高级检索

关闭煤矿矿井水中“双源”铁污染的电化学机理实验模拟

周来, 叶涛, 郑双双, 朱雪强, 吴江峰

周 来,叶 涛,郑双双,等. 关闭煤矿矿井水中“双源”铁污染的电化学机理实验模拟[J]. 煤炭科学技术,2024,52(3):323−331

. DOI: 10.13199/j.cnki.cst.2023-0150
引用本文:

周 来,叶 涛,郑双双,等. 关闭煤矿矿井水中“双源”铁污染的电化学机理实验模拟[J]. 煤炭科学技术,2024,52(3):323−331

. DOI: 10.13199/j.cnki.cst.2023-0150

ZHOU Lai,YE Tao,ZHENG Shuangshuang,et al. Experimental simulation on the electrochemical mechanism of iron pollution from “dual-source” in closed coal mine water[J]. Coal Science and Technology,2024,52(3):323−331

. DOI: 10.13199/j.cnki.cst.2023-0150
Citation:

ZHOU Lai,YE Tao,ZHENG Shuangshuang,et al. Experimental simulation on the electrochemical mechanism of iron pollution from “dual-source” in closed coal mine water[J]. Coal Science and Technology,2024,52(3):323−331

. DOI: 10.13199/j.cnki.cst.2023-0150

关闭煤矿矿井水中“双源”铁污染的电化学机理实验模拟

基金项目: 

国家重点研发计划资助项目(2022YFC3702203);国家自然科学基金资助项目(41572218);中国矿业大学重大项目培育资助项目(2020ZDPYMS07)

详细信息
    作者简介:

    周来: (1981—),男,江苏扬州人,副教授,博士。Tel:0516-83591304,E-mail:zhoulai99@cumt.edu.cn

  • 中图分类号: X523

Experimental simulation on the electrochemical mechanism of iron pollution from “dual-source” in closed coal mine water

Funds: 

National Key Research and Development Program of China (2022YFC3702203); National Natural Science Foundation of China (41572218); Major Project Cultivation Funding Project of China University of Mining and Technology (2020ZDPYMS07)

  • 摘要:

    关闭煤矿矿井水多呈现高铁特征,闭坑淹井后残留铁质器件易锈蚀,与含铁矿物形成矿井水“双源”铁污染体系,在闭坑后不同时期贡献铁的释放,形成地下水环境风险。为明确关闭煤矿矿井水中双源铁释放过程与反应机理,刻画铁污染双源释放方式,量化释放速率比,基于电化学模拟原理,以黄铁矿和矿用锚杆为模拟“双源”,制备成工作电极,利用循环伏安法和极化法等电化学方法以及X射线光电子能谱材料表面表征技术,对煤矿关闭初期双源共存下在酸性矿井水环境中氧化还原反应过程与铁释放机制进行了模拟研究。结果表明,溶解氧含量是影响黄铁矿和锚杆在酸性矿井水中发生氧化还原反应的重要抑制因素。黄铁矿与锚杆的氧化机制不同,黄铁矿在氧化过程中表面出现钝化效应,2种材料的最终氧化产物均为Fe3+ 和${\rm{SO}}_{4}^{2-}$。黄铁矿主要通过矿物表面的Fe2+ 发生氧化反应释铁,锚杆主要通过材料表面铁及其氧化产物与溶液中酸性物质的反应释铁,且铁氧化物较单质铁优先反应。在模拟富氧(DO=7.0 mg/L)酸性矿井水中,黄铁矿和锚杆的年腐蚀速率分别达到8.3636mm/a和7.8314mm/a,估算年释铁速率分别达到1.2240g/a和3.9395g/a。在模拟井下低氧(DO=3.5 mg/L)酸性矿井水中,黄铁矿和锚杆的年腐蚀速率分别达到0.7324mm/a和0.3642mm/a,估算年释铁速率分别达到0.1072g/a和0.1832g/a。综合电化学参数与静态释铁实验表明,在溶解氧充足或缺乏的条件下,总体释铁速率比均为双源>锚杆>黄铁矿。

    Abstract:

    The closed coal mine water is mostly characterized by high iron. After mine closure and flooding, residual iron-prone devices and iron-bearing minerals form a “dual-source” iron pollution system in mine water, contributing to the release of iron in different periods after mine closure and creating environmental risks in groundwater. In order to clarify the process and reaction mechanism of “dual-source” iron release in closed coal mine water, to characterize the “dual-source” release mode of iron pollution, and compare the release rate, based on the principle of electrochemical simulation, the working electrodes were prepared by using pyrite and mining bolt as the simulated “dual-source”, and the redox reaction process and iron release mechanism in the acid mine water under the coexistence of “dual-source” at the early stage of coal mine closure were simulated using electrochemical methods such as cyclic voltammetry and polarization as well as X-ray photoelectron spectroscopy (XPS) material surface characterization techniques. The results showed that the dissolved oxygen content was an important inhibitory factor affecting the redox reaction of pyrite and bolt in acid mine drainage. The oxidation mechanism of pyrite and bolt is different, the passivation effect occurs on the surface of pyrite during oxidation, and the final oxidation products of both materials are Fe3+ and$ { {\rm{SO}}_{4}^{2-}}$. Pyrite releases iron mainly through the oxidation reaction of Fe2+ on the mineral surface. Bolt released iron mainly through the reaction of iron and its oxidation products on the surface of the material with the acid substances in the solution, and the oxide reacted preferentially over the monomer. In the simulated aerobic (DO=7.0 mg/L) acid mine drainage, the annual corrosion rates of pyrite and bolt reached8.3636mm/a and7.8314mm/a, respectively, and the annual iron release rates reached1.2240g/a and3.9395g/a, respectively. In the simulated underground anoxic (DO=3.5 mg/L) acid mine drainage, the annual corrosion rates of pyrite and bolt reached0.7324mm/a and0.3642mm/a, respectively, and the estimated annual iron release rates reached0.1072g/a and0.1832g/a, respectively. The integrated electrochemical parameters and static iron release experiments showed that the total iron release rate ratios were both dual-source > bolt > pyrite under the conditions of sufficient or lack of dissolved oxygen.

  • 图  1   电化学模拟试验装置示意

    Figure  1.   Schematic of electrochemical simulation experiment device

    图  2   开路电位−时间曲线

    Figure  2.   Open circuit potential-time curve

    图  3   黄铁矿电极循环伏安曲线

    Figure  3.   Cyclic voltammetry curves of pyrite electrode

    图  4   锚杆电极循环伏安曲线

    Figure  4.   Cyclic voltammetry curves of bolt electrode

    图  5   Tafel极化曲线

    Figure  5.   Tafel polarization curves

    图  6   不同污染源静态释铁速率

    Figure  6.   Static iron release rate from different pollution sources

    图  7   黄铁矿电极反应前后XPS谱图

    Figure  7.   XPS spectra of pyrite electrode

    图  8   锚杆电极反应前后XPS谱图

    Figure  8.   XPS spectra of bolt electrode

    表  1   模拟酸性矿井水成分

    Table  1   Composition of simulated acid mine drainage

    pH电导率/mV离子质量浓度/(mg·L−1)
    Na+Cl${\rm{SO}}_{4}^{2-} $Fe2+
    3.11309598431500100
    下载: 导出CSV

    表  2   黄铁矿与锚杆电极电化学特性比较

    Table  2   Comparison of electrochemical properties of pyrite and bolt electrodes

    类型黄铁矿−Air黄铁矿−N2锚杆−Air锚杆−N2
    Eocp/mV0.29710.19090.24000.6150
    腐蚀电位-Ecorr/V1.13780.80271.02641.0663
    腐蚀电流Icorr/mA0.13360.01170.43000.0200
    阴极斜率βc0.22040.19320.18920.1398
    阳极斜率βa1.08100.10510.47850.2866
    自腐蚀电流密度i/(mA·cm−2)0.20880.01830.67190.0313
    年腐蚀速率RC/(mm·a−1)8.36360.73247.83140.3642
    释铁速率r/(g·a−1)1.22400.10723.93950.1832
    下载: 导出CSV
  • [1] 武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478

    WU Qiang. Progress, problems, and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478

    [2] 尹尚先,徐 斌,尹慧超,等. 矿井水防治学科基本架构及内涵[J]. 煤炭科学技术,2023,51(7):24−35. doi: 10.13199/j.cnki.cst.2023-0477

    YIN Shangxian,XU Bin,YIN Huichao,et al. Basic structure and connotation of mine water prevention and control discipline[J]. Coal Science and Technology,2023,51(7):24−35. doi: 10.13199/j.cnki.cst.2023-0477

    [3] 王建兵,李亚男,蒋雯婷,等. 混凝沉淀处理高浊高铁锰矿井水试验研究[J]. 中国矿业大学学报,2013,42(1):141−146. doi: 10.13247/j.cnki.jcumt.2013.01.025

    WANG Jianbing,LI Yanan,JIANG Wenting,et al. Treatment of coal mine drainage with high turbidity, high iron and manganese in the use of coagulation and sedimentation process[J]. Journal of China University of Mining & Technology,2013,42(1):141−146. doi: 10.13247/j.cnki.jcumt.2013.01.025

    [4] 邵立南,何绪文,黄静华,等. 高浊高铁锰矿井水中污染物在采空区内的迁移扩散[J]. 中国矿业大学学报,2009,38(1):135−139. doi: 10.3321/j.issn:1000-1964.2009.01.026

    SHAO Linan,HE Xuwen,HUANG Jinghua,et al. Migration and diffusion of pollutants in the mine water with high turbidity, high concentration of iron and manganese in goaf[J]. Journal of China University of Mining & Technology,2009,38(1):135−139. doi: 10.3321/j.issn:1000-1964.2009.01.026

    [5]

    WANG Luying,LIU Qingyou,ZHENG Kai,et al. Assessing the influence of calcium fluoride on pyrite electrochemical dissolution and mine drainage pH[J]. Journal of Environmental Quality,2016,45(4):1344−1350. doi: 10.2134/jeq2015.06.0275

    [6]

    LIU Tong,HU Yutian,CHEN Nan,et al. Electrochemical investigation of the oxidation of pyrite in neutral solutions[J]. Electrochimica Acta,2021,393:1−8.

    [7] 涂志红. 黄铁矿氧化过程中硫形态转化及其表面氧化电化学研究[D]. 广州: 华南理工大学, 2017.

    TU Zhihong. Studies of sulfur transformation in the oxidation of pyrite and surface electrochemistry of pyrite oxidation[D]. Guangzhou: South China University of Technology, 2017.

    [8] 何荣权. 无菌体系下黄铁矿氧化过程的钝化研究[D]. 长沙: 中南大学, 2006.

    HE Rongquan. Passivation study of the pyrite oxidation process in the aseptic system[D]. Changsha: Central South University, 2006.

    [9] 陈海峰. 酸性矿井水的成因和防治对策[J]. 煤矿环境保护,1993(1):7−10.

    CHEN Haifeng. Causes of acid mine water and countermeasures for control[J]. Coal Mine Environmental Protection,1993(1):7−10.

    [10] 孙文洁,任顺利,武 强,等. 新常态下我国煤矿废弃矿井水污染防治与资源化综合利用[J]. 煤炭学报,2022,47(6):2161−2169.

    SUN Wenjie,REN Shunli,WU Qiang,et al. Water pollution’s prevention and comprehensive utilization of abandoned coal mines in China under the new normal life[J]. Journal of China Coal Society,2022,47(6):2161−2169.

    [11] 武 强,李松营. 闭坑矿山的正负生态环境效应与对策[J]. 煤炭学报,2018,43(1):21−32. doi: 10.13225/j.cnki.jccs.2017.4005

    WU Qiang,LI Songying. Positive and negative environmental effects of closed mines and its countermeasures[J]. JOURNAL OF CHINA COAL SOCIETY,2018,43(1):21−32. doi: 10.13225/j.cnki.jccs.2017.4005

    [12]

    YILMAZ A,CHANDRA D.,REBAK R. B. Corrosion behavior of carbon steel rock bolt in simulated Yucca Mountain ground waters[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2005,36A(5):1097−1105.

    [13]

    PENG Ya,TIMMS Wendy. Hydrogeochemical modelling of corrosive environment contributing to premature failure of anchor bolts in underground coal mines[J]. Journal of Central South University,2020,27(5SI):1599−1610.

    [14] 魏泽捷. 高腐蚀环境下锚杆腐蚀耐久性及防护技术试验研究[D]. 徐州: 中国矿业大学, 2021.

    WEI Zejie. Experimental research on corrosion durability and protection technology of rock bolts in high corrosion environment[D]. Xuzhou: China University of Mining and Technology, 2021.

    [15]

    MA Fangping, ZENG Qing, LU Xiangyu, et al. Electrochemical study of stainless steel anchor bolt corrosion initiation in corrosive underground water[J]. Processes, 1-9[2022-02-14].DOI: 10.3390/pr9091553.

    [16] 张 磊, 蒋开喜, 王海北. 黄铜矿酸性氧化浸出过程的电化学行为研究[J]. 有色金属(冶炼部分), 2006(1): 7−9.

    ZHANG Lei, JIANG Kaixi, WANG Haibei. Electrochemical Behavior Study on Chalcopyrite in the Course of Oxidic-acidic Leaching[J]. Nonferrous Metals, 2006(1): 7−9.

    [17]

    TU Zhihong,WAN Jingjing,GUO Chuling,et al. Electrochemical oxidation of pyrite in pH 2 electrolyte[J]. Electrochimica Acta,2017,239:25−35. doi: 10.1016/j.electacta.2017.04.049

    [18] 李 庭. 废弃矿井地下水污染风险评价研究[D]. 徐州: 中国矿业大学, 2014.

    LI Ting. Study on groundwater pollution risk assessment of abandoned coal mine[D]. Xuzhou: China University of Mining and Technology, 2014.

    [19] 李竞赢,刘启蒙,杨明慧. 矿井水水化学特征及资源化利用研究−以张集煤矿为例[J]. 煤炭科学技术,2023,51(4):254−263. doi: 10.13199/j.cnki.cst.2021-0927

    LI Jingying,LIU Qimeng,YANG Minghui. Study on chemical characteristics and resource utilization of mine water: taking Zhangji Coal Mine as an example[J]. Coal Science and Technology,2023,51(4):254−263. doi: 10.13199/j.cnki.cst.2021-0927

    [20] 宋立博. 阳泉矿区酸性矿水微生物群落特点及对下游水质影响分析[D]. 太原: 山西大学, 2019.

    SONG Libo. Composition feature of microbial communities in acid mine drainage from Yangquan Mining Area and its impact on water quality downstream[D]. Taiyuan: Shanxi University, 2019.

    [21] 张钟远,陆治斌,徐世光,等. 凯里市鱼洞河矿区矿井水水化学特征及污染地下水途径[J]. 地质灾害与环境保护,2021,32(2):86−92. doi: 10.3969/j.issn.1006-4362.2021.02.017

    ZHANG Zhongyuan,LU Zhibi,XU Shiguang,et al. The Chemical characteristics of mine water and the ways to pollute groundwater in Yudonghe Mining Area in Kaili City[J]. Journal of Geological Hazards and Environment Preservation,2021,32(2):86−92. doi: 10.3969/j.issn.1006-4362.2021.02.017

    [22] 廖禄云,杨在文,杨 放,等. 西南地区硫铁矿和高硫煤矿AMD的环境问题及其治理对策[J]. 成都理工大学学报(自然科学版),2021,48(6):754−761.

    LIAO Luyun,YANG Zaiwen,YANG Fang,et al. Environmental problems and countermeasures of AMD in pyrite and high-sulfur coals in Southwest China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2021,48(6):754−761.

    [23] 王 楠,易筱筠,党 志,等. 酸性条件下黄铁矿氧化机制的研究[J]. 环境科学,2012,33(11):3916−3921. doi: 10.13227/j.hjkx.2012.11.040

    WANG Nan,YI Xiaoyun,DANG Zhi,et al. Investigation on mechanism of pyrite oxidation in acidic solutions[J]. Environmental Science,2012,33(11):3916−3921. doi: 10.13227/j.hjkx.2012.11.040

    [24]

    LIU Y,DANG Z,WU P X,et al. Influence of ferric iron on the electrochemical behavior of pyrite[J]. IONICS,2011,17(2):169−176. doi: 10.1007/s11581-010-0492-4

    [25] 李永娟,张 盾,刘学庆. Q235钢在模拟海水环境混凝土孔隙液中阴极氧还原反应的动力学研究[J]. 腐蚀科学与防护技术,2009,21(2):134−136. doi: 10.3969/j.issn.1002-6495.2009.02.019

    LI Yongjuan,ZHANG Dun,LIU Xueqing. Kinetics of cathodic oxygen reduction reactions on Q235 steel in a simulated concrete pore solution in seawater environment[J]. Corrosion Science and Protection Technology,2009,21(2):134−136. doi: 10.3969/j.issn.1002-6495.2009.02.019

    [26] 刘 云. 黄铁矿氧化机理及表面钝化行为的电化学研究[D]. 广州: 华南理工大学, 2011.

    LIU Yun. Electrochemical study of the oxidation mechanism and passivation behaviour of pyrite[D]. Guangzhou: South China University of Technology, 2011.

    [27]

    WANG Yunyan,LUO Yongjian,XU Hui,et al. Corrosion behavior and electrochemical property of Q235A steel in treated water containing halide ions (F, Cl) from nonferrous industry[J]. Journal of Central South University,2020,27(4):1224−1234. doi: 10.1007/s11771-020-4362-6

    [28]

    ASTM G0102-89R15E01. Standard practice for calculation of corrosion rates and related information from electrochemical Measurements[S]. West Conshohocken, PA: American Society for Testing and Materials, 2015.

    [29]

    BRYSON L J,CRUNDWELL F K. The anodic dissolution of pyrite (FeS2) in hydrochloric acid solutions[J]. Hydrometallurgy,2014,143:42−53. doi: 10.1016/j.hydromet.2014.01.005

    [30] 屈振昊. 黄铁矿常压氧化浸出机理研究[D]. 沈阳: 东北大学, 2018.

    QU Zhenhao. Mechanism study of pyrite atmospheric oxidation leaching[D]. Shenyang: Northeastern University, 2018.

    [31]

    QIU Xiaoqing,LIU Min,HAYASHI Toru,et al. Solution-based synthesis of pyrite films with enhanced photocurrent generation[J]. Chemical Communications,2013,49(12):1232−1234. doi: 10.1039/c2cc38218k

  • 期刊类型引用(19)

    1. 李迎雪,郑禄林,杨爱莲,曾艳,石鑫,冉浪. 基于QPSO-BP神经网络的矿井突水水源判识模型研究. 贵州大学学报(自然科学版). 2025(01): 114-124 . 百度学术
    2. 鹿友磊,谭奕明. 多方法耦合的充水水源识别技术在王家岭矿的应用研究. 煤炭与化工. 2025(03): 52-56+84 . 百度学术
    3. 温卓越,杜兆文,李帅乾. 基于不同浓度氯盐作用下充填膏体时效性特征研究. 煤炭科学技术. 2025(05): 114-126 . 本站查看
    4. 罗卫东,杨乘,胡金春,袁荣方,赵喜宇. 煤岩瓦斯动力灾害风险智能判识与融合预测. 能源与环保. 2024(05): 71-77 . 百度学术
    5. 肖观红,鲁海峰. 基于PCA-GA-RF的矿井突水水源快速识别模型. 煤矿安全. 2024(06): 184-191 . 百度学术
    6. 潘军. 基于Piper-层次聚类-灰色关联度的突水水源识别. 煤炭科学技术. 2024(S1): 221-227 . 本站查看
    7. 石守桥,吴复柱,边凯,王铁记,靳子栋,段江飞. 基于水化学及氢氧同位素的采空区积水水源识别:以巴彦高勒煤矿为例. 科学技术与工程. 2024(24): 10220-10226 . 百度学术
    8. 杜兆文,温卓越,李帅乾,王飞宇. 氯盐作用下膏体充填体力学特性及劣化机制研究. 岩石力学与工程学报. 2024(12): 2924-2939 . 百度学术
    9. 郑洁铭,李媛,方惠明,魏中林,刘荣灿. 基于水化学-微生物特征的矿井涌水水源识别. 煤炭工程. 2024(S1): 138-144 . 百度学术
    10. 华星月,邵良杉. 基于KPCA-GWO-SVM的矿井突水水源识别. 煤矿安全. 2023(02): 195-200 . 百度学术
    11. 王凯,李康楠,杜锋,张翔,王衍海,周家旭. 基于CNN的煤岩瓦斯复合动力灾害预测. 矿业科学学报. 2023(05): 613-622 . 百度学术
    12. 黄敏,毛岸,路世昌,王彦彬,邵良杉. 矿井突水水源识别的主成分分析-混沌麻雀搜索-RF模型. 安全与环境学报. 2023(08): 2607-2614 . 百度学术
    13. 孙延辉,胡文博,马红林,王历民,杜华,李世涛. 基于Piper-PCA-Fisher的矿井突出水源判别模型构建及应用. 化工矿物与加工. 2023(09): 52-58+80 . 百度学术
    14. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 . 百度学术
    15. 赵乐乐,王亮,侯起阳,万战胜,郭庆彪. 基于PCA-RA和云模型的采空区建设场地稳定性评价. 金属矿山. 2022(03): 197-204 . 百度学术
    16. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 . 百度学术
    17. 刘明淳,蒋加森,姜海涛,陈智斌,谢仁青. 基于PCA-EWM-TOPSIS耦合算法的地下开采矿山岩体质量分级. 黄金. 2022(06): 27-31 . 百度学术
    18. 刘旭东,张瑞,万宝. 基于Piper-PCA-MLP神经网络的矿井涌水水源识别方法研究. 中国煤炭地质. 2022(07): 50-55 . 百度学术
    19. 顾爱民,刘德民. 基于HCA-Bayes的矿井涌水水源识别. 华北科技学院学报. 2022(05): 20-27 . 百度学术

    其他类型引用(3)

图(8)  /  表(2)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  16
  • PDF下载量:  19
  • 被引次数: 22
出版历程
  • 收稿日期:  2023-02-03
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回