Theory and engineering practice of constructing “inner protection layer” for strongly prominent coal seams
-
摘要:
保护层开采是煤矿瓦斯灾害防治最有效的技术手段,适用于有保护层可采的多煤层(群)等。对于无保护层可采的强突出单一煤层,随着采深加大、开采强度增加、构造更加复杂等多重因素叠加影响,应力与瓦斯耦合型灾害成为主导。为消除煤与瓦斯突出危险,目前采取的诸如机械扩孔、水力冲孔、水射流割缝和水力压裂等措施均能较好地提高抽采效果,但未能实现均匀卸压、均匀增透和消除应力异常,存在一定的消突局限性。如何实现瓦斯高效抽采和高效消突是长期遏制该类煤层安全高效开采的主要技术瓶颈。研究结合河南能源集团所属突出矿井“零距离保护层”分层开采、穿层钻孔卸压增透强化抽采消突的工程实践,通过优化穿层钻孔设计、合理选择卸压措施和精准计量掏出煤量,强化卸压消突效果考察,实现大区域连片均匀卸压,形成了在煤层内构建类似保护层的消突途径,提出了“构建内保护层技术”,实现了强力均匀卸压、高效抽采,实现煤层快速消突。总结以河南能源焦煤公司为代表的突出矿井瓦斯治理技术发展历史及经验,开展单一厚煤层“构建内保护层技术”研究,阐释了“构建内保护层”消突的科学内涵、消突机理构建方法,开发了内保护层消突效果评价技术,构建了强突出单一煤层内保护层消突技术体系并制定了相关企业标准。提出强突出单一煤层主动构建内保护层的消突理念,创新了保护层开采的内涵和外延,为强突出单一煤层高效消突提供了较完善的技术体系和较为坚实的理论基础及技术手段。
Abstract:Protective layer mining is the most effective technical means to prevent and control coal mine gas disaster, which is applicable to multiple coal seams (groups) with protected seams available for mining. With the influence of multiple factors such as increasing mining depth, mining intensity and more complex tectonics, the stress and gas coupling type of disaster for a single strong protrusion coal seam without protective layer has become the dominant. In order to eliminate the risk of coal and gas protrusion, the current measures such as mechanical reaming, hydraulic punching, water jet cutting and hydraulic fracturing can better improve the extraction effect, but fail to achieve uniform pressure relief, uniform penetration and eliminate stress anomalies, there are certain limitations to the elimination of protrusion. How to achieve efficient gas extraction and high-efficiency outburst elimination is the main technical bottleneck that has long curbed the safe and efficient mining of this type of coal seam. The study combined the engineering practice of “zero-distance protective layer” stratified mining and unloading pressure and increasing penetration of penetrating boreholes to enhance the extraction and eliminate outburst in prominence mine belonging to Henan Energy Group. The effect of pressure-releasing enhancement and outburst elimination was investigated by optimizing the design of penetrating boreholes, reasonably selecting the pressure releasing measures and accurately metering the amount of coal hollowed out. The effect of pressure releasing to eliminate outburst was strengthened, the uniform pressure releasing in a large area was realized, and a way of eliminating outburst by constructing a similar protective layer in the coal seam was formed. The “construction of inner protective layer technology” was proposed to achieve strong and uniform pressure relief, efficient extraction and rapid outburst elimination in coal seam. Summarizing the development history and experience of gas management technology in protruding mines represented by Henan Energy Coking Coal Company, the research on the “construction of inner protective layer technology” for single thick coal seam was carried out, the scientific connotation of “constructing inner protective layer” to eliminate outburst was explained, the mechanism of eliminating outburst was revealed, and the constructing method was formed. The effect evaluation technology of inner protective layer to eliminate outburst was developed, a technology system for eliminating outburst in the inner protective layer of a single coal seam with strongly outburst was constructed, and the related enterprise standard was formulated. The proposed concept of actively constructing the inner protective layer to eliminate outburst in a single coal seam with strongly outburst has innovated the connotation and extension of protective layer mining, and provided a more complete technical system and a more solid theoretical basis and technical means for the efficient outburst elimination in a single coal seam with strongly outburst.
-
-
表 1 软、硬煤突出临界瓦斯压力计算参数值
Table 1 Thecritical gas pressure values for outburst soft and hard coal
类型 弹性模量/MPa 黏聚力
/MPa泊松比 内摩擦角
/(°)孔隙率
/%巷道半径
/m掘进进尺
/mη 软煤 800 0.4 0.28 30 6 3 1 2 硬煤 1200 3 0.3 35 4 3 1 2 表 2 软、硬煤不同应力条件下的突出临界瓦斯压力值
Table 2 Outburst critical gas pressure values for soft and hard coals under different stress conditions
MPa f σ0 0 2 4 6 8 10 12 14 16 18 20 22 0.2 1.48 1.26 1.10 0.95 0.84 0.73 0.66 0.6 0.53 0.47 0.42 0.39 0.5 2.81 2.25 1.87 1.59 1.40 1.25 1.13 1.03 0.94 0.87 0.81 0.77 表 3 构建上部内保护层正交试验分析(工况1)
Table 3 Orthogonal test scheme for construction of upper inner protective layer (working condition 1)
编号 钻孔倾角/
(°)出煤量/
(t·m−1)孔间距/
m原始应力/
MPa软煤厚度/
m1 45 0.6 5 12 0.3 2 45 1 6 10 0.9 3 30 0.6 6 16 0.6 4 60 0.8 6 14 0.3 5 30 0.4 4 10 0.3 6 30 1.0 5 14 1.2 7 60 0.4 5 16 0.9 8 30 0.8 7 12 0.9 9 75 0.8 5 10 0.6 10 45 0.8 4 16 1.2 11 60 1.0 4 12 0.6 12 45 0.4 7 14 0.6 13 75 0.4 6 12 1.2 14 60 0.6 7 10 1.2 15 75 1.0 7 16 0.3 16 75 0.6 4 14 0.9 表 4 构建下部内保护层正交试验分析(工况2)
Table 4 Orthogonal test scheme for construction of lower inner protective layer (working condition 2)
编号 钻孔倾角/
(°)出煤量/
(t·m−1)孔间距/
m原始应力/
MPa软煤厚度/
m1 45 0.6 5 12 0.3 2 45 1.0 6 10 0.9 3 30 0.6 6 16 0.6 4 60 0.8 6 14 0.3 5 30 0.4 4 10 0.3 6 30 1.0 5 14 1.2 7 60 0.4 5 16 0.9 8 30 0.8 7 12 0.9 9 75 0.8 5 10 0.6 10 45 0.8 4 16 1.2 11 60 1.0 4 12 0.6 12 45 0.4 7 14 0.6 13 75 0.4 6 12 1.2 14 60 0.6 7 10 1.2 15 75 1.0 7 16 0.3 16 75 0.6 4 14 0.9 表 5 全软煤正交试验正交试验方案(工况3)
Table 5 Orthogonal test scheme for all-soft coal (working condition 3)
编号 钻孔倾角
/(°)出煤量
/(t·m−1)孔间距
/m原始应力
/MPa1 60 0.6 7 14 2 60 1.0 5 10 3 75 0.6 6 10 4 45 0.4 5 14 5 30 0.6 5 12 6 75 1.0 4 14 7 30 1.0 7 16 8 75 0.8 6 16 9 30 0.8 6 14 10 60 0.8 4 12 11 45 0.8 7 10 12 45 1.0 6 12 13 60 0.4 6 16 14 75 0.4 7 12 15 30 0.4 4 10 16 45 0.6 4 16 表 6 全硬煤正交试验分析(工况4)
Table 6 Orthogonal test scheme for all-hard coal (working condition 4)
编号 钻孔倾角/(°) 原始应力/MPa 孔间距/m 割缝长度/MPa 割缝数量/个 割缝高度/cm 1 45 3.5 10 0.3 2 2 2 60 3.5 12 0.9 4 2 3 30 2.5 10 0.9 8 4 4 30 2.0 16 0.9 2 2 5 30 2.5 14 0.3 6 2 6 30 3.5 14 0.6 2 8 7 60 2.5 16 1.2 2 8 8 75 2.5 10 0.6 4 2 9 45 3.0 10 0.9 2 6 10 75 3.0 10 1.2 2 2 11 75 2.0 14 0.9 2 6 12 60 3.0 14 0.3 2 6 13 45 2.5 12 0.3 2 6 14 60 2.0 10 0.6 6 6 15 30 3.5 10 1.2 8 6 16 30 2.0 10 0.3 2 2 17 60 2.0 10 0.3 2 4 18 30 2.0 12 1.2 6 2 19 30 3.0 16 0.3 4 6 20 30 3.0 12 0.6 2 4 21 30 2.0 10 0.3 4 8 22 75 2.0 12 0.3 8 8 23 45 2.0 16 0.6 8 2 24 75 3.5 16 0.3 6 4 25 45 2.0 14 1.2 4 4 表 7 1613中间底抽巷单孔瓦斯抽采对比钻孔参数
Table 7 Comparison parameters of single-hole gas extraction drilling for 1613 intermediate bottom extraction roadway
对比组 钻孔倾角 煤段长度/m 钻孔总长度/m I 41°20′ 13 35 41°20′ 13 34 II 80°20′ 7 18 80° 7 16.5 III 6° 18 48 6° 18 49 -
[1] 王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297−322. WANG Enyuan,ZHANG Guorui,ZHANG Chaolin, et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society,2022,47(1):297−322.
[2] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305. XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
[3] 张建民,李全生,张 勇,等. 煤炭深部开采界定及采动响应分析[J]. 煤炭学报,2019,44(5):1314−1325. ZHANG Jianmin,LI Quansheng,ZHANG Yong, et al. Definition of deep coal mining and response analysis[J]. Journal of China Coal Society,2019,44(5):1314−1325.
[4] 袁 亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725. YUAN Liang. Research progress of mining response and disaster pre-vention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.
[5] 何满潮. 深部建井力学研究进展[J]. 煤炭学报,2021,46(3):726−746. HE Manchao. Research progress of deep shaft construction mechanics[J]. Journal of China Coal Society,2021,46(3):726−746.
[6] 国家安全生产监督管理总局. 防治煤与瓦斯突出细则[M]. 北京:煤炭工业出版社,2019. [7] 胡千庭,文光才. 煤与瓦斯突出的力学作用机理[M]. 北京:科学出版社,2013. [8] 王 刚,武猛猛,王海洋,等. 基于能量平衡模型的煤与瓦斯突出影响因素的灵敏度分析[J]. 岩石力学与工程学报,2015,34(2):238−248. WANG Gang,WU Mengmeng,WANG Haiyang, et al. Sensitivity analysis of factors affecting coal and gas outburst based on a energy equilibrium model[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(2):238−248.
[9] 吴财芳,秦 勇,傅雪海,等. 煤基块弹性能及其与地质控制因素之间的关系[J]. 中国矿业大学学报,2005,34(5):636−639. WU Caifang,QIN Yong,FU Xuehai, et al. Coal matrix flexibility energy and the relation with geological controlling factors[J]. Journal of China University of Mining & Technology,2005,34(5):636−639.
[10] 康红普,吴志刚,高富强,等. 煤矿井下地质构造对地应力分布的影响[J]. 岩石力学与工程学报,2012,31(S1):2674−2680. KANG Hongpu,WU Zhigang,GAO Fuqiang, et al. Effect of geological structures on in-situ stress distribution in underground coal mines[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S1):2674−2680.
[11] 张庆贺. 煤与瓦斯突出能量分析及其物理模拟的相似性研究[D]. 济南:山东大学,2017. ZHANG Qinghe. Analysis of coal and gas outburst and research on similarity of physical simulation for it[D]. Jinan:Shangdong University,2017.
[12] 魏风清,史广山,张铁岗. 基于瓦斯膨胀能的煤与瓦斯突出预测指标研究[J]. 煤炭学报,2010,35(S1):95−99. WEI Fengqing,SHI Guangshan,ZHANG Tiegang. Study on coal and gas outburst prediction indexes base on gas expansion energy[J]. Journal of China Coal Society,2010,35(S1):95−99.
[13] 刘彦伟,浮绍礼,浮爱青. 基于突出热动力学的瓦斯膨胀能计算方法研究[J]. 河南理工大学学报(自然科学版),2008,27(1):1−5. LIU Yanwei,FU Shaoli,FU Aiqing. Study on the calculating methods of gas expansion energy base on themo kinetic of outburst[J]. Journal of Henan Polytechnic University (Natural Science),2008,27(1):1−5.
[14] 刘明举,颜爱华. 煤与瓦斯突出的热动力过程分析[J]. 焦作工学院学报(自然科学版),2001,20(1):1−7. LIU Mingju,YAN Aihua. Thenody namic process analysis of coal and gas outbursts[J]. Journal of Jiaozuo Institute of Technology (Natural Science),2001,20(1):1−7.
[15] 李成武,解北京,曹家琳,等. 煤与瓦斯突出强度能量评价模型[J]. 煤炭学报,2012,37(9):1547−1552. LI Chengwu,XIE Beijing,CAO Jialin, et al. The energy evaluation model of coal and gas outburst intensity[J]. Journal of China Coal Society,2012,37(9):1547−1552.
[16] 蒋承林,俞启香. 煤与瓦斯突出的球壳失稳机理及防治技术[M]. 徐州:中国矿业大学出版社,1998. [17] 王 刚,武猛猛,程卫民,等. 煤与瓦斯突出能量条件及突出强度影响因素分析[J]. 岩土力学,2015,36(10):2974−2982. WANG Gang,WU Mengmeng,CHENG Weimin, et al. Analysis of energy conditions for coal and gas outburst and factors influencing outburst intensity[J]. Rock and Soil Mechanics,2015,36(10):2974−2982.
[18] 唐巨鹏, 任凌冉, 潘一山, 等. 高地应力条件煤与瓦斯突出模拟试验研究[J]. 煤炭科学技术,2022,50(2):113−121. TANG Jupeng, REN Lingran, PAN Yishan, et al. Simulation test study on coal and gas outburst under conditions of high in-situ stress[J]. Coal Science and Technology,2022,50(2):113−121.
[19] 刘 勇,魏建平,徐向宇,等. 一种松软煤层中气动柔性刀具破煤卸压增透装置和方法[P]. 中国:ZL114483028A,2022-05-13. [20] 刘 勇,魏建平,刘笑天,等. 一种利用超前预混合脉冲磨料水射流破煤增透装置及方法[P]. 中国:ZL114000826A,2022-02-01. [21] 张 荣. 复合煤层水力冲孔卸压增透机制及高效瓦斯抽采方法研究[D]. 徐州:中国矿业大学,2019. ZHANG Rong. Research on the stress relief and permeability increase mechanism and high-efficiency gas drainage method on a composite coal seam [D]. Xuzhou:China University of Mining and Technology,2019.
-
期刊类型引用(5)
1. 刘国方,郝萍萍,马瑜琦,徐广震. 基于FLAC 3D的煤岩体矿压危险性数值模拟系统研究. 现代信息科技. 2025(07): 145-150+156 . 百度学术
2. 武超,王志强,刘耀儒,李敬凯,耿新胜,林陆,李廷照,石磊,王鹏. 特厚煤层垂直分层区段窄煤柱围岩稳定性及控制技术. 煤炭学报. 2024(09): 3728-3744 . 百度学术
3. 李振华,任梓源,杜锋,任浩,王文强. 大巷煤柱工作面过空巷矿压规律及控制技术. 煤田地质与勘探. 2024(10): 141-152 . 百度学术
4. 庄志鹏,郑文翔,段晓博,郭帅,石昌辉. 缓倾斜煤层留窄煤柱切顶卸压合理参数研究. 矿业研究与开发. 2024(11): 66-74 . 百度学术
5. 薄树祥,魏晓翔,李耀,石增柱,李辉亮. 唐山矿深部倾斜煤层回采巷道破坏特征及控制. 煤炭与化工. 2024(12): 22-27+31 . 百度学术
其他类型引用(2)