高级检索

任家庄井田晚古生代煤系战略性金属元素富集特征

姬晓燕, 张志峰, 祁风华, 黄鹏程, 刘世恒, 袁红, 梁永平

姬晓燕,张志峰,祁风华,等. 任家庄井田晚古生代煤系战略性金属元素富集特征[J]. 煤炭科学技术,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146
引用本文:

姬晓燕,张志峰,祁风华,等. 任家庄井田晚古生代煤系战略性金属元素富集特征[J]. 煤炭科学技术,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146

JI Xiaoyan,ZHANG Zhifeng,QI Fenghua,et al. Enrichment characteristics of strategic metal elements in Late Paleozoic coal-bearing sequences in Renjiazhuang Mine Field[J]. Coal Science and Technology,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146
Citation:

JI Xiaoyan,ZHANG Zhifeng,QI Fenghua,et al. Enrichment characteristics of strategic metal elements in Late Paleozoic coal-bearing sequences in Renjiazhuang Mine Field[J]. Coal Science and Technology,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146

任家庄井田晚古生代煤系战略性金属元素富集特征

基金项目: 

宁夏2023年地质事业发展专项资金资助项目(640000233000000011005);宁夏自然科学基金资助项目(2021AAC03463)

详细信息
    作者简介:

    姬晓燕: (1986—),女,宁夏盐池人,工程师,硕士。E-mail:jixiaoyan111@163.com

    通讯作者:

    张志峰: (1985—),男,内蒙古包头人,高级工程师。E-mail:124592078@qq.com

  • 中图分类号: TD15

Enrichment characteristics of strategic metal elements in Late Paleozoic coal-bearing sequences in Renjiazhuang Mine Field

Funds: 

Special Fund for Geological Development in Ningxia in 2023 (6400002330000011005); Natural Science Foundation of Ningxia (2021AAC03463)

  • 摘要:

    煤系是战略性金属矿产增储的重要来源。宁东煤田煤炭资源丰富,部分地区煤中富集战略性金属。以宁东煤田任家庄井田煤系为研究对象,系统采集主煤层剖面煤样、夹矸及顶(底)板样,采用电感耦合等离子体质谱法(ICP-MS)、X-射线荧光光谱(XRF)和X射线衍射(XRD)进行了系统的矿物学和地球化学测试分析,查明常量元素和微量元素分布及富集情况,讨论战略性金属元素富集成因并进行物源分析。结果表明,任家庄井田石炭-二叠纪煤系富集战略性金属矿产,太原组和山西组煤中战略性金属元素整体含量水平较高,以Li-Ga-Zr(Hf)-Nb(Ta)-Th(U)-Pb及REY共富集为特征,且顶底板及夹矸更为富集。其中:5号煤层Li、Ba高度富集,Rb、Zr富集;9号煤层Li高度富集,Zr、Hf、Th富集;9煤层微量元素含量整体相对较低,Cr富集。5号煤层和9号煤层战略性金属元素富集程度较9煤层更好。5号煤层和9号煤层灰基Li、Ga均达到了开发利用品位,5号煤层灰基REY也达到了开发利用品位,具有良好开发利用前景。基于元素赋存特征、沉积环境、构造演化的综合分析,认为任家庄井田战略性金属元素富集主要受陆源碎屑供给影响,由鄂尔多斯盆地西缘北部阴山古陆与西北部阿拉善地块蚀源区的长英质−中性岩碎屑物质经古水流搬运进入泥炭沼泽,在特定沉积环境及地球化学环境下通过有机质与无机质相互作用而富集,并经多期次构造演化控制形成现今赋存分布状态及富集特征。

    Abstract:

    Coal-bearing sequences are important source for increasing strategic metal mineral reserves. There are abundant coal resources in Ningdong Coalfield,and strategic metals enrichment have been found in several coal-bearing sequences. The study selected coal-bearing sequences of Renjiazhuang Mine Field in Ningdong Coal Field as the research object, the coal samples, gangue, roof and floor plate of the main coal seam section were collected systematically. The mineralogical and geochemical tests were carried out by inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence spectroscopy and X-ray diffraction, and the distribution characteristics of major and trace elements were ascertained. The causes of strategic metal element enrichment and their provenance were analyzed.The results showed that the Permo-Carboniferous coal-bearing of late Paleozoic are the enrichment beds of strategic metal minerals in RenJiazhuang Mine Field. The enrichment of strategic metal elements in coal is common in Taiyuan and Shanxi formations, and the overall content of trace elements is high, which is characterized by Li-Ga-Zr(Hf)-Nb(Ta)-Th(U)-Pb,rare earth element and Yttrium(REY), co-enrichment. Moreover, strategic metal elements are more enriched in coal-bearing near the roof,floor and the gangue.Among them, Li and Ba are highly enriched, Rb and Zr are enriched in No.5 coal seam. Li is highly enriched in No.9 coal seam, while Zr, Hf and Th are enriched. The content of strategic metal elements in upper No.9 coal seam is relatively low and Cr is enriched. The concentration of trace elements in No.5 and No.9 coal is better than that in upper No.9 coal seam. Li and Ga of the ash foundation of No. 5 and No. 9 coal seam have reached the industrial grade, and REY of the ash foundation of No. 5 coal seam has also reached the industrial grade, which presenting a very promising potential for further exploration.Based on the comprehensive analysis of element occurrence characteristics, sedimentary environment and tectonic evolution, it is concluded that the strategic metal element enrichment in Renjiazhuang Mine Field is mainly influenced by the clastic supplying of the erosion source area, and the felsitic-neutral rock detrites from the northern Yinshan ancient landthe and the northwestern Alxa block in the western margin of Ordos Basin were transported into the peat swamp by palaeocurrent. It was enriched through interaction between organic matter and inorganic matter in specific sedimentary environment and geochemical environment, and formed the present distribution state and enrichment characteristics under the control of multi-stage tectonic evolution.

  • 传统关键金属矿床资源日趋紧缺,导致战略性矿产供需形势紧张。世界各国对煤系战略性金属矿产高度重视,我国战略性矿产资源的研究和利用也已上升到国家战略层面。因此,加快战略性金属矿产找矿突破,为持续开发利用战略性金属矿产资源提供保障势在必行[1]

    煤以有机质为主,这一物质组成特征决定了其吸附障和还原障性能,在特定地质和地球化学条件下,可以成为煤中金属元素富集共存的载体[2]。煤层本身或其夹矸、顶底板,以及煤系中其它类型沉积岩、火山灰蚀变黏土岩(Tonstein)或凝灰岩均可富集多种战略性金属[3-5],并达到可利用程度和规模,从而形成煤系战略性金属矿床。

    鉴于煤矿床厚度大、面积广、空间分布稳定、资源量大的特点,煤系通常会形成大型或超大型规模金属矿床,成为传统金属矿产的重要补充。煤系中已发现锂、锗、镓铝、稀土、钒、硒、铀−铼−硒、铌−锆−稀土−镓等多金属矿床[4-6]。由此可见,煤系是战略性金属矿产增储的重要来源,综合开发利用煤系金属矿产资源将为缓解战略性矿产供需矛盾、保障国家战略资源安全供给、促进煤和煤中金属元素矿产资源协同开发利用发挥重要作用[5]

    近年来,一些学者对宁东煤田煤系金属矿产开展了相关研究。如赵存良[7]发现麦垛山煤矿和石槽村煤矿等侏罗纪煤中镓元素较为富集。秦国红等[8]研究了煤中稀土元素地球化学特征,发现晚古生代煤中富集Li和Th元素,轻度富集Pb、Ga、REY、Sc、Be、Sr、In和U元素[9]。石志祥等[10]研究了侏罗纪煤中矿物的物质来源。曹代勇等[11]发现鸳鸯湖矿区Li质量分数173 μg/g,红墩子矿区稀土元素质量分数达313.21 μg/g,揭示了煤系金属元素矿产资源的赋存规律和盆地构造−热演化的控制作用。吴蒙[12]研究了任家庄煤矿和红石湾煤矿煤中硫的地化特征、有害元素的分布规律,探讨了煤中硫对有害元素富集的影响。吴亮等[13]研究了灵武矿区2煤煤中砷的含量特征。何伟[14]探讨了煤系三稀元素富集成矿可能性,以及延安组古沉积环境特征和物源区岩石性质。刘亢[15]发现横城二1煤Al2O3的质量分数(40.56%)达到了边界品位,铀未达到工业品位。

    上述研究对宁东煤田部分煤矿主煤层进行了微量元素的测试分析,但对同一地区垂向上的样品系统采集和元素含量测试不足,通过微量元素地球化学属性开展宁东煤田晚古生代沉积环境及物源分析的成果相对较少。鉴于此,笔者以任家庄井田石炭−二叠系煤为研究对象,开展煤中战略性关键金属垂向分布特征和富集成因研究,以期为进一步丰富宁东煤田煤系战略性金属矿产研究成果作有益补充。

    宁东煤田太原组以海陆交互相的三角洲体系沉积为主,山西组为河流体系沉积。任家庄井田位于横城矿区(图1),目前开采全区可采的稳定煤层5煤和9煤,以及局部可采的较稳定煤层9,其中5煤属于山西组,9煤和9煤属于太原组。

    图  1  研究区位置及鄂尔多斯盆地构造分区(底图引自王双明[17],2017)
    Figure  1.  Location of study area and structure distribution of Ordos Basin (Base image is quoted from WANG Shuangming[17], 2017)

    按照GB/T 482—2008《煤层煤样采取方法》[16],对任家庄煤矿井下掘进工作面3层(5号、9、9号)主采煤层进行分层刻槽取样,共采集煤分层、顶底板及夹矸样品34件。其中:煤样25件、夹矸样6件、顶底板样3件(表1图2)。

    表  1  煤样工业分析和全硫分析
    Table  1.  Proximate analysis and total sulfur content of coal samples
    煤层号样品号工业分析/% 元素分析St,d/%
    MadAdVdaf
    5煤RJZ5-10.63640 1.87
    RJZ5-40.315370.96
    RJZ5-60.632350.53
    RJZ5-70.624353.63
    RJZ5-81.334373.67
    RJZ5-90.917331.01
    RJZ5-100.633360.59
    RJZ5-110.523351.49
    RJZ5-121.620380.91
    RJZ5-130.312330.77
    RJZ5-140.441410.71
    9RJZ9-10.1537 2.14
    RJZ9-22.3494725.16
    RJZ9-30.93382.83
    RJZ9-41.34372.78
    RJZ9-50.23423.15
    RJZ9-61.04443.82
    9煤RJZ9-10.62639 5.25
    RJZ9-20.814413.34
    RJZ9-30.649441.82
    RJZ9-60.738461.93
    RJZ9-71.85383.05
    RJZ9-80.35403.09
    RJZ9-100.846331.08
    RJZ9-110.830311.25
    注:下标ad为空气干燥基;d为干燥基;daf为干燥无灰基;St,d为全硫。
    下载: 导出CSV 
    | 显示表格
    图  2  工业组分及全硫含量垂向分布
    Figure  2.  Vertical distribution of proximate components and total sulfur content

    对样品逐级破碎缩分,按照国家标准[18-19]进行工业分析和全硫分析;利用X-射线荧光光谱(XRF)测试样品中的常量元素;依据QUEROL等[20]提出的两步消解法对样品进行消解后,采用电感耦合等离子体质谱(ICP-MS)测定微量元素含量。运用X射线衍射仪(XRD)对煤低温灰化样品和非煤样品进行X射线扫描分析,利用Jade6.5软件对样品的XRD谱图分析并鉴定矿物种类,并利用全谱拟合方法计算矿物含量。

    研究区煤中常量元素含量(为质量分数)数据见表2。5号煤层常量元素主要由SiO2、Al2O3组成,含少量的Fe2O3、CaO、TiO2及微量的K2O、Na2O、MgO、MnO和P2O5图3a)。9煤顶板常量元素主要由SiO2、Fe2O3和Al2O3组成,含少量的CaO和K2O以及微量的MgO、MnO、Na2O、P2O5和TiO2图3b);底板常量元素主要由SiO2组成,含有少量的Al2O3和微量的CaO、K2O、Fe2O3、MgO、MnO、Na2O、P2O5和TiO2图3c);煤层中常量元素主要由SiO2、Fe2O3、Al2O3和CaO组成,含有少量的Na2O和TiO2以及微量的K2O、MgO、MnO、P2O5图3d)。9号煤顶板SiO2含量高,较高含量的石英与之对应;其次含量较多的是Al2O3以及微量的K2O、Fe2O3、TiO2,其他主量元素含量甚微(图3e)。9号煤中常量元素主要由SiO2、Al2O3组成;含少量的Fe2O3、CaO、MgO和TiO2;以及微量的K2O、Na2O、MnO和P2O5图3f)。

    表  2  样品中常量元素氧化物质量分数(全煤基)和烧失量
    Table  2.  Mass fraction and Loss on ignition of major element oxides in samples (on whole coal basis) %
    样品质量分数烧失量
    SiO2TiO2Al2O3Fe2O3MnOMgOCaONa2OK2OP2O5
    RJZ5-124.690.8157.482.010.0040.1480.1260.0500.7160.0150.24
    RJZ5-261.790.76216.924.950.0090.4490.0620.1232.3410.0300.20
    RJZ5-343.240.80020.538.050.0050.3930.1540.1621.7630.0380.28
    RJZ5-47.670.1986.470.280.0010.0300.1640.0170.0210.0080.32
    RJZ5-542.201.29436.430.250.0010.0810.0650.1620.1220.0250.10
    RJZ5-616.810.32814.160.170.0010.0640.0740.0380.0930.0240.08
    RJZ5-710.320.2598.784.150.0030.0890.1820.0260.0220.0210.20
    RJZ5-815.220.59113.064.180.0030.1500.2820.0370.0820.0260.28
    RJZ5-97.190.3767.020.500.0030.1480.3230.0370.0140.4100.68
    RJZ5-1016.681.02714.560.320.0010.0630.0730.0360.0920.0340.14
    RJZ5-1110.740.3039.711.390.0020.0670.3150.0320.0210.2220.36
    RJZ5-128.110.2787.150.220.0090.9701.7540.0700.0120.1090.97
    RJZ5-136.050.0915.370.090.0010.0530.1100.0230.0080.0200.50
    RJZ5-1420.600.94318.000.720.0020.0980.1110.0450.1070.0300.22
    RJZ9-顶22.690.36911.1824.000.1220.3392.9250.0961.0560.0730.46
    RJZ9-12.930.2111.400.080.0010.0330.1780.0330.0120.0020.52
    RJZ9-22.010.0951.4445.130.0090.0640.2010.1570.0150.0050.04
    RJZ9-31.110.0310.970.070.0020.1680.3050.1270.0090.0021.34
    RJZ9-41.600.1011.320.130.0030.1540.3100.0730.0060.0021.38
    RJZ9-50.580.0270.550.110.0020.3780.5770.0490.0040.0011.38
    RJZ9-60.330.0120.350.510.0030.5600.8480.0580.0070.0020.70
    RJZ9-底94.290.1192.710.700.0060.0990.0890.0990.5640.0160.11
    RJZ9-顶66.281.24318.761.370.0050.2090.0730.1002.1110.0560.13
    RJZ9-110.460.3247.004.140.0100.8011.1960.0550.3850.0140.88
    RJZ9-27.910.1313.211.040.0030.3020.4350.0800.1510.0061.44
    RJZ9-324.741.01820.980.470.0040.2940.3970.1030.0980.0390.55
    RJZ9-428.320.95024.520.180.0040.3980.5940.1010.0670.0300.57
    RJZ9-543.960.71037.390.070.0020.0830.0750.1250.1160.0170.20
    RJZ9-619.470.29216.740.130.0030.3120.4180.1180.0380.0120.76
    RJZ9-71.740.0321.520.140.0030.3350.5040.1580.0090.0231.68
    RJZ9-81.770.0341.570.340.0040.3290.5240.0940.0060.0290.51
    RJZ9-926.800.65723.244.590.0040.1340.1460.0900.0780.0200.11
    RJZ9-1022.730.65120.570.440.0010.0740.1610.1100.0320.5360.23
    RJZ9-1115.510.34213.500.200.0010.0450.0870.0450.0240.0400.26
    下载: 导出CSV 
    | 显示表格
    图  3  常量元素含量
    Figure  3.  Content of major elements

    研究区煤中微量元素含量(为质量分数)数据见表3。依照Dai等[21]提出的富集系数(CC,煤中微量元素含量/世界煤中微量元素含量均值[22](Ketris和Yudovich,2009)),CC<0.5为亏损状态,0.5<CC<2为正常水平,2<CC<5为轻度富集,5<CC<10为富集,10<CC<100为高度富集,CC>100为异常高度富集。

    表  3  样品中微量元素质量分数(全煤基)
    Table  3.  Concentration of trace elements in samples (on whole coal basis) μg/g
    样品 质量分数
    Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Zr Nb Sn Cs Ba La
    RJZ5-1 48.6 9.5 20.2 57.2 59.8 17.4 29.3 18.7 14.2 37.8 28.4 261.7 31.0 218.5 13.2 4.2 2.4 135.7 23.8
    RJZ5-2 53.0 2.6 11.6 97.7 202.4 29.9 51.2 13.7 59.0 23.9 118.8 68.2 27.8 216.5 16.3 4.0 9.4 336.2 35.5
    RJZ5-3 91.6 3.8 13.3 126.3 162.5 21.7 73.5 21.3 108.6 26.6 92.4 112.4 31.5 246.4 19.6 5.1 8.8 7 148.7 44.0
    RJZ5-4 42.9 7.5 6.6 20 8.0 0.9 3.1 11.5 6.1 14.6 1.0 23 22.8 132.9 6.5 1.0 0.1 50.3 9.2
    RJZ5-5 469.0 3.2 5.4 16.9 6.3 0.4 2.9 5.8 8.7 39.8 6.2 53.5 11.7 154.7 47.4 2.5 0.3 29.2 17.2
    RJZ5-6 123.5 3.5 7.9 26.4 8.3 0.5 3.6 10.2 4.4 21.1 5.6 31 21.9 277.1 15.6 2.8 0.6 27.5 32.0
    RJZ5-7 75.8 3.3 8.3 21.5 66.5 5.2 11.9 18.3 7.2 13.1 1.1 73.2 19.5 145.7 9 1.8 0.1 34.8 12.3
    RJZ5-8 123.4 3.1 9.4 22.4 13.9 9.4 12.4 11.2 7.5 18.8 4.7 45.2 21.7 171.7 20.1 2.4 0.5 21.9 25.2
    RJZ5-9 76.5 2.7 5.3 23.0 6.4 1.3 2.4 8.9 7.2 15.7 0.6 3213 19.7 88.9 7.1 1.1 0 107.4 228.5
    RJZ5-10 157.1 2.3 10 31.3 12.0 0.5 2.8 13.7 6.8 17.8 4.9 60.7 22.4 181.8 24.7 3.4 0.4 32.4 15.7
    RJZ5-11 116.4 1.8 6.5 16.1 30.8 1.4 2.5 11.6 5.4 18.6 1.2 544.9 17.7 134.1 8.6 1.1 0.1 35.0 32.7
    RJZ5-12 84.4 1.4 6.9 26.0 8.4 1.6 2.1 9.0 5.4 16.0 0.5 273.0 23.6 278.6 10.2 1.3 0 50.6 12.1
    RJZ5-13 52.3 1.5 4.9 12.1 4.4 1.1 1.4 8.9 3.7 10.5 0.4 120.7 13.2 71.2 3.6 0.5 0 27.5 13.7
    RJZ5-14 175.5 2.1 6.8 20 13.4 0.9 4.7 10.6 6.9 14.5 5.9 102.1 17.0 208.3 23.9 2.9 0.7 34.0 13.9
    RJZ9-顶 41.4 1.3 4.5 234.9 131.8 13.5 152.3 19.5 154.9 11.7 45.6 319.4 9.9 92.8 7.4 2.2 3.3 135.0 50.5
    RJZ9-1 4.3 4.2 4.5 34.8 16.6 0.6 6.7 15 4.5 8.5 0.5 38.6 8.2 149.9 5.5 0.6 0 22.5 2.9
    RJZ9-2 5.9 1.1 0.9 6.8 481.2 1.3 7.6 7.2 8.2 1.6 1.7 36.2 3.6 20 2.4 0.4 0.1 30.2 6.0
    RJZ9-3 4.4 1.6 1.0 3.2 9.0 0.8 1.1 4.1 2.8 4.4 0.3 51.1 3.5 21.3 1.0 0.4 0 23.3 3.8
    RJZ9-4 6.4 0.7 1.4 8.2 5.6 0.7 1.4 10 2.8 2.6 0.2 59.8 3.6 36.3 1.9 0.3 0 21.2 4.1
    RJZ9-5 9.8 0.4 1.0 2.6 8.4 0.7 1.5 2.2 0.8 1.6 0.1 6.8 2.4 18.5 1.1 0.2 0 3.6 1.6
    RJZ9-6 2.1 0.5 2.5 2.2 5.0 1.3 2.0 4.8 4.1 20.6 0.2 116.9 4.0 6.0 0.4 3.5 0 21.8 0.9
    RJZ9-底 3.5 0.1 0.8 9.4 594 1.7 7.8 3.1 7.8 2.9 13.8 41.9 4.0 102.0 2.4 0.3 0.2 22.8 7.4
    RJZ9-顶 111.9 1.2 9.6 60.5 415.9 15.6 36.6 14.9 85.0 19.5 62.6 154.7 31.7 689.8 26.7 1.9 2.6 429.5 53.3
    RJZ9-1 53.3 1.3 10.8 72.8 53.6 9.7 24.2 12.6 39.5 18.8 11.8 212.2 12.4 220.7 8.6 1.2 0.5 111.3 12.9
    RJZ9-2 18.8 1.2 3.8 10.2 15.4 1.8 4.5 6.1 8.8 13.6 4.3 116.9 10.5 56.4 3.5 1.2 0.2 52.8 8.0
    RJZ9-3 287.6 1.3 13.0 52.9 27.8 1.1 5.8 52.4 7.8 26.7 4.3 131.8 24.2 345.5 31.5 5.1 0.2 73.0 45.8
    RJZ9-4 221.8 1.6 18.7 40.3 19.5 0.6 3.4 33.0 8.7 20.5 3.0 144.5 29.6 261 27.2 5.4 0.2 77.8 35.0
    RJZ9-5 218.3 1.2 6.8 10.5 6.5 0.5 1.6 7.6 7.1 35.4 6.1 40.9 8.0 175.1 34.5 2.7 0.6 52.8 8.0
    RJZ9-6 120.1 1.3 8.2 20.4 6.8 1.9 2.6 13.8 3.8 27.4 1.9 117.4 16.5 370.9 13.7 2.1 0.2 30 8.2
    RJZ9-7 19.1 0.8 1.8 2.9 2.6 0.6 1.1 7.9 2.8 4.0 0.4 158.5 7.0 18.0 0.7 1.0 0 26.2 5.9
    RJZ9-8 4.6 1.5 3.1 9.5 9.5 2.9 5.0 2.1 1.3 4.3 5.1 15.6 4.2 34.3 2.1 0.5 0.4 17.3 2.1
    RJZ9-9 289 1.6 7.4 17.9 81.8 1.3 5.3 10.2 8.7 25.3 3.8 79.5 16.7 177.5 18.5 4.2 0.3 56.6 8.3
    RJZ9-10 347.8 5.4 15.7 21.8 14.3 0.2 1.5 19.5 6.7 16.9 1.6 2 395.2 54.7 240.6 17.8 4.4 0.1 234.1 235.5
    RJZ9-11 227.7 3.1 9.6 12.9 10 0.3 1.7 28.6 6.3 9.5 1.1 164.4 29.9 128.1 9.6 2.3 0.1 60 44.7
    下载: 导出CSV 
    | 显示表格

    续表3
    样品 质量分数
    Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Tl Pb Th U
    RJZ5-1 40.3 4.5 15.9 3.5 0.6 3.5 0.7 4.6 1.0 3.3 0.5 3.6 0.5 4.8 0.9 1.3 24.3 12.0 3.7
    RJZ5-2 68.3 7.6 25.9 4.8 0.8 3.9 0.7 4.7 0.9 2.8 0.4 2.7 0.4 5.9 1.2 6.4 27.2 11.9 4.0
    RJZ5-3 84.7 9.3 31.7 5.9 1.8 4.9 0.8 5.3 1.1 3.2 0.5 3.2 0.5 6.5 1.3 3.7 68.6 17.2 4.8
    RJZ5-4 22.4 2.8 10.7 2.6 0.4 2.5 0.5 3.2 0.7 2.4 0.4 2.5 0.4 3.5 0.4 0.2 8.7 7.6 1.8
    RJZ5-5 27.6 2.6 7.6 1.3 0.2 1.2 0.3 1.9 0.4 1.1 0.2 1.1 0.2 5.6 1.7 0.1 24.6 12.7 4.9
    RJZ5-6 68.2 7.6 26.5 5.2 0.7 3.8 0.6 3.9 0.7 2.1 0.3 2.0 0.3 8.2 1.6 0.1 33.3 26.9 3.3
    RJZ5-7 26.2 3.1 11.7 2.8 0.5 2.6 0.5 3.4 0.7 2.1 0.3 2.0 0.3 4.2 0.7 2.8 47.3 12.1 3.3
    RJZ5-8 53.0 6.2 21.9 4.4 0.7 3.7 0.6 4.1 0.8 2.4 0.3 2.3 0.3 5.0 1.3 1.1 60.2 18.5 5.5
    RJZ5-9 330.8 31.1 99.6 16.7 2.6 11.3 1.2 4.8 0.7 1.9 0.2 1.6 0.2 2.2 0.4 0.1 10.5 6.9 2.8
    RJZ5-10 38.6 4.8 17.5 3.9 0.7 3.2 0.6 3.9 0.8 2.4 0.4 2.3 0.3 5.0 1.6 0.1 26.3 13.5 6.3
    RJZ5-11 64.6 7.2 25.5 4.6 0.9 3.9 0.6 3.6 0.6 1.7 0.2 1.6 0.2 3.5 0.5 0.4 14.7 8.3 2.9
    RJZ5-12 23.2 2.7 10.2 2.6 0.6 3.3 0.6 4.0 0.8 2.2 0.3 1.8 0.3 7.2 0.5 0.1 15.2 12.0 2.9
    RJZ5-13 23.8 2.6 9.7 2.1 0.4 1.9 0.3 2.2 0.4 1.3 0.2 1.2 0.2 1.8 0.1 0.1 8.4 4.2 1.7
    RJZ5-14 27.7 3.5 13.1 2.6 0.5 2.4 0.5 2.8 0.5 1.7 0.3 1.7 0.2 6.2 1.8 0.3 26.5 23.8 5.0
    RJZ9-顶 105 11.0 35.1 4.8 0.8 2.6 0.4 1.9 0.3 1.1 0.2 1.1 0.2 2.7 0.5 12.0 21.4 9.7 25.2
    RJZ9-1 6.7 0.8 2.9 0.7 0.2 0.8 0.2 1.2 0.3 0.9 0.1 1 0.2 2.3 0.3 0 4.4 3.9 22.0
    RJZ9-2 13.9 1.6 5.7 1.1 0.2 0.9 0.1 0.6 0.1 0.3 0 0.3 0 0.5 0.3 0.5 2.7 5.2 2.8
    RJZ9-3 8.0 0.9 3.2 0.6 0.1 0.5 0.1 0.5 0.1 0.3 0 0.3 0 0.6 0 0 1.6 0.6 0.5
    RJZ9-4 8.4 1.0 3.5 0.7 0.1 0.6 0.1 0.6 0.1 0.4 0.1 0.3 0 0.9 0.1 0 3.1 2.2 0.8
    RJZ9-5 3.3 0.4 1.5 0.4 0.1 0.3 0.1 0.4 0.1 0.3 0 0.3 0 0.5 0.1 0.4 6.0 1.6 0.4
    RJZ9-6 2.0 0.3 1.1 0.3 0.1 0.4 0.1 0.7 0.1 0.4 0.1 0.3 0 0.1 0 0 0.2 0.3 0.3
    RJZ9-底 14.1 1.6 5.8 1.1 0.2 0.9 0.1 0.7 0.2 0.4 0.1 0.5 0.1 2.7 0.2 0.1 4.7 2.1 0.7
    RJZ9-顶 101.9 12.4 44.0 7.6 1.3 5.8 0.9 5.4 1.0 3.3 0.5 3.3 0.5 18.1 1.7 0.5 21.1 16.9 7.5
    RJZ9-1 25.9 3.1 11.7 2.4 0.5 2.2 0.4 2.3 0.5 1.4 0.2 1.2 0.2 5.2 0.4 0.5 8.3 6.3 18.2
    RJZ9-2 16.4 2.0 7.3 1.5 0.3 1.5 0.3 1.6 0.3 1.0 0.1 0.9 0.1 1.6 0.3 0.1 5.1 3.8 1.6
    RJZ9-3 93.1 10.4 35.7 6.7 1.2 5.6 1.0 5.6 1.0 2.7 0.4 2.5 0.4 9.6 2.4 0.1 50 38.7 12.8
    RJZ9-4 81.8 9.6 33.9 7.2 1.3 6.1 1.1 6.8 1.2 3.4 0.5 3.1 0.4 9.2 2.2 0.1 76.7 53.8 11.3
    RJZ9-5 17.5 1.8 6.3 1.3 0.2 1.2 0.2 1.5 0.3 0.8 0.1 0.8 0.1 6.8 2.3 0.1 22.8 17.2 7.3
    RJZ9-6 19.4 2.4 9.3 2.3 0.4 2.3 0.5 3.2 0.6 1.8 0.3 1.7 0.3 9.4 1.1 0.1 35.5 19.8 10.6
    RJZ9-7 13.2 1.6 6.3 1.3 0.2 1.2 0.2 1.2 0.2 0.7 0.1 0.7 0.1 0.5 0.1 0 2.1 1.5 0.5
    RJZ9-8 3.9 0.4 1.6 0.3 0.1 0.4 0.1 0.6 0.1 0.5 0.1 0.5 0.1 0.7 0.1 0.4 3.3 1.8 0.5
    RJZ9-9 18.8 2.2 8.5 2.1 0.4 2.2 0.5 2.9 0.6 1.6 0.3 1.5 0.2 6.0 1.5 0.6 42.2 19.5 5.5
    RJZ9-10 366.2 35.7 115 21.0 3.4 16.1 2.3 12.0 2.0 5.4 0.7 4.1 0.6 7.2 1.3 0.1 39.7 27.2 5.3
    RJZ9-11 79.2 8.2 27.3 5.1 0.9 4.5 0.8 5.1 1.0 2.9 0.4 2.3 0.3 3.8 0.9 0.1 34.8 17.1 3.6

    研究区各主采煤层微量元素富集程度见表4图3。对比世界煤微量元素丰度,5号煤层Li、Ba高度富集;Rb、Zr富集;Be、Sc、V、Cr、Ni、Zn、Ga、Sr、Y、Nb、Sn、Cs、La、Ce、Pr、Nd、Sm、Er、Yb、Hf、Ta、Pb、Th轻度富集;Co、Cu、Eu、Gd、Tb、Dy、Ho、Tm、Lu、Tl、U元素为正常状态(图4a)。9煤层微量元素含量整体较低,Cr富集;Tl和U轻度富集,Cs、Ba、Eu、Gd、Tb、Dy、Ho、Tm、Lu亏损,其他元素为正常状态(图4b)。9号煤层Li高度富集;Zr、Hf、Th富集;Sc、Cr、Ga、Sr、Y、Nb、Sn、La、Ce、Pr、Nd、Sm、Tb、Er、Ta、Pb、U轻度富集;Be、V、Co、Ni、Cu、Zn、Rb、Ba、Eu、Gd、Dy、Ho、Tm、Yb、Lu与世界煤均值相似;Cs、Tl亏损(图4c)。

    表  4  煤中微量元素富集程度统计
    Table  4.  Enrichment degree of trace elements in coal
    煤层高度富集富集轻度富集正常范围亏损
    5Li、BaRb、ZrBe、Sc、V、Cr、Ni、Zn、Ga、Sr、
    Y、Nb、Sn、Cs、La、Ce、Pr、Nd、
    Sm、Er、Yb、Hf、Ta、Pb、Th
    Co、Cu、Eu、Gd、Tb、Dy、Ho、Tm、Lu、Tl、U
    9CrTl、ULi、Zr、Hf、Th、Sc、Ga、Sr、Y、Nb、
    Sn、La、Ce、Pr、Nd、Sm、Er、Ta、
    Pb、Be、V、Co、Ni、Cu、Zn、Rb、Yb
    Cs、Ba、Eu、Gd、Tb、
    Dy、Ho、Tm、Lu
    9LiZr、Hf、
    Th
    Sc、Cr、Ga、Sr、Y、Nb、Sn、La、
    Ce、 Pr、Nd、Sm、Tb、Er、Ta、Pb、U
    Be、V、Co、Ni、Cu、Zn、Rb、Ba、Eu、
    Gd、Dy、Ho、Tm、Yb、Lu
    Cs、Tl
    下载: 导出CSV 
    | 显示表格
    图  4  微量元素富集系数
    Figure  4.  Concentration coefficients of trace elements

    研究区各主采煤层战略性金属在煤系中的垂向分布特征如图5所示。5号煤层剖面(图5a)以Li-Ga-Ba-Rb(Cs)-Zr(Hf)-Nb(Ta)及REY共富集为特征。Li在剖面中部及下部富集程度高,样品RJZ5-5中Li质量分数高达469 μg/g,为世界煤的近40倍,RJZ5-6、RJZ5-8、RJZ5-10、RJZ5-14中也都为高度富集。Ga表现为顶底板和夹矸附近含量高,RJZ5-1和RJZ5-5达到富集程度(CC>5)。剖面中Ba、Rb、Cr、Tl具有非常相似的分布特征,都在上部分层及夹矸样品(RJZ5-2、RJZ5-3,厚度共0.3 m)中含量较高,达富集—高度富集。样品RJZ5-3煤基Ba质量分数高达7149 μg/g,RJZ5-2和RJZ5-3煤基Rb含量是世界煤的6倍以上。Zr(Hf)-Nb(Ta)在剖面上分布较为均衡,含量在顶部、中部、底部均较高,达到富集。REY中轻稀土(La,Ce,Pr,Nd和Sm)富集程度整体不如中稀土(Eu,Gd,Tb,Dy和Y)和重稀土(Ho,Er,Tm,Yb和Lu),但RJZ5-9样品中轻稀土质量分数较高,达706.7 μg/g。中稀土和重稀土在5号煤层有相似的分布特征。5号煤层REY质量分数范围为73.3~750.98 μg/g,均值为171.87 μg/g,明显高于中国煤和世界煤的均值(135.89 μg/g、68.47 μg/g),与上地壳REY值(168.4 μg/g)相当。

    图  5  微量元素垂向分布
    注:红色虚线为中国煤中的均值
    Figure  5.  Vertical variations of trace elements

    9煤层剖面(图5b)以Cr-Tl-U共富集为特征,各微量元素分布不均,含量整体较5号煤和9号煤低。RJZ9-底和夹矸RJZ9-2样品中Cr质量分数分别高达594 μg/g、481.2 μg/g,均达到世界煤的30倍以上。煤层顶板Tl和U均达到了高度富集,CC分别为19.1和10.5。此外,顶板RJZ9上−顶样品其它元素含量整体较剖面其余部位高,如Ni为高度富集(CC为11.72);V、Zn为富集,CC分别为9.4和6.73;Li、Rb、Cs、Th、Sr、Pb、Co为轻度富集,CC介于3.45~2.65;REY质量分数224.6 µg/g,主要为轻稀土富集(206.4 µg/g)。

    9号煤层剖面(图5c)以Li-Ga-Zr(Hf)-Nb(Ta)-Th(U)-Pb及REY共富集为特征。Li在煤分层中部和下部高度富集,RJZ9-10煤样中Li质量分数达347.8 μg/g,剖面灰基质量分数为91.6~759 μg/g,平均377.38 μg/g,已达到煤系灰基工业利用品位。Ga以剖面中部夹矸处最为富集,质量分数达35.4 μg/g,上部较下部略好,整体表现为轻度富集。Zr(Hf)-Nb(Ta)整体在剖面上都有富集。夹矸(RJZ9-5样品)附近的中上部煤分层及顶板含量较高,如RJZ9-顶Zr、Hf富集系数CC分别达19.16、15.09,RJZ9-3样品中Nb、Ta含量均为世界煤的8倍以上。Th在中上部煤分层及底部均有富集,如样品RJZ9-3和RJZ9-4中高度富集,分别达38.7 μg/g和53.8 μg/g,U在剖面上部富集明显,往下呈逐渐减小趋势。刘亢[15]在宁东煤田石炭−二叠煤系(红墩子和红石湾煤矿样品)地层中也发现了U异常,煤系铀质量分数在3.39~4.66 μg/g,本次研究发现煤基U元素质量分数为0.48~18.17 μg/g,平均7.05 μg/g。此外,剖面煤层顶板亦有Ba轻度富集、Cr高度富集(CC为26)。9号煤系REY质量分数变化较大,为14.9~874.7 μg/g,均值为182.1 μg/g,RJZ9-10富集程度最高,且LREY、MREY和HREY质量分数(分别为773.4 μg/g、88.6 μg/g、12.74 μg/g)同时表现为最高。

    研究区5号煤灰基Li质量分数最高达579 μg/g,平均354 μg/g;Ga最高达105 μg/g,平均66 μg/g;REY质量分数最高达4418 μg/g,平均689 μg/g;Al2O3最高达44.97%,平均37.58%。9号煤灰基Li质量分数最高达759 μg/g,平均401 μg/g;Ga最高达97 μg/g,平均56 μg/g;REY质量分数最高达1902 μg/g,平均492 μg/g;Al2O3最高达44.99%,平均36.58%。

    5号煤和9号煤Li和Ga质量分数均达到了宁树正[23]提出的煤系灰基120 μg/g和30 μg/g的开发利用品位,5号煤REY质量分数达到了代世峰等[24]提出的煤系灰基500 μg/g的开发利用品位,开发利用前景良好。

    从5号和9号煤层剖面元素垂向分布图上可以看出,微量元素Li在泥岩夹矸或靠近泥岩的煤分层中最为富集,在顶底板砂岩或砂岩夹矸中富集程度相对较弱,且总体分布与灰分和Al2O3呈现出较好的对应关系,由Al2O3和碎屑矿物高岭石较高的相关系数(R2为0.88,图6a)推测5号和9号煤层Li的高度富集主要受陆源碎屑供给。除Li外,5号和9号煤层剖面中,Ga、Zr、Hf、Nb、Ta与灰分和Al2O3均有较好的对应关系,灰分与微量元素基本一致的垂向变化规律可表明碎屑输入是控制研究区微量元素富集的主要因素。

    图  6  部分元素和矿物的相关关系
    Figure  6.  Correlation among selected elements and minerals

    山西组5号煤层是在河流沉积体系中形成的,其泥炭聚积过程主要受淡水影响,陆源碎屑物质供应较丰富,可富集粘土矿物,煤中灰分产率相对较高,使得煤中微量元素含量整体较高。

    太原组9煤层的全硫质量分数0.18%~25.16%,变化范围大,均值为7.31%,除顶底板外,全部为中高硫煤−高硫煤。9号煤层全硫质量分数为1.08%~5.25%,属中硫煤和高硫煤。相关研究表明[25],9煤以有机硫为主且占绝对优势,占其全硫含量的50%~99%,其次为黄铁矿硫,硫酸盐硫含量极低。煤中Ga因与Al可形成类质同像,一般与黏土矿物或铝的氢氧化物矿物有关,也可能和硫化物矿物有关,吴蒙[12]对宁东地区晚古生代煤中硫的地化特征及其对有害元素富集的影响开展了研究,认为有机硫决定Ga的富集,RJZ9-6为高硫煤,全硫含量为3.82%,其有机硫含量相对也高,也可能是RJZ9-6煤样品Ga含量如此高的合理解释。

    沉积环境不同会造成煤中地球化学特征的差别, Sr/Ba>1通常指示海水影响环境。研究区9煤和9煤样品Sr/Ba范围分别为1.20~5.37和0.36~10.23,均值分别为2.42和2.85,指示在煤层形成时主要受海水影响。9煤和9煤的全硫质量分数高的现象也可指示其成煤时期受海水波动影响,海水硫酸盐的侵入为煤中硫的聚集提供了硫源。分析发现研究区9号煤中黄铁矿含量与全硫质量分数呈现较好正相关性,相关系数R2为0.72(图6b)。9煤层形成过程中,由于海水的侵入,陆源碎屑供应不足,煤中灰分产率低,除RJZ9-2外,均属于特低灰煤,煤中微量元素整体富集程度不如同为海相沉积的下部9号煤层,也证明了研究区以碎屑输入为主要控制因素的基本论断。

    此外,5号煤顶部以及9号煤中部和底部都有锐钛矿(图7),锐钛矿质量分数在样品RJZ5-1中为0.9%,RJZ9-4为3.1%,RJZ9-5为11.9%,RJZ9-11为10.1%。煤系中锐钛矿一般来源于陆源母区,也表明了碎屑成因。

    图  7  样品X射线衍射谱图
    Figure  7.  X-ray diffraction pattern of selected samples

    稀土元素(REY)地球化学性质稳定,沉积物在风化、搬运、成岩作用及蚀变过程中对REY影响较弱,同时成煤植物提供给煤中的REY含量很低。因此,REY能够为源岩、沉积环境等提供信息,是研究煤地质成因的良好地球化学指示剂[8]。煤中稀土元素的含量主要受控于陆源碎屑的供给。研究区5煤和9煤中REY富集,均值为176.6 μg/g,明显高于中国煤REY均值,也高于世界煤和上地壳REY含量的均值。Nb、Ta、Zr、Hf等高场强元素,具有稳定的地球化学性质[26],且因性质相似而通常共生[6],在表生作用过程中,能稳定地存在于碎屑岩中。Ba是煤中较为常见的微量元素,世界煤和中国煤中Ba均值基本相当,分别为150 μg/g和159 μg/g,样品RJZ5-3岩性为砂岩,通过X射线衍射发现其重晶石质量分数为0.7%,样品RJZ9-顶含重晶石0.9%,推测重晶石应为Ba元素在样品中的主要载体矿物。5号煤层富集Rb,同时富集大离子亲石元素Th,需引起注意。Rb是半衰期很长的天然放射性同位素,Th的地化性质稳定,在表生作用下进一步富集。煤中有害元素与硫化物矿物密切相关,Tl具有亲石和亲硫的二重地球化学特性,常赋存于Hg、Cu、Pb、Fe等的含硫盐类矿物。9煤层黄铁矿含量较多,RJZ9-顶煤中Tl质量分数为12.0 μg/g,黄铁矿质量分数为18.9%,推测有害元素Tl富集主要与黄铁矿有关。

    陆源碎屑供给通常是煤中微量元素的一个重要来源,先前地质和地球化学研究表明,鄂尔多斯盆地物源来自上地壳,以长英质岩石为主[27]。本文样品Al2O3/TiO2值主要落入长英质−中性岩组分区域(Al2O3/TiO2>8,图8),比值范围为6.61~59.19,均值为28.63,反映物源性质以长英质−中性岩组分为主。

    图  8  Al2O3-TiO2二元图解[28]
    Figure  8.  Diagram of Al2O3 versus TiO2[28]

    前人研究[9,14]也表明宁东煤田石炭−二叠系煤中微量元素含量富集情况整体较好,且普遍高于侏罗系,这是因为研究区含煤岩系以海陆交互相的三角洲体系沉积为主,海洋浮游生物能为微量元素富集提供一定有利条件,同时海水通过改变泥炭沼泽的pH值、Eh值和H2S含量,产生特定的地球化学环境,使之有利于微量元素富集。因此,沉积环境一定程度上控制了研究区煤系金属元素富集的物质基础。

    鄂尔多斯盆地西缘位于华北陆块和秦祁昆造山带两个性质迥然不同的一级大地构造单元接合部位,处于相对稳定地块向活动带过渡的大地构造区域。受贺兰山和六盘山逆冲推覆两个构造系统共同作用,宁东煤田具有复杂的多期次构造演化历程[29-30]。研究区位于贺兰山逆冲推覆构造带前缘反冲带[29]的红墩子褶断带,褶皱、断裂构造发育,发育堑垒型控煤构造样式,构造运动受南北两侧的褶皱带的活动和鄂尔多斯地块的共同影响,主要受印支、燕山和喜山运动作用的控制[15]

    晚古生代时期,盆地北侧的兴蒙海槽向华北地台俯冲,导致北缘阴山古陆抬升,处于隆起状态,碰撞造山作用伴随的岩层冲断与褶皱作用,使古老结晶基底的变质岩系和先期侵入的花岗岩类与震旦系石英岩层共同构成盆地内沉积物的母岩,从而导致了盆地西缘大部分煤矿的物源呈花岗岩、碱性玄武岩和沉积岩的混合岩性[9,27]。盆地西缘由于靠近阴山古陆和阿拉善地块,古流水方向为北向南或自西北向东南,为宁东石炭−二叠系煤中金属矿产资源的发育奠定了良好的物源条件[11]。结合秦国红关于宁东煤田微量元素富集复合成因的有关研究[8-9],综合元素赋存特征、沉积环境、构造环境,认为研究区现今煤中元素富集状态明显受蚀源区碎屑供给及大地构造的影响,推测石炭−二叠含煤岩系的物源主要来自北部的阴山古陆和西北部的阿拉善地块。

    1)鄂尔多斯盆地西缘宁东煤田煤炭资源丰富,同时涵盖石炭−二叠系及侏罗系含煤岩系。任家庄井田煤中战略性金属元素富集于石炭−二叠系煤中,太原组和山西组普遍存在煤中微量元素的富集,以Li-Ga-Zr(Hf)-Nb(Ta)-Th(U)-Pb及REY共富集为特征,且顶底板及夹矸附近的煤系中微量元素更为富集。

    2)与世界煤均值相比,任家庄井田煤中微量元素富集程度整体较高,富集程度(CC>5)及以上的微量元素有Li、Ba、Rb、Zr、Hf、Th、Cr,轻度富集的微量元素种类较多。5号煤和9号煤微量元素富集程度较9煤更好。5号煤层灰基Li、Ga和REY达到了开发利用品位,9号煤层灰基Li和Ga达到了开发利用品位。

    3)任家庄井田煤中战略性金属的富集受蚀源区碎屑供给、沉积环境、构造演化的共同影响。微量元素的富集与鄂尔多斯盆地西缘北部阴山古陆与西北部阿拉善地块的沉积基底有关,它们提供以长英质−中性岩为特征的碎屑物质供给,经自北向南或自西北向东南的古水流搬运进入泥炭沼泽,在海陆交互相的沉积环境及特定的地球化学环境下富集,同时因任家庄井田位于贺兰山逆冲推覆构造带前缘反冲带的红墩子褶断带,在多期次构造演化的控制下形成最终定位及富集特征。

  • 图  1   研究区位置及鄂尔多斯盆地构造分区(底图引自王双明[17],2017)

    Figure  1.   Location of study area and structure distribution of Ordos Basin (Base image is quoted from WANG Shuangming[17], 2017)

    图  2   工业组分及全硫含量垂向分布

    Figure  2.   Vertical distribution of proximate components and total sulfur content

    图  3   常量元素含量

    Figure  3.   Content of major elements

    图  4   微量元素富集系数

    Figure  4.   Concentration coefficients of trace elements

    图  5   微量元素垂向分布

    注:红色虚线为中国煤中的均值

    Figure  5.   Vertical variations of trace elements

    图  6   部分元素和矿物的相关关系

    Figure  6.   Correlation among selected elements and minerals

    图  7   样品X射线衍射谱图

    Figure  7.   X-ray diffraction pattern of selected samples

    图  8   Al2O3-TiO2二元图解[28]

    Figure  8.   Diagram of Al2O3 versus TiO2[28]

    表  1   煤样工业分析和全硫分析

    Table  1   Proximate analysis and total sulfur content of coal samples

    煤层号样品号工业分析/% 元素分析St,d/%
    MadAdVdaf
    5煤RJZ5-10.63640 1.87
    RJZ5-40.315370.96
    RJZ5-60.632350.53
    RJZ5-70.624353.63
    RJZ5-81.334373.67
    RJZ5-90.917331.01
    RJZ5-100.633360.59
    RJZ5-110.523351.49
    RJZ5-121.620380.91
    RJZ5-130.312330.77
    RJZ5-140.441410.71
    9RJZ9-10.1537 2.14
    RJZ9-22.3494725.16
    RJZ9-30.93382.83
    RJZ9-41.34372.78
    RJZ9-50.23423.15
    RJZ9-61.04443.82
    9煤RJZ9-10.62639 5.25
    RJZ9-20.814413.34
    RJZ9-30.649441.82
    RJZ9-60.738461.93
    RJZ9-71.85383.05
    RJZ9-80.35403.09
    RJZ9-100.846331.08
    RJZ9-110.830311.25
    注:下标ad为空气干燥基;d为干燥基;daf为干燥无灰基;St,d为全硫。
    下载: 导出CSV

    表  2   样品中常量元素氧化物质量分数(全煤基)和烧失量

    Table  2   Mass fraction and Loss on ignition of major element oxides in samples (on whole coal basis) %

    样品质量分数烧失量
    SiO2TiO2Al2O3Fe2O3MnOMgOCaONa2OK2OP2O5
    RJZ5-124.690.8157.482.010.0040.1480.1260.0500.7160.0150.24
    RJZ5-261.790.76216.924.950.0090.4490.0620.1232.3410.0300.20
    RJZ5-343.240.80020.538.050.0050.3930.1540.1621.7630.0380.28
    RJZ5-47.670.1986.470.280.0010.0300.1640.0170.0210.0080.32
    RJZ5-542.201.29436.430.250.0010.0810.0650.1620.1220.0250.10
    RJZ5-616.810.32814.160.170.0010.0640.0740.0380.0930.0240.08
    RJZ5-710.320.2598.784.150.0030.0890.1820.0260.0220.0210.20
    RJZ5-815.220.59113.064.180.0030.1500.2820.0370.0820.0260.28
    RJZ5-97.190.3767.020.500.0030.1480.3230.0370.0140.4100.68
    RJZ5-1016.681.02714.560.320.0010.0630.0730.0360.0920.0340.14
    RJZ5-1110.740.3039.711.390.0020.0670.3150.0320.0210.2220.36
    RJZ5-128.110.2787.150.220.0090.9701.7540.0700.0120.1090.97
    RJZ5-136.050.0915.370.090.0010.0530.1100.0230.0080.0200.50
    RJZ5-1420.600.94318.000.720.0020.0980.1110.0450.1070.0300.22
    RJZ9-顶22.690.36911.1824.000.1220.3392.9250.0961.0560.0730.46
    RJZ9-12.930.2111.400.080.0010.0330.1780.0330.0120.0020.52
    RJZ9-22.010.0951.4445.130.0090.0640.2010.1570.0150.0050.04
    RJZ9-31.110.0310.970.070.0020.1680.3050.1270.0090.0021.34
    RJZ9-41.600.1011.320.130.0030.1540.3100.0730.0060.0021.38
    RJZ9-50.580.0270.550.110.0020.3780.5770.0490.0040.0011.38
    RJZ9-60.330.0120.350.510.0030.5600.8480.0580.0070.0020.70
    RJZ9-底94.290.1192.710.700.0060.0990.0890.0990.5640.0160.11
    RJZ9-顶66.281.24318.761.370.0050.2090.0730.1002.1110.0560.13
    RJZ9-110.460.3247.004.140.0100.8011.1960.0550.3850.0140.88
    RJZ9-27.910.1313.211.040.0030.3020.4350.0800.1510.0061.44
    RJZ9-324.741.01820.980.470.0040.2940.3970.1030.0980.0390.55
    RJZ9-428.320.95024.520.180.0040.3980.5940.1010.0670.0300.57
    RJZ9-543.960.71037.390.070.0020.0830.0750.1250.1160.0170.20
    RJZ9-619.470.29216.740.130.0030.3120.4180.1180.0380.0120.76
    RJZ9-71.740.0321.520.140.0030.3350.5040.1580.0090.0231.68
    RJZ9-81.770.0341.570.340.0040.3290.5240.0940.0060.0290.51
    RJZ9-926.800.65723.244.590.0040.1340.1460.0900.0780.0200.11
    RJZ9-1022.730.65120.570.440.0010.0740.1610.1100.0320.5360.23
    RJZ9-1115.510.34213.500.200.0010.0450.0870.0450.0240.0400.26
    下载: 导出CSV

    表  3   样品中微量元素质量分数(全煤基)

    Table  3   Concentration of trace elements in samples (on whole coal basis) μg/g

    样品 质量分数
    Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Zr Nb Sn Cs Ba La
    RJZ5-1 48.6 9.5 20.2 57.2 59.8 17.4 29.3 18.7 14.2 37.8 28.4 261.7 31.0 218.5 13.2 4.2 2.4 135.7 23.8
    RJZ5-2 53.0 2.6 11.6 97.7 202.4 29.9 51.2 13.7 59.0 23.9 118.8 68.2 27.8 216.5 16.3 4.0 9.4 336.2 35.5
    RJZ5-3 91.6 3.8 13.3 126.3 162.5 21.7 73.5 21.3 108.6 26.6 92.4 112.4 31.5 246.4 19.6 5.1 8.8 7 148.7 44.0
    RJZ5-4 42.9 7.5 6.6 20 8.0 0.9 3.1 11.5 6.1 14.6 1.0 23 22.8 132.9 6.5 1.0 0.1 50.3 9.2
    RJZ5-5 469.0 3.2 5.4 16.9 6.3 0.4 2.9 5.8 8.7 39.8 6.2 53.5 11.7 154.7 47.4 2.5 0.3 29.2 17.2
    RJZ5-6 123.5 3.5 7.9 26.4 8.3 0.5 3.6 10.2 4.4 21.1 5.6 31 21.9 277.1 15.6 2.8 0.6 27.5 32.0
    RJZ5-7 75.8 3.3 8.3 21.5 66.5 5.2 11.9 18.3 7.2 13.1 1.1 73.2 19.5 145.7 9 1.8 0.1 34.8 12.3
    RJZ5-8 123.4 3.1 9.4 22.4 13.9 9.4 12.4 11.2 7.5 18.8 4.7 45.2 21.7 171.7 20.1 2.4 0.5 21.9 25.2
    RJZ5-9 76.5 2.7 5.3 23.0 6.4 1.3 2.4 8.9 7.2 15.7 0.6 3213 19.7 88.9 7.1 1.1 0 107.4 228.5
    RJZ5-10 157.1 2.3 10 31.3 12.0 0.5 2.8 13.7 6.8 17.8 4.9 60.7 22.4 181.8 24.7 3.4 0.4 32.4 15.7
    RJZ5-11 116.4 1.8 6.5 16.1 30.8 1.4 2.5 11.6 5.4 18.6 1.2 544.9 17.7 134.1 8.6 1.1 0.1 35.0 32.7
    RJZ5-12 84.4 1.4 6.9 26.0 8.4 1.6 2.1 9.0 5.4 16.0 0.5 273.0 23.6 278.6 10.2 1.3 0 50.6 12.1
    RJZ5-13 52.3 1.5 4.9 12.1 4.4 1.1 1.4 8.9 3.7 10.5 0.4 120.7 13.2 71.2 3.6 0.5 0 27.5 13.7
    RJZ5-14 175.5 2.1 6.8 20 13.4 0.9 4.7 10.6 6.9 14.5 5.9 102.1 17.0 208.3 23.9 2.9 0.7 34.0 13.9
    RJZ9-顶 41.4 1.3 4.5 234.9 131.8 13.5 152.3 19.5 154.9 11.7 45.6 319.4 9.9 92.8 7.4 2.2 3.3 135.0 50.5
    RJZ9-1 4.3 4.2 4.5 34.8 16.6 0.6 6.7 15 4.5 8.5 0.5 38.6 8.2 149.9 5.5 0.6 0 22.5 2.9
    RJZ9-2 5.9 1.1 0.9 6.8 481.2 1.3 7.6 7.2 8.2 1.6 1.7 36.2 3.6 20 2.4 0.4 0.1 30.2 6.0
    RJZ9-3 4.4 1.6 1.0 3.2 9.0 0.8 1.1 4.1 2.8 4.4 0.3 51.1 3.5 21.3 1.0 0.4 0 23.3 3.8
    RJZ9-4 6.4 0.7 1.4 8.2 5.6 0.7 1.4 10 2.8 2.6 0.2 59.8 3.6 36.3 1.9 0.3 0 21.2 4.1
    RJZ9-5 9.8 0.4 1.0 2.6 8.4 0.7 1.5 2.2 0.8 1.6 0.1 6.8 2.4 18.5 1.1 0.2 0 3.6 1.6
    RJZ9-6 2.1 0.5 2.5 2.2 5.0 1.3 2.0 4.8 4.1 20.6 0.2 116.9 4.0 6.0 0.4 3.5 0 21.8 0.9
    RJZ9-底 3.5 0.1 0.8 9.4 594 1.7 7.8 3.1 7.8 2.9 13.8 41.9 4.0 102.0 2.4 0.3 0.2 22.8 7.4
    RJZ9-顶 111.9 1.2 9.6 60.5 415.9 15.6 36.6 14.9 85.0 19.5 62.6 154.7 31.7 689.8 26.7 1.9 2.6 429.5 53.3
    RJZ9-1 53.3 1.3 10.8 72.8 53.6 9.7 24.2 12.6 39.5 18.8 11.8 212.2 12.4 220.7 8.6 1.2 0.5 111.3 12.9
    RJZ9-2 18.8 1.2 3.8 10.2 15.4 1.8 4.5 6.1 8.8 13.6 4.3 116.9 10.5 56.4 3.5 1.2 0.2 52.8 8.0
    RJZ9-3 287.6 1.3 13.0 52.9 27.8 1.1 5.8 52.4 7.8 26.7 4.3 131.8 24.2 345.5 31.5 5.1 0.2 73.0 45.8
    RJZ9-4 221.8 1.6 18.7 40.3 19.5 0.6 3.4 33.0 8.7 20.5 3.0 144.5 29.6 261 27.2 5.4 0.2 77.8 35.0
    RJZ9-5 218.3 1.2 6.8 10.5 6.5 0.5 1.6 7.6 7.1 35.4 6.1 40.9 8.0 175.1 34.5 2.7 0.6 52.8 8.0
    RJZ9-6 120.1 1.3 8.2 20.4 6.8 1.9 2.6 13.8 3.8 27.4 1.9 117.4 16.5 370.9 13.7 2.1 0.2 30 8.2
    RJZ9-7 19.1 0.8 1.8 2.9 2.6 0.6 1.1 7.9 2.8 4.0 0.4 158.5 7.0 18.0 0.7 1.0 0 26.2 5.9
    RJZ9-8 4.6 1.5 3.1 9.5 9.5 2.9 5.0 2.1 1.3 4.3 5.1 15.6 4.2 34.3 2.1 0.5 0.4 17.3 2.1
    RJZ9-9 289 1.6 7.4 17.9 81.8 1.3 5.3 10.2 8.7 25.3 3.8 79.5 16.7 177.5 18.5 4.2 0.3 56.6 8.3
    RJZ9-10 347.8 5.4 15.7 21.8 14.3 0.2 1.5 19.5 6.7 16.9 1.6 2 395.2 54.7 240.6 17.8 4.4 0.1 234.1 235.5
    RJZ9-11 227.7 3.1 9.6 12.9 10 0.3 1.7 28.6 6.3 9.5 1.1 164.4 29.9 128.1 9.6 2.3 0.1 60 44.7
    下载: 导出CSV
    续表3
    样品 质量分数
    Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Tl Pb Th U
    RJZ5-1 40.3 4.5 15.9 3.5 0.6 3.5 0.7 4.6 1.0 3.3 0.5 3.6 0.5 4.8 0.9 1.3 24.3 12.0 3.7
    RJZ5-2 68.3 7.6 25.9 4.8 0.8 3.9 0.7 4.7 0.9 2.8 0.4 2.7 0.4 5.9 1.2 6.4 27.2 11.9 4.0
    RJZ5-3 84.7 9.3 31.7 5.9 1.8 4.9 0.8 5.3 1.1 3.2 0.5 3.2 0.5 6.5 1.3 3.7 68.6 17.2 4.8
    RJZ5-4 22.4 2.8 10.7 2.6 0.4 2.5 0.5 3.2 0.7 2.4 0.4 2.5 0.4 3.5 0.4 0.2 8.7 7.6 1.8
    RJZ5-5 27.6 2.6 7.6 1.3 0.2 1.2 0.3 1.9 0.4 1.1 0.2 1.1 0.2 5.6 1.7 0.1 24.6 12.7 4.9
    RJZ5-6 68.2 7.6 26.5 5.2 0.7 3.8 0.6 3.9 0.7 2.1 0.3 2.0 0.3 8.2 1.6 0.1 33.3 26.9 3.3
    RJZ5-7 26.2 3.1 11.7 2.8 0.5 2.6 0.5 3.4 0.7 2.1 0.3 2.0 0.3 4.2 0.7 2.8 47.3 12.1 3.3
    RJZ5-8 53.0 6.2 21.9 4.4 0.7 3.7 0.6 4.1 0.8 2.4 0.3 2.3 0.3 5.0 1.3 1.1 60.2 18.5 5.5
    RJZ5-9 330.8 31.1 99.6 16.7 2.6 11.3 1.2 4.8 0.7 1.9 0.2 1.6 0.2 2.2 0.4 0.1 10.5 6.9 2.8
    RJZ5-10 38.6 4.8 17.5 3.9 0.7 3.2 0.6 3.9 0.8 2.4 0.4 2.3 0.3 5.0 1.6 0.1 26.3 13.5 6.3
    RJZ5-11 64.6 7.2 25.5 4.6 0.9 3.9 0.6 3.6 0.6 1.7 0.2 1.6 0.2 3.5 0.5 0.4 14.7 8.3 2.9
    RJZ5-12 23.2 2.7 10.2 2.6 0.6 3.3 0.6 4.0 0.8 2.2 0.3 1.8 0.3 7.2 0.5 0.1 15.2 12.0 2.9
    RJZ5-13 23.8 2.6 9.7 2.1 0.4 1.9 0.3 2.2 0.4 1.3 0.2 1.2 0.2 1.8 0.1 0.1 8.4 4.2 1.7
    RJZ5-14 27.7 3.5 13.1 2.6 0.5 2.4 0.5 2.8 0.5 1.7 0.3 1.7 0.2 6.2 1.8 0.3 26.5 23.8 5.0
    RJZ9-顶 105 11.0 35.1 4.8 0.8 2.6 0.4 1.9 0.3 1.1 0.2 1.1 0.2 2.7 0.5 12.0 21.4 9.7 25.2
    RJZ9-1 6.7 0.8 2.9 0.7 0.2 0.8 0.2 1.2 0.3 0.9 0.1 1 0.2 2.3 0.3 0 4.4 3.9 22.0
    RJZ9-2 13.9 1.6 5.7 1.1 0.2 0.9 0.1 0.6 0.1 0.3 0 0.3 0 0.5 0.3 0.5 2.7 5.2 2.8
    RJZ9-3 8.0 0.9 3.2 0.6 0.1 0.5 0.1 0.5 0.1 0.3 0 0.3 0 0.6 0 0 1.6 0.6 0.5
    RJZ9-4 8.4 1.0 3.5 0.7 0.1 0.6 0.1 0.6 0.1 0.4 0.1 0.3 0 0.9 0.1 0 3.1 2.2 0.8
    RJZ9-5 3.3 0.4 1.5 0.4 0.1 0.3 0.1 0.4 0.1 0.3 0 0.3 0 0.5 0.1 0.4 6.0 1.6 0.4
    RJZ9-6 2.0 0.3 1.1 0.3 0.1 0.4 0.1 0.7 0.1 0.4 0.1 0.3 0 0.1 0 0 0.2 0.3 0.3
    RJZ9-底 14.1 1.6 5.8 1.1 0.2 0.9 0.1 0.7 0.2 0.4 0.1 0.5 0.1 2.7 0.2 0.1 4.7 2.1 0.7
    RJZ9-顶 101.9 12.4 44.0 7.6 1.3 5.8 0.9 5.4 1.0 3.3 0.5 3.3 0.5 18.1 1.7 0.5 21.1 16.9 7.5
    RJZ9-1 25.9 3.1 11.7 2.4 0.5 2.2 0.4 2.3 0.5 1.4 0.2 1.2 0.2 5.2 0.4 0.5 8.3 6.3 18.2
    RJZ9-2 16.4 2.0 7.3 1.5 0.3 1.5 0.3 1.6 0.3 1.0 0.1 0.9 0.1 1.6 0.3 0.1 5.1 3.8 1.6
    RJZ9-3 93.1 10.4 35.7 6.7 1.2 5.6 1.0 5.6 1.0 2.7 0.4 2.5 0.4 9.6 2.4 0.1 50 38.7 12.8
    RJZ9-4 81.8 9.6 33.9 7.2 1.3 6.1 1.1 6.8 1.2 3.4 0.5 3.1 0.4 9.2 2.2 0.1 76.7 53.8 11.3
    RJZ9-5 17.5 1.8 6.3 1.3 0.2 1.2 0.2 1.5 0.3 0.8 0.1 0.8 0.1 6.8 2.3 0.1 22.8 17.2 7.3
    RJZ9-6 19.4 2.4 9.3 2.3 0.4 2.3 0.5 3.2 0.6 1.8 0.3 1.7 0.3 9.4 1.1 0.1 35.5 19.8 10.6
    RJZ9-7 13.2 1.6 6.3 1.3 0.2 1.2 0.2 1.2 0.2 0.7 0.1 0.7 0.1 0.5 0.1 0 2.1 1.5 0.5
    RJZ9-8 3.9 0.4 1.6 0.3 0.1 0.4 0.1 0.6 0.1 0.5 0.1 0.5 0.1 0.7 0.1 0.4 3.3 1.8 0.5
    RJZ9-9 18.8 2.2 8.5 2.1 0.4 2.2 0.5 2.9 0.6 1.6 0.3 1.5 0.2 6.0 1.5 0.6 42.2 19.5 5.5
    RJZ9-10 366.2 35.7 115 21.0 3.4 16.1 2.3 12.0 2.0 5.4 0.7 4.1 0.6 7.2 1.3 0.1 39.7 27.2 5.3
    RJZ9-11 79.2 8.2 27.3 5.1 0.9 4.5 0.8 5.1 1.0 2.9 0.4 2.3 0.3 3.8 0.9 0.1 34.8 17.1 3.6
    下载: 导出CSV

    表  4   煤中微量元素富集程度统计

    Table  4   Enrichment degree of trace elements in coal

    煤层高度富集富集轻度富集正常范围亏损
    5Li、BaRb、ZrBe、Sc、V、Cr、Ni、Zn、Ga、Sr、
    Y、Nb、Sn、Cs、La、Ce、Pr、Nd、
    Sm、Er、Yb、Hf、Ta、Pb、Th
    Co、Cu、Eu、Gd、Tb、Dy、Ho、Tm、Lu、Tl、U
    9CrTl、ULi、Zr、Hf、Th、Sc、Ga、Sr、Y、Nb、
    Sn、La、Ce、Pr、Nd、Sm、Er、Ta、
    Pb、Be、V、Co、Ni、Cu、Zn、Rb、Yb
    Cs、Ba、Eu、Gd、Tb、
    Dy、Ho、Tm、Lu
    9LiZr、Hf、
    Th
    Sc、Cr、Ga、Sr、Y、Nb、Sn、La、
    Ce、 Pr、Nd、Sm、Tb、Er、Ta、Pb、U
    Be、V、Co、Ni、Cu、Zn、Rb、Ba、Eu、
    Gd、Dy、Ho、Tm、Yb、Lu
    Cs、Tl
    下载: 导出CSV
  • [1] 宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源[M]. 北京: 科学出版社, 2019.
    [2] 宁树正,邓小利,李聪聪,等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报,2017,42(9):2214−2225. doi: 10.13225/j.cnki.jccs.2017.0683

    NING Shuzheng,DENG Xiaoli,LI Congcong,et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society,2017,42(9):2214−2225. doi: 10.13225/j.cnki.jccs.2017.0683

    [3] 代世峰,赵 蕾,魏 强,等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报,2020,65:3715−3729.

    DAI Shifeng,ZHAO Lei,WEI Qiang,et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution (in Chinese)[J]. Chin Sci Bull,2020,65:3715−3729.

    [4] 魏 强,代世峰. 中国煤型锗矿床中的关键金属和有害元素: 赋存特征与富集成因[J]. 煤炭学报,2020,45(1):296−303.

    WEI Qiang,DAI Shifeng. Critical metals and hazardous elements in the coal-hosted germanium ore deposits of China: Occurrence characteristics and enrichment causes[J]. Journal of China Coal Society,2020,45(1):296−303.

    [5] 代世峰,刘池洋,赵 蕾,等. 煤系中战略性金属矿产资源: 意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.

    DAI Shifeng,LIU Chiyang,ZHAO Lei,et al. Strategic metal resources in coal-bearing strata: Significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.

    [6] 李 晶,王 园,袁 伟,等. 陕西典型矿区煤系关键金属元素富集特征及其成因机制[J]. 煤炭学报,2022,47(5):1808−1821. doi: 10.13225/j.cnki.jccs.mj22.0225

    LI Jing,WANG Yuan,YUAN Wei,et al. Enrichment characteristics and mechanism of critical metal elements enriched in coals from typical coalfields in Shaanxi Province[J]. Journal of China Coal Society,2022,47(5):1808−1821. doi: 10.13225/j.cnki.jccs.mj22.0225

    [7] 赵存良. 鄂尔多斯盆地与煤伴生多金属元素的分布规律和富集机理[D]. 北京: 中国矿业大学(北京), 2015.

    ZHAO Cunliang. Distribution and enrichment mechanism of multi-metallic elements associated with coal in Ordos Basin [D]. Beijing: China University of Mining & Technology-Beijing, 2015.

    [8] 秦国红,邓丽君,刘 亢,等. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探,2016,44(6):8−14. doi: 10.3969/j.issn.1001-1986.2016.06.002

    QIN Guohong,DENG Lijun,LIU Kang,et al. Characteristic of rare earth elements in coal in western margin of Ordos basin[J]. Coal Geology & Exploration,2016,44(6):8−14. doi: 10.3969/j.issn.1001-1986.2016.06.002

    [9] 秦国红. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型[D]. 北京: 中国矿业大学(北京), 2020.

    QIN Guohong. Enrichment characteristics and genetic types of trace elements in the Late Paleozoic Coal from Ordos Basin[D]. Beijing: China University of Mining & Technology-Beijing, 2020.

    [10] 石志祥,马家亮,高 政,等. 宁东煤田中部侏罗纪煤的矿物学特征[J]. 煤炭学报,2017,42(6):1535−1543.

    SHI Zhixiang,MA Jialiang,GAO Zheng,et al. Mineralogical of the Jurassic coals in the middle of Ningdong Coalfield[J]. Journal of China Coal Society,2017,42(6):1535−1543.

    [11] 曹代勇, 魏迎春, 等. 鄂尔多斯盆地煤系矿产赋存规律与资源评价[M]. 北京: 科学出版社, 2019.
    [12] 吴 蒙,秦云虎,王晓青,等. 宁东地区晚古生代煤中硫的地化特征及其对有害元素富集的影响[J]. 煤炭学报,2020,45(S2):932−942.

    WU Meng,QIN Yunhu,WANG Xiaoqing,et al. Geochemical characteristics of sulfur and its impact on accumulation of hazardous trace elements in late Paleozoic coal from Ningdong area[J]. Journal of China Coal Society,2020,45(S2):932−942.

    [13] 吴 亮,何 伟. 宁夏宁东煤田灵武矿区煤中砷含量及赋存形态探讨[J]. 煤炭与化工,2021,44(4):57−60,117.

    WU Liang,HE Wei. Discussion on arsenic content and occurrence form in Ningdong coalfield in Ningxia[J]. Coal and Chemical Industry,2021,44(4):57−60,117.

    [14] 何 伟,吴 亮,魏向成,等. 宁东煤田中侏罗统延安组稀有稀散稀土元素地球化学特征及其对沉积环境的指示意义[J]. 岩矿测试,2022,41(6):962−977.

    HE Wei,WU Liang,WEI Xiangcheng,et al. Geochemical characteristics of three kinds of rare elements in middle jurassic yan’an formation of ningdong coalfield and their indicative significance to sedimentary environment[J]. Rockand Mineral Analysis,2022,41(6):962−977.

    [15] 刘 亢. 鄂尔多斯盆地西缘煤系矿产资源共生组合特征研究[D]. 北京: 中国矿业大学(北京), 2016.

    LIU Kang. Combination characters of coal series mineral resources in the west margin of ordos basin[D]. Beijing: China University of Mining & Technology-Beijing, 2016.

    [16] GB/T 482—2008, 煤层煤样采取方法[S].
    [17] 王双明. 鄂尔多斯盆地叠合演化及构造对成煤作用的控制[J]. 地学前缘, 2017, 24(2): 54-63.

    WANG Shuangming. Ordos Basin superposed evolution and structural controls of coal forming activities. Earth Science Frontiers, 2017, 24(2): 54-63.

    [18] GB/T212—2008, 煤的工业分析方法[S].
    [19] GB/T214—2007, 煤中全硫的测定方法[S].
    [20]

    QUEROL X,WHATELEY M K G,FERNANDEZ-TURIEL L,et al. Geological controls on the mineralogy and geochemistry of the Bey pazari lignite, central Anatolia, Turkey[J]. International Journal of Coal Geology,1997,33(3):255−271. doi: 10.1016/S0166-5162(96)00044-4

    [21]

    DAI S, SEREDIN V V, WARD C R, et al. Enrichment of U-Se-Mo - Re - V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding coalfield, Guizhou, China[J]. Mineralium Deposita, 2015, 50(2): 159-186.

    [22]

    KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148. doi: 10.1016/j.coal.2009.01.002

    [23] 宁树正, 朱士飞, 曹代勇, 等. 2017. 含煤岩系矿产综合勘查评价研究(2015-2016年度)[R]. 北京: 中国煤炭地质总局.
    [24] 代世峰,任徳贻,周义平等. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707−1715.

    DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707−1715.

    [25] 熊 科, 何田田. 2019. 宁夏宁鲁煤电有限责任公司任家庄煤矿九号煤煤质补充勘探报告[R]. 保定: 中国煤炭地质总局一七三勘探队.
    [26] 田和明,代世峰,李大华,等. 重庆南川晚二叠世凝灰岩的元素地球化学特征[J]. 地质论评,2014,60(1):169−177. doi: 10.16509/j.georeview.2014.01.019

    TIAN Heming,DAI Shifeng,LI Dahua,et al. Geochemical Features of the Late Permian Tuff in Nanchuan District, Chongqing, Southwestern China[J]. Geological Review,2014,60(1):169−177. doi: 10.16509/j.georeview.2014.01.019

    [27] 陈全红,李文厚,胡孝林,等. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析[J]. 地质学报,2012,86(7):1150−1162. doi: 10.3969/j.issn.0001-5717.2012.07.011

    CHEN Quanhong,LI Wenhou,HU Xiaolin,et al. Tectonic setting and provenance analysis of late paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica,2012,86(7):1150−1162. doi: 10.3969/j.issn.0001-5717.2012.07.011

    [28]

    WINCHESTER J A,FLOYD P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977,20:325−343. doi: 10.1016/0009-2541(77)90057-2

    [29] 曹代勇,徐 浩,刘 亢,等. 鄂尔多斯盆地西缘煤田构造演化及其控制因素[J]. 地质科学,2015,50(2):410−427. doi: 10.3969/j.issn.0563-5020.2015.02.005

    CAO Daiyong,XU Hao,LIU Kang,et al. Coalfield tectonic evolution and its controlling factors at the western margin of Ordos Basin[J]. Chinese Journal of Geology,2015,50(2):410−427. doi: 10.3969/j.issn.0563-5020.2015.02.005

    [30] 李 俊, 赵红格, 汪 建, 等. 鄂尔多斯盆地西缘中部三叠系延长组碎屑岩沉积环境及物源示踪[J/OL]. 沉积学报, 1−23[2023-02-14]. https://doi.org/10.14027/j.issn.1000-0550.2022.120.

    LI Jun, ZHAO Hongge, WANG Jian, et al. Sedimentary Environment and Provenance Tracing of Clastic Rocks from the Triassic Yanchang Formation in the Western Margin of the Ordos Basin[J/OL]. Acta Sedimentologica Sinica, 1−23[2023-02-14]

  • 期刊类型引用(2)

    1. 胡皓,刘桂建,沈明联,魏勇,岳振,鲁梦菲,谢宗璠,詹润. 不同燃烧温度下煤中锂的迁移富集规律. 中国煤炭地质. 2025(03): 1-6 . 百度学术
    2. 王琳,王楠,沈峰满. 惰气熔融-红外吸收/热导法同时测定无烟煤中氮和氢. 分析测试技术与仪器. 2024(01): 39-46 . 百度学术

    其他类型引用(1)

图(8)  /  表(5)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  12
  • PDF下载量:  43
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-02-13
  • 网络出版日期:  2023-10-30
  • 刊出日期:  2023-12-30

目录

/

返回文章
返回