 m时,工作帮推进满足剥采工程时空接续要求,且剥离物运输功最小。该形态下工作帮极限推进度为320 m/a,分析确定了台阶组合方式及循环推进距离变化时工作帮极限推进强度变化规律。
Abstract:Due to the discontinuity of the stripping project in seasonal stripping open-pit coal mines, the untimely advance distance of the working slope is huge. In order to reduce the advance stripping and save the stripping distance, research was carried out on dynamic control of the shape of the working slope and optimization of the limit advance speed of the working slope in seasonal stripped open-pit coal mines. This paper explains the shape and operation procedure of the working slope in seasonal stripped open-pit coal mines and analyzes factors that influence working slope shape and advance speed. Based on structural form of working slope and stripping operation mode of seasonally stripped open-pit coal mines, an engineering model for shape optimization of working slope is established. The relationship between circular advance distance of working slope with working bench width and exposed coal mode of stope is discussed. Bench group cycle advance engineering quantity and production capacity of layered equipment, advance time of the working slope cycle and calculation method for reliability of side slope transportation system are given. With optimization goal of minimizing transport work of stripping material and time-space continuity of stripping engineering as constraint condition, mathematical model for shape optimization of working slope in seasonally stripped open-pit coal mine is established. Sequential quadratic programming algorithm (SQP) is introduced to solve nonlinear programming. A method to realize dynamic control of shape of working slope of seasonally stripped open-pit coal mine by determining combination mode of stripping benches and working bench width and a method to optimize limit advance speed of stripped working slope are proposed. Taking Shengli West No.2 Open-pit Coal Mine as an engineering background, above-mentioned optimization control method is applied for research and calculation and solution are carried out by establishing form optimization model of stripping working slope and substituting actual parameters of West No.2 Open-pit Mine. Results show that when the number of benches in bench group is 5 and working bench width is 89 m, advance of working slope meets the requirements of space-time continuity in stripping engineering and transport work of stripped objects is smallest. In this shape, limit advance speed of the working slope is 320 m/a, and change of limit advance speed of the working slope is analyzed and determined when combination of benches and cyclic advance distance is changed.
-
端帮运输平盘宽度D/m 40 端帮保安平盘宽度d/m 5 剥离工作帮非作业平盘宽度b/m 25 剥离台阶高度h/m 12 剥离台阶坡面角α/(°) 65 最小剥离作业区宽度c/m 250 煤层厚度ha/m 19.25 原煤视密度/(t·m−3) 1.23 煤层底板工作线长度La/m 1300 运岩卡车载重G/t 80 剥离物比重η/(t·m−3) 2.65 采掘设备向上走行移动坑线速度v0/(km·h−1) 2.4 采掘设备向下走行移动坑线速度v1/(km·h−1) 3.5 采掘设备平盘移动速度v2/(km·h−1) 3 年剥离作业时间Ta/d 240 年采煤作业时间Tc/d 330 剥离设备实际生产能力qb/(万m3·台−1·d−1) 2.2 采煤设备实际生产能力qm/(万m3·台−1·d−1) 0.76 采煤设备数量Nc/台 4 内排追踪距离lp/m 50 设备小修周期Tx/d 10 设备小修工期t3/h 1 设备月检周期Ty/d 20 设备月检工期t4/h 5 -
[1] 刘 峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15. LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low- carbon technology pathunder the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
[2] 刘 峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1−15. LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15.
[3] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211. XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
[4] 中国煤炭工业协会煤炭工业技术委员会. 中国露天煤炭事业百年发展报告[M]. 北京: 煤炭工业出版社, 2015. [5] 陈仁升,康尔泗,吴立宗,等. 中国寒区分布探讨[J]. 冰川冻土,2005,27(4):469−475. CHEN Rensheng,KANG Ersi,WU Lizong,et al. Cold regions in china[J]. Journal of Glaciology and Geocryology,2005,27(4):469−475.
[6] JIN R,LI X,CHE T. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J]. Remote Sensing of Environment,2009,113(12):2651−2660. doi: 10.1016/j.rse.2009.08.003
[7] 张周爱, 黄玉凯. 季节性剥离露天矿采场露煤方案优化研究[C]//中国煤炭学会. 第十届全国煤炭工业生产一线青年技术创新文集. 中国煤炭学会, 2016: 7. ZHANG Zhouai, HUANG Yukai. Research on optimization of coal exposed scheme for seasonal stripping open pit mines[C]//China Coal Society. 10th National Coal Industry Production Frontline Youth Technical Innovation Collection. China Coal Society, 2016: 7.
[8] 刘 闯. 大型复合煤层露天矿综合开采工艺关键技术研究[D]. 阜新: 辽宁工程技术大学, 2016. LIU Chuang. Key technology research of combined mining system in large multiple coal seams surface mines[D]. Fuxin: Liaoning Technical University, 2016.
[9] 赵 浩,毛开江,曲业明,等. 我国露天煤矿无人驾驶及新能源卡车发展现状与关键技术[J]. 中国煤炭,2021,47(4):45−50. ZHAO Hao,MAO Kaijiang,QU Yeming,et al. Development status and key technology of driverless and new energy trucks in open-pit coal mine in China[J]. China Coal,2021,47(4):45−50.
[10] 周志友. 组合台阶开采技术在露天矿开采中的研究与应用[J]. 煤矿现代化,2022,31(4):67−69, 73. ZHOU Zhiyou. Research and application of combined bench mining technology in open pit mining[J]. Coal Mine Modernization,2022,31(4):67−69, 73.
[11] 孙明亮,郭 章. 组合台阶陡帮开采在山西某露天铁矿的应用研究[J]. 现代矿业,2021,37(8):68−72. SUN Mingliang,GUO Zhang. Study on the application of combined step steep slope mining in an open-pit iron mine in shanxi[J]. Modern Mining,2021,37(8):68−72.
[12] 刘 宇,林 旭. 组合台阶开采工艺在哈尔乌素露天煤矿的应用[J]. 露天采矿技术,2016,31(8):5−8. LIU Yu,LIN Xu. Application of combined bench mining technology in Ha'erwusu open-pit mine[J]. Opencast Mining Technology,2016,31(8):5−8.
[13] 白润才,刘 闯,刘光伟,等. 季节性剥离露天煤矿内排开拓运输系统优化[J]. 重庆大学学报,2014,37(8):99−104. BAI Runcai,LIU Chuang,LIU Guangwei,et al. Optimization of in-pit haulage system development during internal dumping in seasonal stripping surface coal mine[J]. Journal of Chongqing University,2014,37(8):99−104.
[14] 马忠辉,黄玉凯,陈树召,等. 季节性岩土强度差异下的靠帮开采及效益分析[J]. 煤矿安全,2021,52(4):231−236. MA Zhonghui,HUANG Yukai,CHEN Shuzhao,et al. Analysis of steep mining and benefit based on seasonal difference of rock and soil strength[J]. Safety in Coal Mines,2021,52(4):231−236.
[15] 陆 翔. 寒区露天矿泥岩边坡冻融损伤机理与季节性控制开采研究[D]. 徐州: 中国矿业大学, 2021. LU Xiang. Research on freeze-thaw damage mechanism of mudstone slope and seasonal control mining method in open-pit mines of cold regions[D]. Xuzhou: China University of Mining and Technology, 2021.
[16] 中国矿业大学. 露天采矿手册(第五册)[M]. 北京: 煤炭工业出版社, 1987. [17] 马昌凤. 最优化方法及其Matlab程序设计[M]. 北京: 科学出版社, 2010. [18] 李元科. 工程最优化设计[M]. 北京: 清华大学出版社, 2006. [19] 唐 承,郭书祥,莫延彧,等. 应用粒子群−序列二次规划算法的结构可靠性优化[J]. 空军工程大学学报(自然科学版),2016,17(2):107−111. TANG Cheng,GUO Shuxiang,MO Yanyu,et al. An optimal design of structural reliability based on particle swarm optimization-sequential quadratic programming algorithm[J]. Journal of Air Force Engineering University(Natural Science edition),2016,17(2):107−111.
[20] MASAO Fukushima, 福岛雅夫, 林贵华. 非线性最优化基础[M]. 北京: 科学出版社, 2011. [21] 骞恒浩,石鹏飞,王敏文,等. 基于改进序列二次规划的非线性控制分配[J]. 兵工自动化,2022,41(8):74−80. QIAN Henghao,SHI Pengfei,WANG Minwen,et al. Nonlinear control allocation based on improved sequential quardratic programming[J]. Ordnance Industry Automation,2022,41(8):74−80.
[22] 中国煤炭建设协会勘察设计委员会, 中煤科工集团沈阳设计研究院有限公司. 煤炭工业露天矿设计规范: GB50197—2015 [S]. 北京: 中国计划出版社, 2015. [23] 交通部公路规划设计院. 厂矿道路设计规范: GBJ22—87[S]. 北京: 中国计划出版社, 1987. -
期刊类型引用(8)
1. 向鑫. 基于优化灰色关联度理论的矿井突水水源识别模型及应用. 水利规划与设计. 2025(08) 百度学术
2. 陶志勇. 煤矿涌水水源快速判识方法在神东矿区的应用. 中国煤炭. 2025(02): 79-87 . 百度学术
3. 谢潇,鲁璐. 基于TPE-LightGBM的平顶山煤田矿井水源判识模型研究. 陕西煤炭. 2025(06): 13-20 . 百度学术
4. 李双慧,朱宏军,朱开鹏,黄选明. 不连沟井田岩溶水水化学特征及其演化规律研究. 能源与环保. 2024(02): 155-162 . 百度学术
5. 王皓,孙钧青,曾一凡,尚宏波,王甜甜,乔伟. 蒙陕接壤区煤层顶板涌水水源智能判别方法. 煤田地质与勘探. 2024(04): 76-88 . 百度学术
6. 肖观红,鲁海峰. 基于PCA-GA-RF的矿井突水水源快速识别模型. 煤矿安全. 2024(06): 184-191 . 百度学术
7. 周全超,刘玲,李继升,殷裁云. 基于多种解析法和数值法求解巨厚砂岩水文地质参数. 煤炭科学技术. 2024(S1): 174-182 . 本站查看
8. 曹思文,刘源,武亚遵,王雪奇. 基于多元统计和混合模型的矿井涌水构成比例判别. 煤炭工程. 2024(12): 133-139 . 百度学术
其他类型引用(3)