高级检索

气煤叠置区高强度开采浅埋管道破坏时序规律研究

任建东, 赵毅鑫, 孙中博, LIUShimin, 王文

任建东,赵毅鑫,孙中博,等. 气煤叠置区高强度开采浅埋管道破坏时序规律研究[J]. 煤炭科学技术,2023,51(S2):152−164. DOI: 10.13199/j.cnki.cst.2023-0107
引用本文: 任建东,赵毅鑫,孙中博,等. 气煤叠置区高强度开采浅埋管道破坏时序规律研究[J]. 煤炭科学技术,2023,51(S2):152−164. DOI: 10.13199/j.cnki.cst.2023-0107
REN Jiandong,ZHAO Yixin,SUN Zhongbo,et al. Study on time series rule of buried pipe failure under high-intensity coal mining in a gas-coal overlapping area[J]. Coal Science and Technology,2023,51(S2):152−164. DOI: 10.13199/j.cnki.cst.2023-0107
Citation: REN Jiandong,ZHAO Yixin,SUN Zhongbo,et al. Study on time series rule of buried pipe failure under high-intensity coal mining in a gas-coal overlapping area[J]. Coal Science and Technology,2023,51(S2):152−164. DOI: 10.13199/j.cnki.cst.2023-0107

气煤叠置区高强度开采浅埋管道破坏时序规律研究

基金项目: 

国家自然科学基金资助项目(51874312);山东省重大科技创新工程资助项目(2019SDZY01)

详细信息
    作者简介:

    任建东: (1993-),男,河南三门峡人,博士研究生。E-mail:rjdcumt@163.com

    通讯作者:

    赵毅鑫: (1977-),男,河南洛阳人,教授,博士生导师,博士。E-mail:zhaoyx@cumtb.edu.cn

  • 中图分类号: TD713

Study on time series rule of buried pipe failure under high-intensity coal mining in a gas-coal overlapping area

Funds: 

National Natural Science Foundation of China(51874312); Shandong Province Major Science and Technology Innovation Project Funding Project (2019SDZY01)

  • 摘要:

    鄂尔多斯气煤叠置区工作面的高强度回采极易导致地表浅埋油气管线变形失效,明确工作面推进过程中管道破坏的时序规律,对集输管线的精准维护和参数优化具有重要意义。首先,通过理论分析提出了体积应变的理论算法。其次,通过体积应变极限分别构建了管道局部拉伸和压缩状态下失效破坏判别的新方法。然后,通过数值模拟分析了管道轴向和环向的变形和体积应变,明确了埋地管道破坏的时序规律。同时,将数值结果与监测数据和理论结果进行对比分析,验证了试验结果的合理性和准确性。结果表明:以直径为508 mm的输气管道为例,拉伸和压缩状态下油气管道的体积应变极限分别为0.42%、−0.31%。工作面向管道靠近过程中管道的变形量总小于覆岩,二者为非协同变形,且工作面距管道越近非协同变形程度越大。在轴线方向上,管道的变形曲线均呈现漏斗状。管道的椭圆度随着管道与工作面间距离的缩小而逐渐减小,且二者间数学关系可用指数函数表达。管道拐点至端部体积应变大于零、拐点之间小于零,整体的体积应变关于沉陷中心位置左右对称。管道底部和顶部的体积应变分布并不对称,且同一轴向位置处顶部的体积应变绝对值总大于底部。管道顶底部破坏轮廓分别呈现“∩”和“∪”,同一轴向位置上的破坏轮廓呈现“S”。管道轴向易破坏的位置及形式:顶部中心压缩破坏、顶部两端拉伸破坏。采煤工作面逐渐靠近管道过程中,管道中心至拐点、端部至拐点均从先到后依次破坏,且中心位置破坏早于两端、顶部的破坏早于底部。与此同时,管道在环向上的破坏由270°向180°偏转,其中330°~150°是最易发生破坏的方位;最小变形由120°向0°偏转。最后,通过地表沉降量、管道的变形量、椭圆度、剪应力等指标验证了结果的可靠性。研究结果进一步明确了埋地管道破坏的方位和时序,有利于管输工程的精准维护和高效施工,为促进油−气−煤资源的协调开采提供借鉴。

    Abstract:

    The high-intensity mining of coal face in the Ordos gas-coal overlapping area can easily lead to the failure of shallowly buried oil & gas pipelines. It is of great significance to clarify the time series of the pipeline failure during the advancing process of the panel in this area for the accurate maintenance and parameter optimization of the gathering and transmission pipelines. Firstly, the theoretical algorithm of volume strain (VS) is proposed through theoretical analysis. Then, a new method for failure damage discrimination in the tensile and compressive states locally is respectively constructed by the volume strain limit. Next, the deformation and volumetric strain of the pipeline in the axial and circumferential directions were analyzed by numerical simulation, and the time series law of buried pipeline damage was clarified. At the same time, the numerical results are compared and analyzed with the monitoring data and theoretical results to verify the reasonableness and accuracy of the experimental results. The results show that the volumetric strain limits in tension and compression are, for example, 0.42% and −0.31% for a 508 mm diameter gas transmission pipe. The deformation of the pipeline is smaller than that of the overburden during the process of panel advancing, and the deformation between them is non-synergistic. The closer the panel is to the pipeline, the greater the degree of non-synergistic. In the axial direction, the deformation curves of the tubes are funnel-shaped. The ellipticity of the tube decreases as the distance between the tube and the panel decreases, and the mathematical relationship between them can be expressed as an exponential function. The volume strain between the inflection points of the pipeline is always less than 0, and the VS from the inflection point to the end is always greater than 0. Furthermore, the volume strain of the pipe is symmetrical to the left and right about the position of the center of the subsidence. The volume strain distribution at the bottom and top of the pipe is not symmetrical, and the absolute value of the volume strain at the top is always greater than that at the bottom at the same axial position. The failure profiles at the top and bottom of the pipeline are shown as “∩” and “∪”, and at the same axial position show “S”. The location and pattern of axial damage of the pipeline: compression damage at the bottom center, and tensile damage at the bottom two ends. The panel is gradually approaching the pipeline process, the failure from the center to the inflection point and from the end to the inflection point of the pipeline is successively generated, and the center is earlier than that at both ends, and the top is earlier than the bottom. At the same time, the failure of the pipeline ring is the transfer from 270° to 180°, where 330°-150° is the most vulnerable to damage orientation, and the minimum deformation is the transfer from 120° to 0°. Finally, the reliability of the results was verified by the deformation, the ellipticity, the shear stress of the pipe, and the ground settlement. The research results further clarify the orientation and time series rule of pipeline failure, which is conducive to the precise maintenance and efficient construction of pipeline projects and provides a reference for promoting the coordinated mining of oil-gas-coal resources.

  • 图  1   鄂尔多斯盆地气田与煤矿重叠区示意

    Figure  1.   Schematic of gas field and coal mine overlapping area in Ordos Basin

    图  2   数值模型设计与建立

    Figure  2.   Design and establishment of numerical model

    图  3   工作面推进过程中地表及管道的位移云图

    Figure  3.   Displacement cloud diagram of surface and pipeline during advancing of panel

    图  4   采煤影响下地表下沉曲线

    Figure  4.   Surface subsidence curve under coal mining influence

    图  5   工作面推进过程中管道环向位置的变形曲线

    Figure  5.   Deformation curve of pipeline circumferential position in process of panel advancing

    图  6   工作面推进过程中管道的体积应变分布特征

    Figure  6.   Distribution characteristics of volume strain of pipeline during panel advancing

    图  7   工作面推进过程中管道环向上的极值位移偏移方向

    Figure  7.   Extreme deviation direction of pipeline ring upward displacement in advancing process of the panel

    图  8   工作面推进过程中管道剪应力分布特征

    Figure  8.   Distribution characteristics of pipeline shear stress during advancing of panel

    表  1   地层的物理力学参数

    Table  1   Physical and mechanical parameters of strata

    地层 体积模量/GPa 剪切模量/GPa 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 密度/(kg·m−3
    砂及黄土 0.31 0.11 3.6 19 0.25 1 570
    细粒砂岩 0.5 0.13 5.5 21 0.55 2 240
    泥岩 0.46 0.14 17 22 0.5 2 440
    中粒砂岩 0.23 0.18 15 38 1.59 2 200
    粗粒砂岩 0.57 0.15 3 43 0.26 2 500
    粉砂岩 1 0.5 6 22 0.66 2 436
    泥岩 0.46 0.14 17 22 0.5 2 440
    2-2煤 0.18 0.1 1.2 39 0.25 1300
    细粒砂岩 0.57 0.15 3 43 0.26 2 500
    下载: 导出CSV

    表  2   管道的物理力学参数

    Table  2   Physical and mechanical parameters of the pipeline

    弹性模量/MPa 密度ρ/(kg·m−3 外径/mm 壁厚/mm 抗拉强度/MPa 泊松比/μ
    2×105 7 850 508 7.1 415 0.3
    下载: 导出CSV
  • [1] 袁 亮. 煤及共伴生资源精准开采科学问题与对策[J]. 煤炭学报,2019,44(1):1−9.

    YUAN Liang. Scientific problems and countermeasures for precise mining of coal and associated resource[J]. Journal of China Coal Society,2019,44(1):1−9.

    [2] 孙海涛,舒龙勇,姜在炳,等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术,2022,50(12):1−13.

    SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13.

    [3] 袁 亮,张 通,赵毅鑫,等. 煤与共伴生资源精准协调开采:以鄂尔多斯盆地煤与伴生特种稀有金属精准协调开采为例[J]. 中国矿业大学学报,2017,46(3):449−459.

    YUAN Liang,ZHANG Tong,ZHAO Yixin,et al. Precise coordinated mining of coal and associated resources:A case of environmental coordinated mining of coal and associated rare metal in Ordos basin[J]. Journal of China University of Mining & Technology,2017,46(3):449−459.

    [4] 郑大海,毛 建,赵冬野,等. 地下采矿对埋地输气管道变形的影响分析[J]. 成都大学学报(自然科学版),2016,35(3):313−316. doi: 10.3969/j.issn.1004-5422.2016.03.026

    ZHENG Dahai,MAO Jian,ZHAO Dongye,et al. Analysis of the influence of underground mining on the deformation of buried gas pipeline[J]. Journal of Chengdu University (Natural Science Edition),2016,35(3):313−316. doi: 10.3969/j.issn.1004-5422.2016.03.026

    [5] 王现中,王仁超. 复杂山区煤矿采空区油气管道稳定性监测与数值分析[J]. 山地学报,2022,40(3):411−420.

    WANG Xianzhong,WANG Renchao. In-situ monitoring and numerical analysis of oil and gas pipelines in coal seam goaf located in mountainous terrain[J]. Journal of Mountain,2022,40(3):411−420.

    [6] 吴韶艳,文宝萍. 采空区埋地油气管道变形数值模拟分析[J]. 安全与环境学报,2014,14(4):87−91.

    WU Shaoyan,WEN Baoping. Numerical simulation analysis of deformation of oil and gas pipeline buried in goaf[J]. Journal of Safety and Environment,2014,14(4):87−91.

    [7] 任建东,王 文,董 淼,等. 开采沉陷区埋地管道变形及力学特征分析[J]. 中国安全科学学报,2020,30(10):82−89.

    REN Jiandong,WANG Wen,DONG Miao,et al. Analysis of deformation and mechanical characteristics of buried pipeline in mining subsidence area[J]. China Safety Science Journal,2020,30(10):82−89.

    [8] 赵江平,刘士洋. 煤矿釆空区管道的破坏机理及影响因素研究[J]. 煤炭技术,2017,36(9):127−128.

    ZHAO Jiangping,LIU Shiyang. Study on the failure mechanism and influencing factors of pipelines in coal mine hollow area[J]. Coal Technology,2017,36(9):127−128.

    [9] 王小龙,姚安林. 埋地钢管局部悬空的挠度和内力分析[J]. 工程力学,2008,25(8):218−222.

    WANG Xiaolong,YAO Anlin. Deflection and internal force analysis of buried steel pipelines in partial hanging[J]. Engineering Mechanics,2008,25(8):218−222.

    [10] 王 文,任建东,董 淼,等. 采动影响下天然气管道变形演化模拟试验研究[J]. 采矿与安全工程学报,2020,37(4):777−787.

    WANG Wen,REN Jiandong,DONG Miao,et al. A simulation experimental study on deformation evolution of natural gas pipeline under mining influences[J]. Journal of Mining and Safety Engineering,2020,37(4):777−787.

    [11] 徐 平. 采动沉陷影响下埋地管道与土相互作用及力学响应研究[D]. 徐州:中国矿业大学,2015.

    XU Ping. Study on the buried pipeline-soil interaction and its mechanical response by mining subsidence[D]. Xuzhou:China University of Mining and Technology,2015.

    [12] 王 坚. 采煤沉陷区埋地管道与土体协同变形研究及安全评价[D]. 徐州:中国矿业大学,2019.

    WANG Jian. Research on cooperative deformation of the buried pipeline and soil in coal mining subsidence area and safety evaluation[D]. Xuzhou:China University of Mining and Technology,2019.

    [13] 王 文,任建东,王付斌. 鄂尔多斯盆地“煤气走廊”开采模式研究[J]. 金属矿山,2019(10):23−31.

    WANG Wen,REN Jiandong,WANG Fubin. Study on the mining mode of “gas corridor” in Erdos basin[J]. Metal Mine,2019(10):23−31.

    [14] 王 文,任建东,李小军,等. 开采沉陷区天然气井避让距离控制预测方法研究[J]. 中国矿业大学学报,2021,50(5):943−954.

    WANG Wen,REN Jiandong,LI Xiaojun,et al. Research on the prediction method of natural gas well avoidance distance control in mining sinkhole area[J]. Journal of China University of Mining and Technology,2021,50(5):943−954.

    [15] 李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47.

    LI Quansheng,LI Xiaobin,XU Jialin,et al. Research progress on evolution law of mining-induced fissures in rock strata and ecological control technology[J]. Coal Science and Technology,2022,50(1):28−47.

    [16] 任建东,赵毅鑫,王 文,等. 采煤沉陷区油气管道泄漏风险量化分区研究[J]. 岩石力学与工程学报,2022,41(S2):3353−3368.

    REN Jiandong,ZHAO Yixin,WANG Wen,et al. Investigation on quantification partition of oil-gas pipeline leakage risk in coal mining subsidence basin[J]. Journal of Rock Mechanics and Engineering,2022,41(S2):3353−3368.

    [17] 刘 辉,左建宇,苏丽娟,等. 巨厚含水松散层下开采地表移动变形规律研究[J]. 煤炭科学技术,2022,50(5):49−56.

    LIU Hui,ZUO Jianyu,SU Lijuan,et al. Study on surface movement and deformation law of mining under thick water-bearing loose layer[J]. Coal Science and Technology,2022,50(5):49−56.

    [18] 中国石油天然气集团公司工程技术研究院. 现役管道的不停输移动推荐作法[S]. 北京:石油工业出版社,2004.

    Research Institute of Engineering Technology,China national petroleum corporation. Recommend practice for movement of in-service pipelines[S]. Beijing:Petroleum Industry Press,2004.

    [19]

    REN Jiandong,ZHAO Yixin,WANG Wen,et al. Optimal design of a protective coal pillar with a buried pipeline in a thick loose layer in western China:methodology and case study[J]. Rock Mechanics and Rock Engineering,2023,56(4):2879−2896. doi: 10.1007/s00603-022-03201-2

    [20] 任建东,李晓白,王 文. 水平交叉巷道间夹角合理化取值数值模拟[J]. 河南理工大学学报(自然科学版),2021,40(3):1−9.

    REN Jiandong,LI Xiaobai,WANG Wen. Numerical simulation of rationalization of the angle between horizontal crossing roadways[J]. Journal of Henan University of Technology (Natural Science Edition),2021,40(3):1−9.

    [21] 周 敏,杜延军,王 非,等. 地层沉陷过程中埋地高密度聚乙烯(HDPE)管道力学行为研究[J]. 岩石力学与工程学报,2017,36(S2):4177−4187.

    ZHOU Min,DU Yanjun,WANG Fei,et al. Study on mechanical behavior of buried high density polyethylene (HDPE) pipes during ground subsidence[J]. Journal of Rock Mechanics and Engineering,2017,36(S2):4177−4187.

    [22] 李豪杰,朱鸿鹄,朱 宝,等. 基于光纤监测的埋地管线沉降模型试验研究[J]. 岩石力学与工程学报,2020,39(S2):3645−3654.

    LI Haojie,ZHU Honghu,ZHU Bao,et al. Model test of buried pipeline settlement based on optical fiber monitoring[J]. Journal of Rock Mechanics and Engineering,2020,39(S2):3645−3654.

    [23] 王坤园. 煤矿长壁开采条件下埋地管道的变形破坏规律研究[D]. 北京:中国地质大学(北京),2017.

    WANG Kunyuan. Research on deformation and failure of buried pipelines under longwall mining conditions[D]. Beijing:China University of Geosciences (Beijing),2017.

    [24] 任建东,赵毅鑫,孙中博等. 气煤叠置区埋地管道的保护煤柱优化设计及多参量演化规律研究[J]. 岩土力学,2023,44(9):2679−2695.

    REN Jiandong,ZHAO Yixin,SUN Zhongbo,et al. Protective coal pillar optimization and multi-parameter evolution characteristics of buried pipeline in gas-coal superposition area[J]. Rock and Soil Mechanics,2023,44(9):2679−2695.

  • 期刊类型引用(59)

    1. 韩跃勇, 李国营, 陈洋, 马兴印, 尹延春, 张斌, 万晓, 贾海宾. 沿空巷道覆岩运动作用下煤柱承载变形及留设宽度研究. 煤炭工程. 2025(07) 百度学术
    2. 蒋军军. 顺层瓦斯抽采钻孔在防冲卸压中的应用. 煤炭工程. 2025(07) 百度学术
    3. 张寅, 张季平, 杨建军, 尹立冬, 苏士杰. 冲击地压煤层机械扩孔卸压机理研究. 地下空间与工程学报. 2025(03) 百度学术
    4. 罗生虎, 闫壮壮, 解盘石, 伍永平, 王红伟, 朱广安, 王同, 田程阳. 基于结构动力学理论的矿震机理分析. 煤炭学报. 2025(06) 百度学术
    5. 边华, 赵毅鑫, 王渊, 赵良辰, 杨哲, 郝建. 回采速度对深部厚煤层正断层活化特征影响研究. 矿业科学学报. 2025(03) 百度学术
    6. 李俊平,管婷婷,王海泉. 高位巷控制爆破切槽放顶关键参数设计及矿压运移模拟. 安全与环境学报. 2025(02): 488-497 . 百度学术
    7. 张涛,成云海. 采动诱发地堑构造滑移失稳特征响应研究. 煤炭与化工. 2025(02): 27-31+35 . 百度学术
    8. 肖晓春,徐政茂,樊玉峰,张文萍,李子阳,陈晓燕. 吸能锚杆支护设备研究现状及展望. 煤炭科学技术. 2025(01): 54-64 . 本站查看
    9. 于斌,孟祥斌,邰阳,尚子榆,彭明贤,匡铁军,郭飞龙,李东印,王世博. 坚硬顶板特厚冲击煤层智能高效安全开采关键技术. 煤炭学报. 2025(01): 245-263 . 百度学术
    10. 赵毅鑫,杨哲,谢镕澴,王涛,赵良辰. 基于便携式里氏硬度测试的煤冲击倾向性分级判别准则. 煤炭学报. 2025(01): 297-310 . 百度学术
    11. 闫耀东,陈昆,赵森,吕飞,郝电伟,史锐. 综采临空巷道顶板爆破预裂防冲机制及效果分析. 煤炭工程. 2025(02): 86-93 . 百度学术
    12. 李家卓,邱航,窦林名,王剑,刘舜,马衍坤. 深部开采强动载波形分类特征及震源参量响应规律. 采矿与岩层控制工程学报. 2025(02): 77-93 . 百度学术
    13. 张全平,郝英豪,霍永金,赵乾,巩思园,张汝佩. 深部厚覆岩矿井强震震源机制与诱冲能力评估. 煤炭科学技术. 2025(03): 412-422 . 本站查看
    14. 刘虎,王新驭,张德弦,王永峰. 基于防冲支护技术的煤矿围岩冲击地压控制研究. 内蒙古煤炭经济. 2025(07): 49-51 . 百度学术
    15. 杨超,付玉凯,董亚东,李鹏,任杰. 高冲击韧性锚杆(索)主动支护技术. 煤炭工程. 2025(04): 34-40 . 百度学术
    16. 马学舟,温颖远,曹安业,郭文豪,周雅静,曹晓杰,刘健男,杨晋州. 微波弱化煤体微结构损伤特征及能量释放规律分析. 煤炭科学技术. 2025(04): 233-243 . 本站查看
    17. 刘建伟. 孤岛仰采综放工作面冲击地压研究及防治. 山东煤炭科技. 2024(01): 100-103+108 . 百度学术
    18. 张翔,朱斯陶,张修峰,姜福兴,刘金海,陈洋,万晓,杨涛,朱淳,李佳洁. 深厚表土综放采场断层煤柱整体失稳型冲击地压机制研究. 岩石力学与工程学报. 2024(03): 713-727 . 百度学术
    19. 李俊平,管婷婷,冯嘉禹,王海泉. 矿震与冲击地压防治研究进展. 中国安全科学学报. 2024(01): 85-93 . 百度学术
    20. 王国法,潘一山,赵善坤,庞义辉,何勇华,魏文艳. 冲击地压煤层如何实现安全高效智能开采. 煤炭科学技术. 2024(01): 1-14 . 本站查看
    21. 韩军,李广汉,郭宝龙,马双文,CAO Chen. 巷帮煤体整体滑脱型冲击地压锚杆防冲支护原理及工程实践. 煤炭科学技术. 2024(01): 117-125 . 本站查看
    22. 柴敬,王佳琪,杨健锋,高登彦,高奎英,陈建华,刘泽宇,杨磊. 区段煤柱变形光纤光栅监测应用研究. 煤炭科学技术. 2024(01): 126-137 . 本站查看
    23. 宋振骐,文志杰,蒋宇静,蒋金泉,石永奎. 采动力学与岩层控制关键理论及工程应用. 煤炭学报. 2024(01): 16-35 . 百度学术
    24. 何杰,吴拥政,孙卓越,李军臣. 预制孔洞煤样冲击力学特性及能量耗散试验研究. 煤炭科学技术. 2024(02): 92-103 . 本站查看
    25. 李笑笑,马衍坤. 真三轴煤层钻孔承载破坏层理效应试验研究. 中国安全生产科学技术. 2024(03): 97-102 . 百度学术
    26. 王元杰. 基于地音监测技术的矿震演化规律及预警模型研究. 中国煤炭. 2024(03): 53-60 . 百度学术
    27. 邓辉,王铁宏,马文涛. 中央大巷采空区影响区域冲击危险源探测技术. 陕西煤炭. 2024(05): 80-84 . 百度学术
    28. 程继杰,刘毅. 基于深度特征的煤矿冲击地压和煤与瓦斯突出图像感知报警方法. 煤炭科学技术. 2024(03): 245-257 . 本站查看
    29. 杨光宇,陈学慧,周宏伟. 深部综采工作面多关键层-煤柱系统失稳诱冲机理研究. 煤炭工程. 2024(05): 121-128 . 百度学术
    30. 李永强,逯涛. 煤矿冲击地压防治体系中的关键问题探讨. 内蒙古煤炭经济. 2024(07): 4-6 . 百度学术
    31. 王开松,闫虎,顾炜炜. 顶板深孔爆破炸药辅助推送车的研发. 煤矿机电. 2024(02): 25-29 . 百度学术
    32. 张建,亓佳利,李长青. 厚煤层开采上覆岩层移动与应力分布特征研究. 山东煤炭科技. 2024(06): 139-143+154 . 百度学术
    33. 孟上九,秦艺峰,王淼,孙志远,穆海龙. 矿震机理及其次生灾害监测技术研究进展. 世界地震工程. 2024(03): 103-118 . 百度学术
    34. 王琦,蒋振华,江贝,康红普,章冲. 深井巷道动力冲击与吸能控制物理模拟试验研究. 岩石力学与工程学报. 2024(09): 2081-2091 . 百度学术
    35. 袁腾飞,闫才,孔震,韩飞,徐波. 复杂高应力区掘进工作面冲击地压发生机理与防治技术研究. 煤矿现代化. 2024(05): 66-72 . 百度学术
    36. 王东,白峰. 孤岛工作面钻孔卸压效果研究及实践. 煤炭与化工. 2024(08): 16-20+26 . 百度学术
    37. 杨金诺,李国墙,张军徽. 矿震诱发冲击地压机理研究. 煤炭科技. 2024(04): 126-133+140 . 百度学术
    38. 程子龙. 红旗煤矿冲击地压监测与防治技术实践. 煤炭科技. 2024(04): 174-177 . 百度学术
    39. 张翔,朱斯陶,张修峰,王超,陈洋,李士栋,孔震,朱权洁,袁腾飞. 深厚表土运动诱发高应力煤柱频繁冲击机制及防控试验研究. 岩石力学与工程学报. 2024(10): 2552-2569 . 百度学术
    40. 刘伟建,王浩楠,肖扬,侯梦杰,董森森,张志增,卢高明. 三维声发射震源定位单纯形和网格搜索扫描联合方法研究(英文). Applied Geophysics. 2024(03): 456-467+617 . 百度学术
    41. 朱斯陶,张翔,姜福兴,马俊鹏,张修峰,夏开文,王超,李士栋,刘金海,朱权洁,曲效成. 深井高应力大巷煤柱释能改性防冲机理及应用. 煤炭学报. 2024(09): 3711-3727 . 百度学术
    42. 祁和刚,夏永学,智宝岩,秦子晗,程健,王凯,王书文,王宾昌,杨光宇. 冲击地压煤层智能开采关键技术研究与实践. 煤炭科学技术. 2024(09): 112-124 . 本站查看
    43. 裴晓东,李金鑫,刘华锋,王亮,苗振东,陈佳辉,王炎林,袁玉洁. 基于CiteSpace的国内冲击地压防治文献可视化知识图谱分析. 中国安全生产科学技术. 2024(10): 22-28 . 百度学术
    44. 李臣,鱼琪伟,连小勇,吴桐. 基于蝶形理论的工作面超前钻孔解危机理与技术应用. 绿色矿冶. 2024(05): 61-66+74 . 百度学术
    45. 王宾昌,魏伟,白建飞. 磨砂射流轴向切顶技术工业试验及防冲效果分析. 陕西煤炭. 2024(12): 122-126+149 . 百度学术
    46. 张翔,朱斯陶,姜福兴,刘金海,朱权洁,史先锋,韩刚,魏晓虎,曹京龙,曲效成. 深部大采高综采面厚硬岩层-煤柱结构失稳诱冲机理研究. 岩土工程学报. 2024(12): 2570-2579 . 百度学术
    47. 郭伟耀,张悦颖,谷雪斌,公绪飞,郭传清,郭文静,张骞,张磊. 大范围采动影响下特大断层构造区微震活动规律及调控方法. 煤炭科学技术. 2024(11): 260-272 . 本站查看
    48. 金士魁,王震,雍明超. 煤矿冲击地压防治体系中的关键问题探讨. 内蒙古煤炭经济. 2024(21): 13-15 . 百度学术
    49. 欧阳振华,许乾海,张宁博,张天姿,易海洋,史庆稳,李文帅,王佳嘉. 井工煤矿全生命周期冲击地压防治体系研究. 矿业科学学报. 2024(06): 932-942 . 百度学术
    50. 李震,吴冠洋,司尚金,高鑫,刘勋,张冬冬,张呈祥,刘家琛. 基于开采深度与构造应力的冲击地压危险性评价子指标取值方法. 煤炭科学技术. 2024(12): 38-47 . 本站查看
    51. 肖晓春,李子阳,丁鑫,徐军,朱恒,丁振. 矿用超前液压支架吸能构件仿真及试验研究. 煤炭科学技术. 2024(12): 247-258 . 本站查看
    52. 尹忠昌,宋俊生,王文翰. 深孔爆破的炮孔封堵机理及参数优化研究. 煤炭科学技术. 2023(04): 21-29 . 本站查看
    53. 崔小超,王艳立,王方方,张斌,张修峰,张浩,赵金鑫,夏彪. 深部沿空综放面巨厚表土加载型冲击地压机理研究. 矿业研究与开发. 2023(06): 89-96 . 百度学术
    54. 潘俊锋,高家明,闫耀东,杨光宇. 煤矿冲击地压发生风险判别公式及应用. 煤炭学报. 2023(05): 1957-1968 . 百度学术
    55. 曹安业,窦林名,白贤栖,刘耀琪,杨科,李家卓,王常彬. 我国煤矿矿震发生机理及治理现状与难题. 煤炭学报. 2023(05): 1894-1918 . 百度学术
    56. 王宏伟,田政,王晴,刘文岗,姜耀东,石瑞明. 采动诱发断层覆岩耦合失稳的突变效应. 煤炭学报. 2023(08): 2961-2975 . 百度学术
    57. 付海月. 煤矿冲击地压防治技术研究与应用. 内蒙古煤炭经济. 2023(11): 145-147 . 百度学术
    58. 张泉,郑义宁. 郭屯矿2303工作面冲击地压防控技术研究. 煤炭与化工. 2023(09): 12-15 . 百度学术
    59. 王书文,智宝岩,杜涛涛,杨光宇,陆闯,夏永学. 厚硬顶板潜在矿震风险地面压裂预控技术. 煤炭科学技术. 2023(11): 1-11 . 本站查看

    其他类型引用(28)

图(8)  /  表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  5
  • PDF下载量:  12
  • 被引次数: 87
出版历程
  • 收稿日期:  2023-02-05
  • 网络出版日期:  2024-03-04
  • 刊出日期:  2023-12-29

目录

    WANG Wen

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回