高级检索

国能神东煤炭集团重大科技创新成果与实践

罗文

罗 文. 国能神东煤炭集团重大科技创新成果与实践[J]. 煤炭科学技术,2023,51(2):1−43. DOI: 10.13199/j.cnki.cst.2023-0008
引用本文: 罗 文. 国能神东煤炭集团重大科技创新成果与实践[J]. 煤炭科学技术,2023,51(2):1−43. DOI: 10.13199/j.cnki.cst.2023-0008
LUO Wen. Major scientific and technological innovation achievements and practices of CHN Shendong Coal Group[J]. Coal Science and Technology,2023,51(2):1−43. DOI: 10.13199/j.cnki.cst.2023-0008
Citation: LUO Wen. Major scientific and technological innovation achievements and practices of CHN Shendong Coal Group[J]. Coal Science and Technology,2023,51(2):1−43. DOI: 10.13199/j.cnki.cst.2023-0008

国能神东煤炭集团重大科技创新成果与实践

详细信息
    作者简介:

    罗文: (1968—),男,内蒙古凉城人,教授级高级工程师,硕士。E-mail: 1033243328@qq.com

  • 中图分类号: TD82-9

Major scientific and technological innovation achievements and practices of CHN Shendong Coal Group

  • 摘要:

    国能神东煤炭集团有限责任公司(以下简称“神东公司”)是国家能源集团的骨干煤炭生产企业,在煤炭安全高效开采、国产高端装备制造、智能化矿井建设、安全管理模式创新与绿色低碳创新等方面取得了显著成就,引领了全国煤炭企业的科技创新,在综采采高、矿井人均工效、矿井长周期安全管理与亿吨矿区管控中心建设等方面创造了多个世界第一。系统介绍了神东公司在科技管理、创新平台、协同创新、人才队伍、知识产权、标准体系与科技成果等方面的进展,总结了神东公司创新驱动体系及螺旋加速上升的科技创新通道。在采掘技术创新与实践方面,梳理了一次采全高综采采高从6.3 m逐步提高到8.8 m的技术突破,介绍了浅埋坚硬特厚煤层上分层综采下分层综放的采煤工艺,梳理了薄煤层等高开采关键装备、技术及面临的技术问题,分析了短壁机械化全部垮落法的技术适应性及无煤柱开采方法的技术实践;介绍了快速智能掘进成套系统及掘锚一体化关键技术,提高了掘进效率,解决了“采掘失衡”的矛盾。在国产高端装备研发与应用方面,介绍了神东公司在世界首个8.8 m超大采高综采工作面装备配套方面取得的突破性成果,分析了国内首套纯水液压支架面临的技术难点与创新途径,解析了6 000 m可伸缩单点驱动带式输送机在整机降阻、张紧控制与智能变频驱动等技术方面的突破,总结了研发世界首套双百吨重载搬运车突破技术障碍的经验,列举了把新能源矿用电动车应用到井下所实现的技术创新。在智能化矿井建设方面,针对采煤工作面智能化面临智能割煤、跟机拉架方面的问题,总结了神东公司在采煤工作面智能化建设过程中实现的技术革新;梳理了智能化选煤厂“从无到有”的拓荒之旅;研究了我国首个国产煤矿井下操作系统——矿鸿的关键技术核心与推广应用价值;解析了我国首个亿吨矿区数字化集中管控平台建设使用的集成技术,介绍了13种井下智能机器人创新与实践。在安全管理技术与实践方面,创建了“135”工作法安全风险管控管理体系,实现了千万吨矿井超长的安全生产周期;搭建了神东公司矿压控制体系与矿压动态高效预警智能云平台,形成了神东矿区特有的矿压控制技术体系;介绍了水、火和瓦斯灾害防治技术体系,保障了神东公司安全管理体系的建设。在绿色生态建设方面,介绍了神东公司在煤炭绿色发展和技术创新中的成就,阐述了在开展生态矿井、绿色矿山与清洁煤炭方面的技术实践,在贯彻黄河流域生态保护和高质量发展重大国家战略方面,介绍了神东先行示范区。通过对神东公司科技创新体系和创新成果的总结,探讨了煤矿未来科技发展思路,明确了其在科技创新体系与重大科技攻关方面的发展方向。

    Abstract:

    CHN Shendong Coal Group Co.,Ltd (hereinafter referred to as “Shendong Company”) is the backbone coal production enterprise of the China Energy Group. It has made remarkable achievements in safe and efficient coal mining, domestic high-end equipment manufacturing, intelligent mine construction, safety management mode innovation and green ecological low-carbon, leading the scientific and technological innovation of the China coal enterprises, it has created many world firsts in the aspects of fully mechanized mining height, per capita work efficiency of the mine, long-term safety management of the mine and the construction of a hundred million ton mining area management and control center. This paper systematically introduces the progress of Shendong Company in science and technology management, innovation platform, collaborative innovation, talent team, intellectual property rights, standard system and scientific and technological achievements, and summarizes the innovation driving system of Shendong Company and the scientific and technological innovation channel of spiral acceleration. In terms of mining technology innovation and practice, this paper combs the technical breakthrough of Shendong Company in gradually increasing the mining height of full height fully mechanized mining from 6.3 m to 8.8 m, the mining technology of fully mechanized mining in the upper layer of shallow hard and extra thick coal seams and upper layer fully mechanized mining lower layer fully mechanized caving was introduced, the technical problems, key equipment and technologies faced by equal-height mining were sorted out, and the technical adaptability of short wall mechanized full caving method and the technical practice of non pillar mining method were analyzed; this paper introduces the complete set of fast intelligent tunneling system and the key technology of tunneling anchor integration, which improves the tunneling efficiency and solves the contradiction of “Imbalance in mining and excavation”. In terms of research, development and application of domestic high-end equipment, this paper introduces the breakthrough achievements made by Shendong Company in the equipment matching of the world's first 8.8 m super large fully-mechanized mining face, and analyzes the technical difficulties and innovation approaches faced by the first set of water hydraulic support in China, this paper analyzes the breakthroughs of 6 000 m retractable single point drive belt conveyor in the research of resistance reduction technology for the whole machine, tension control and intelligent frequency conversion drive technology, summarized the experience of developing the world's first double hundred ton heavy haul carrier to break through technical barriers, and enumerates the technical innovation achieved by applying new energy mining electric vehicles to the underground. In the aspect of intelligent mine construction, in view of the problems faced by intelligent coal cutting and machine following rack in the face of intelligent coal mining face, the technical innovation realized by Shendong Company in the process of intelligent coal mining face is summarized; sorted out the pioneering journey of intelligent coal preparation plant from scratch; for the first domestic coal mine operating system in China: Mine Harmory operating system, the key technology core and the value of popularization and application are analyzed; this paper analyzes the integrated technology used in the construction of the first 100 million ton mining area digital centralized management and control platform in China, and introduces the innovation and practice of 13 kinds of underground intelligent robots. In terms of safety management technology and practice, this paper has established the “135” work method safety risk management and control management system, which has realized the ultra long safety production cycle of ten million tons of coal mines; the mine pressure control system of Shendong Company and the intelligent cloud platform for dynamic and efficient early warning of mine pressure have been established, forming the unique mine pressure control technology system of Shendong Mining Area; and introduces the technical system of water, fire and gas disaster prevention, which ensures the construction of safety management system of Shendong Company.In the aspect of green ecological construction, this paper introduces the achievements of Shendong Company in the green development and technological innovation of coal, expounds the technical practice in the development of ecological mines, green mines and clean coal, and introduces the Shendong Pioneer Demonstration Area in the implementation of the major national strategy of ecological protection and high-quality development in the Yellow River Basin. By summarizing the scientific and technological innovation system and innovation achievements of Shendong Company, this paper probes into the thinking of the future scientific and technological development of coal mines, and clarifies the development direction of its scientific and technological innovation system and major scientific and technological breakthrough.

  • 图  1   神东公司科技创新驱动体系

    Figure  1.   Scientific and technological innovation driving system of Shendong Company

    图  2   神东公司科技创新组织架构

    Figure  2.   Organizational structure of scientific and technological innovation of Shendong Company

    图  3   神东公司科技创新工作室统计

    Figure  3.   Statistics of science and technology innovation studio of Shendong Company

    图  4   神东公司科技人员构成分布

    Figure  4.   Composition and distribution of scientific and technological personnel of Shendong Company

    图  5   采高3 m上覆岩层运动形态

    Figure  5.   Movement pattern of overlying rock layer with mining height of 3 m

    图  6   采高7 m上覆岩层运动形态

    Figure  6.   Movement pattern of overlying rock layer with mining height of 7 m

    图  7   采高变动对围岩运动参数的影响

    Mz—采高;Mz—直接顶高度;Hq1—直接顶单位静载荷;Bk2—基本顶动载系数;Bp2—基本顶运动强度;Bd—基本顶运动空间;Bs—基本顶运动速度;S1—支承压力峰值距煤壁距离;Sk—支承压力峰值系数,支承压力峰值与原始应力比值;Sx—支承压力影响范围;↑—提高;↓—降低

    Figure  7.   Influence of mining height change on surrounding rock motion parameters

    图  8   浅埋煤层工作面“切落体”结构

    Figure  8.   “Cutting block” in shallow coal seam working face

    图  9   “切落体”三种类型

    Figure  9.   Three types of “cutting block”

    图  10   活鸡兔井分层开采技术

    Figure  10.   Slicing mining technology in Huojitu Well

    图  11   等高式采煤机

    Figure  11.   Contour shearer

    图  12   工作面角度调节

    Figure  12.   Angle adjustment of working face

    图  13   块段式采煤法开采与通风示意

    Figure  13.   Block mining method schematic of mining and ventilation

    图  14   榆家梁矿52煤三盘区边角煤短壁回采工作面巷道布置

    Figure  14.   Roadway layout of corner coal short wall stoping face in third panel area of No. 52 coal in Yujialiang Mine

    图  15   柔模浇筑空间三维示意

    Figure  15.   Three dimensional schematic of flexible form pouring space

    图  16   沿空留巷“六位一体”技术体系

    Figure  16.   “Six in One” technical system for gob-side entry retaining

    图  17   ZQ5000/20.6/45单元支架及留设效果

    Figure  17.   ZQ5000/20.6/45 unit support and retention effect

    图  18   全断面煤巷高效掘进机

    Figure  18.   Full-section coal roadway-efficient roadheader

    图  19   全断面矩形快速掘进机

    Figure  19.   Full-section rectangular fast roadheader

    图  20   十臂锚杆钻机

    Figure  20.   Ten-arm anchor drill

    图  21   迈步式自移机尾位

    Figure  21.   Tail position of step-by-step self-moving machine

    图  22   掘进工作面一体化除尘系统布置

    Figure  22.   Integrated dedusting system in heading face

    图  23   快速掘进系统准备段巷道布置

    Figure  23.   Roadway layout in the preparation section of rapid tunneling system

    图  24   斜井双模式盾构机

    Figure  24.   Dual mode shield machine for inclined shaft machine

    图  25   8.8 m超大采高采煤机

    Figure  25.   8.8 m oversized shearer

    图  26   ø4 300 mm滚筒结构外观

    Figure  26.   ø4 300 mm drum structure appearance drawing

    图  27   ZY26000/40/88D型液压支架稳定性分析

    Figure  27.   Stability analysis of ZY26000/40/88D hydraulic support

    图  28   工作面智能化监测与控制系统操作界面

    Figure  28.   Working face intelligent monitoring and control system operation interface

    图  29   SGZ1388/3×1600型刮板输送机

    Figure  29.   SGZ1388/3×1600 scraper conveyor

    图  30   大容量蓄能压力站

    Figure  30.   Large capacity energy storage pressure station

    图  31   P2002M型自润滑聚氨酯

    Figure  31.   P2002M self lubricating polyurethane diagram

    图  32   6 000 m机头集中驱动可伸缩带式输送机

    Figure  32.   6 000 m head centralized drive retractable belt conveyor

    图  33   WC100Y型支架搬运车整车

    Figure  33.   WC100Y support carrier vehicle diagram

    图  34   WC100Y型支架搬运车U型复合集成车架

    Figure  34.   WC100Y support carrier U-shaped composite integrated frame

    图  35   WC100Y型支架搬运车转向系统布置

    Figure  35.   Steering system layout of WC100Y support carrier

    图  36   WXP100型蓄电池铲板搬运车

    Figure  36.   WXP100 battery shovel plate carrier

    图  37   铲板搬运车中车架仿真应力

    Figure  37.   Simulated stress nephogram of middle frame of shovel plate carrier

    图  38   神东公司智能化矿井建设架构

    Figure  38.   Architecture blueprint for intelligent mine construction of Shendong Company

    图  39   智能化采煤工作面技术体系

    Figure  39.   Technical system of intelligent coal mining face

    图  40   工作面三维可视化模型

    Figure  40.   3D visualization model of coal face

    图  41   采煤机记忆割煤示意

    Figure  41.   Schematic of shearer memory coal cutting

    图  42   跟机自动拉架示意

    Figure  42.   Schematic of automatic pulling hydraulic support with shearer

    图  43   视频拼接技术

    Figure  43.   Video splicing technology

    图  44   重介质分选过程

    Figure  44.   Heavy medium separation process

    图  45   矿鸿系统适配设备

    Figure  45.   Matching equipment of Mine Harmory OS

    图  46   亿吨矿区中央生产指挥中心

    Figure  46.   Central production command center of 100 million ton mining area

    图  47   矿区一张图管理系统

    Figure  47.   “One Map”management system in mining area

    图  48   综采工作面智能巡检机器人

    Figure  48.   Intelligent patrol robot for fully-mechanized mining face

    图  49   主运输巡检机器人

    Figure  49.   Main transportation inspection robot

    图  50   煤矿高效自动锚杆支护机器人

    Figure  50.   Efficient automatic bolt support robot for coal mine

    图  51   HPSZ2006智能自动喷浆机器人

    Figure  51.   HPSZ2006 intelligent automatic shotcrete robot

    图  52   智能轨道式巡检机器人

    Figure  52.   Intelligent rail type inspection robot

    图  53   水泵房智能轮式巡检机器人

    Figure  53.   Intelligent wheeled inspection robot for water pump house

    图  54   人工智能煤矸分选机器人

    Figure  54.   Artificial intelligence coal gangue sorting robot

    图  55   GZC1.5-500K 防爆型管路抓举机器人

    Figure  55.   GZC1.5-500K explosion-proof pipeline grab robot

    图  56   CMG 1-20TK 预埋孔钻进机器人

    Figure  56.   CMG 1-20TK embedded hole drilling robot

    图  57   KC-29/45全液压掏槽机器人

    Figure  57.   KC-29/45 full hydraulic cutting robot

    图  58   水仓清淤机器人

    Figure  58.   Silt cleaning robot for water sump

    图  59   危险气体巡检机器人

    Figure  59.   Dangerous gas inspection robot

    图  60   辅助搬运机器人

    Figure  60.   Auxiliary handling robot

    图  61   “135”工作法

    Figure  61.   “One Three Five” working method

    图  62   矿压控制措施

    Figure  62.   Mine pressure control measures

    图  63   定向长钻孔分段水力压裂示意

    Figure  63.   Directional long borehole segmented hydraulic fracturing diagram

    图  64   泵送柔模柱过空巷现场应用效果

    Figure  64.   Field application effect of flexible mold column on circular table through empty roadway

    图  65   “倒三角”结构相对回转运动致灾过程

    Figure  65.   Disaster process caused by relative rotation of “inverted triangle” structure

    图  66   生产数据仓库监控界面

    Figure  66.   Production data warehouse monitoring interface

    图  67   矿压大数据智能分析界面

    Figure  67.   Intelligent analysis interface of rock pressure big data

    图  68   内因致灾防治技术

    Figure  68.   Internal cause disaster prevention technology

    图  69   井上下联合注浆工艺示意

    Figure  69.   Schematic of shaft up and down combined grouting process

    图  70   煤矿分布式水库坝体组成

    Figure  70.   Composition of the dam body of distributed reservoirs in coal mines

    图  71   采空区注浆充填示意

    Figure  71.   Schematic of grouting filling in goaf area

    图  72   “山水林田湖草沙”神东示范基地

    Figure  72.   “Mountains, rivers, forests, farmlands, lakes, grasses and sand” Shendong demonstration base

    图  73   “绿水青山就是金山银山”神东实践创新基地

    Figure  73.   “Lucid waters and lush mountains are invaluable assets” Shendong practice innovation base

    图  74   光伏基地示意

    Figure  74.   Schematic of photovoltaic base

  • [1] 郝俊奇,郝熙春,贾建强. 全面定额量化管理改革实践:以神东煤炭集团公司为例[J]. 中国人力资源社会保障,2021(1):46−48. doi: 10.3969/j.issn.1674-9111.2021.01.021

    HAO Junqi,HAO Xichun,JIA Jianqiang. Comprehensive quota quantitative management reform practice: taking Shendong Coal Group Company as an example[J]. Chinese resources for social security,2021(1):46−48. doi: 10.3969/j.issn.1674-9111.2021.01.021

    [2] 袁 亮,杨 科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(1):16−24. doi: 10.13225/j.cnki.jccs.yg20.1966

    YUAN Liang,YANG Ke. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines[J]. Journal of China Coal Society,2021,46(1):16−24. doi: 10.13225/j.cnki.jccs.yg20.1966

    [3] 李 伟. 基于大数据分析对煤矿员工岗位价值的应用研究[J]. 陕西煤炭,2021,40(3):191−195. doi: 10.3969/j.issn.1671-749X.2021.03.048

    LI Wei. Research on the application of post value of coal mine employees based on big data analysis[J]. Shaanxi Coal,2021,40(3):191−195. doi: 10.3969/j.issn.1671-749X.2021.03.048

    [4] 孟 坚. 对神华战略的再思考、再认识[J]. 中国煤炭,2014,40(5):10−14. doi: 10.3969/j.issn.1006-530X.2014.05.002

    MENG Jian. Rethinking and re-understanding of Shenhua strategy[J]. China Coal,2014,40(5):10−14. doi: 10.3969/j.issn.1006-530X.2014.05.002

    [5] 高天强,王 宁. 大型煤炭企业标准化管理研究与实践[J]. 中国煤炭,2022,48(6):106−111. doi: 10.3969/j.issn.1006-530X.2022.06.019

    GAO Tianqiang,WANG Ning. Study and practice of standardization management in large-scale coal enterprise[J]. China Coal,2022,48(6):106−111. doi: 10.3969/j.issn.1006-530X.2022.06.019

    [6] 高 亮. 补连塔煤矿7m厚煤层开采取得的成果和推广意义[J]. 内蒙古煤炭经济,2013(2):46−49. doi: 10.3969/j.issn.1008-0155.2013.02.029

    GAO Liang. Achievements and popularization significance of 7 m thick coal seam mining in Bulianta Coal Mine[J]. Inner Mongolia Coal Economy,2013(2):46−49. doi: 10.3969/j.issn.1008-0155.2013.02.029

    [7] 翟德元,张子飞,罗 文. 神东矿区高产高效矿井的技术创新战略与发展模式[J]. 山东科技大学学报(自然科学版),2001,20(4):89−94. doi: 10.16452/j.cnki.sdkjzk.2001.04.026

    ZHAI Deyuan,ZHANG Zifei,LUO Wen. The strategy of technique pioneering and development pattern of high-output and high-efficiency mines by Shendong Coal Mining Area[J]. Journal of Shandong University of Science and Technology(Natural Science),2001,20(4):89−94. doi: 10.16452/j.cnki.sdkjzk.2001.04.026

    [8] 杨俊哲, 尹希文, 李正杰, 等. 浅埋煤层覆岩运移规律与围岩控制[M]. 北京: 科学出版社, 2019.
    [9] 代贵生,周海丰. 年产 1400万t大采高工作面关键技术研究[J]. 煤炭科学技术,2014,42(12):120−124. doi: 10.13199/j.cnki.cst.2014.12.031

    DAI Guisheng,ZHOU Haifeng. Research on key technologies of 14 million t/a high mining height working face[J]. Coal Science and Technology,2014,42(12):120−124. doi: 10.13199/j.cnki.cst.2014.12.031

    [10] 张子飞,杨 鹏,罗 文. 7 m大采高采煤机易维护全直齿摇臂设计研究[J]. 煤炭科学技术,2014,42(5):125−128.

    ZHANG Zifei,YANG Peng,LUO Wen. Design and research on easy maintenance full straight tooth rocker arm of 7m high mining height shearer[J]. Coal Science and Technology,2014,42(5):125−128.

    [11] 杨俊哲. 浅埋坚硬厚煤层预采顶分层综放技术研究[J]. 煤炭学报,2017,42(5):1108−1116. doi: 10.13225/j.cnki.jccs.2017.0319

    YANG Junzhe. Research on fully mechanized caving mining technology of pre mining top slicing in shallow hard coal seam[J]. Journal of China Coal Society,2017,42(5):1108−1116. doi: 10.13225/j.cnki.jccs.2017.0319

    [12] 侯 刚,王国法,张建安. 1.1 m坚硬薄煤层智能化开采关键技术及装备:以陕北侏罗纪煤田为例[J]. 煤炭科学技术,2022,50(3):224−231.

    HOU Gang,WANG Guofa,ZHANG Jian’an. Key technology and equipment of intelligent mining for 1.1 m hard and thin coal: Jurassic coalfield in Northern Shaanxi as an example[J]. Coal Science and Technology,2022,50(3):224−231.

    [13] 范志忠,裴印昌,刘天习. 1.0 m以下薄煤层智能化刨煤开采关键技术研究[J]. 煤炭科学技术,2022,50(3):39−45.

    FAN Zhizhong,PEI Yinchang,LIU Tianxi. Research on key technology of intelligent coal ploughing mining in thin coal seam below 1.0 m[J]. Coal Science and Technology,2022,50(3):39−45.

    [14] 罗 文,杨俊彩. 神东矿区薄煤层安全高效开采技术研究[J]. 煤炭科学技术,2020,48(3):68−74. doi: 10.13199/j.cnki.cst.2020.03.005

    LUO Wen,YANG Juncai. Research on safe and efficient mining technology of thin coal seam in Shendong mining area[J]. Coal Science and Technology,2020,48(3):68−74. doi: 10.13199/j.cnki.cst.2020.03.005

    [15] 张彦禄,王步康,张小峰. 我国连续采煤机短壁机械化开采技术发展40 a与展望[J]. 煤炭学报,2021,46(1):86−99.

    ZHANG Yanlu,WANG Bukang,ZHANG Xiaofeng. Forty years' development and future prospect on mechanized short-wall mining technology with continuous miner in China[J]. Journal of China Coal Society,2021,46(1):86−99.

    [16] 张彦禄,李志强,周茂普,等. EML340型连续采煤机及配套设备在煤矿中的应用[J]. 煤炭科学技术,2010,38(12):89−92.

    ZHANG Yanlu,LI Zhiqiang,ZHOU Maopu,et al. Application of EML340 continuous miner and auxiliary equipment in coal mine[J]. Coal Science and Technology,2010,38(12):89−92.

    [17] 马进功. 连续采煤机短壁机械化开采发展现状研究[J]. 煤炭科学技术,2020,48(9):180−188. doi: 10.13199/j.cnki.cst.2020.09.023

    MA Jingong. Research on development status of short-wall mechanized mining technology of continuous miner[J]. Coal Science and Technology,2020,48(9):180−188. doi: 10.13199/j.cnki.cst.2020.09.023

    [18] 陈外信,田银素,王志峰,等. 厚煤层柔模快速沿空留巷工艺在神东矿区的应用[J]. 煤炭工程,2016,48(12):1−4.

    CHEN Waixin,TIAN Yinsu,WANG Zhifeng,et al. Application of thick coal seam flexible mold rapid gob side entry retaining technology in Shendong mining area[J]. Coal Engineering,2016,48(12):1−4.

    [19] 杨汉宏,薛二龙,罗 文,等. 神华集团切顶卸压自动成巷无煤柱开采技术的应用[J]. 煤炭科技,2015(3):1−3. doi: 10.3969/j.issn.1008-3731.2015.03.001

    YANG Hanhong,XUE Erlong,LUO Wen,et al. Application of the roof cutting and pressure relief automatic roadway forming non pillar mining technology in Shenhua Group[J]. Coal Science & Technology Magazine,2015(3):1−3. doi: 10.3969/j.issn.1008-3731.2015.03.001

    [20] 薛二龙,马忠辉,罗 文,等. 浅埋复合顶板沿空切顶卸压自动成巷矿压规律研究[J]. 煤炭科学技术,2017,45(S1):34−38.

    XUE Erlong,MA Zhonghui,LUO Wen,et al. Study on mine pressure behavior of gob-side entry automatically by roof cutting-pressure relief with shallow depth and compound roof[J]. Coal Science and Technology,2017,45(S1):34−38.

    [21] 罗 文,杨俊彩. 神东矿区快速掘进关键技术研究与应用[J]. 智能矿山,2021,2(2):7−14.

    LUO Wen,YANG Juncai. Research and application of key technologies of rapid tunneling in Shendong Mining area[J]. Journal of Intelligent Mine,2021,2(2):7−14.

    [22] 罗 文. 快速掘进系统在大柳塔煤矿的应用[J]. 神华科技,2013,11(5):23−26,31.

    LUO Wen. The application of quick tunneling system in Daliuta Coal Mine[J]. Shenhua Science and Technology,2013,11(5):23−26,31.

    [23] 罗 文,杨俊彩. 神东矿区快速掘进装备与技术研究现状及展望[J]. 工矿自动化,2021,47(S2):32−38.

    LUO Wen,YANG Juncai. Research status and prospect of rapid tunneling equipment and technology in Shendong Mining Area[J]. Industrial and Mining Automation,2021,47(S2):32−38.

    [24] 罗 文,杨新林,黄 东,等. 光纤陀螺仪在大柳塔快掘系统中的应用[J]. 煤矿安全,2017,48(S1):56−58,62. doi: 10.13347/j.cnki.mkaq.2017.S1.013

    LUO Wen,YANG Xinlin,HUANG Dong,et al. Application of fiber-optic gyroscope in fast driving system in Daliuta Mine[J]. Safety in Coal Mines,2017,48(S1):56−58,62. doi: 10.13347/j.cnki.mkaq.2017.S1.013

    [25] 罗 文. 大柳塔煤矿井下粉尘治理技术[J]. 煤炭科学技术,2014,42(1):134−137. doi: 10.13199/j.cnki.cst.2014.01.031

    LUO Wen. Underground dust control technology in Daliuta Mine[J]. Coal Science and Technology,2014,42(1):134−137. doi: 10.13199/j.cnki.cst.2014.01.031

    [26] 黄 东,杨凌辉,罗 文,等. 基于视觉/惯导的掘进机实时位姿测量方法研究[J]. 激光技术,2017,41(1):19−23. doi: 10.7510/jgjs.issn.1001-3806.2017.01.005

    HUANG Dong,YANG Linghui,LUO Wen,et al. Study on measurement method of realtime position and attitude of roadheader based on vision/inertial navigation system[J]. Laser Technology,2017,41(1):19−23. doi: 10.7510/jgjs.issn.1001-3806.2017.01.005

    [27] 丁正全. 全断面隧道掘进机在矿井工程施工中的应用[J]. 施工技术,2016,45(22):49−51.

    DING Zhengquan. Application of the full face tunnel boring machine in construction of coal mine project[J]. Construction Technology,2016,45(22):49−51.

    [28] 原长锁,贠瑞光. 8.8 m特厚煤层采煤机改造设计与受力分析[J]. 煤炭工程,2020,52(6):6−9.

    YUAN Changsuo,YUN Ruiguang. Reformation design and stress analysis of the shearer in 8.8 m extra-thick coal seam[J]. Coal Engineering,2020,52(6):6−9.

    [29] 王存飞,田鹏涛. 超大采高采煤机整机刚性结构研究与探讨[J]. 煤炭科学技术,2019,47(S2):5−8.

    WANG Cunfei,TIAN Pengtao. Research and discussion on rigid structure of shearer with super high mining height[J]. Coal Science and Technology,2019,47(S2):5−8.

    [30] 许联航,王 强,边彦胜,等. 神东上湾煤矿8.8 m工作面液压支架适应性分析[J]. 现代矿业,2022,38(3):185−187.

    XU Lianhang,WANG Qiang,BIAN Yansheng,et al. Adaptability analysis of hydraulic support in 8.8 m working face of Shendong Shangwan Coal Mine[J]. Modern Mining,2022,38(3):185−187.

    [31] 杨宝刚. 变频一体机在8.8 m超大采高运输系统中的研究与应用[J]. 煤炭科学技术,2019,47(S2):74−78.

    YANG Baogang. Research and application of frequency conversion integrated machine in transportation system for 8.8 m super-large mining[J]. Coal Science and Technology,2019,47(S2):74−78.

    [32] 姬 智,王旭峰,郝 军,等. 上湾煤矿特大采高工作面开采显著特征研究[J]. 中国矿业,2020,29(12):140−146.

    JI Zhi,WANG Xufeng,HAO Jun,et al. Study on the remarkable characteristics of mining in super high mining height working face of Shangwan coal mine[J]. China Mining Magazine,2020,29(12):140−146.

    [33] 黄 飞. WC100Y支架搬运车液压独立悬架静动态特性分析[J]. 煤炭工程,2020,52(6):26−32.

    HUANG Fei. Static and dynamic characteristics of hydraulic independent suspension of WC100Y support carrier[J]. Coal Engineering,2020,52(6):26−32.

    [34] 黄 飞,杨 霞. 百吨级铲板式搬运车复杂工况下结构强度仿真分析[J]. 煤炭科学技术,2019,47(S2):97−101.

    HUANG Fei,YANG Xia. Simulation analysis of structural strength of hundred ton class spade carrier under complex working conditions[J]. Coal Science and Technology,2019,47(S2):97−101.

    [35] 赵海兴. 煤矿铰接式双桥驱动物料运输车辆驾驶操纵设计[J]. 煤炭工程,2022,54(7):170−175.

    ZHAO Haixing. Driving control design of articulated double axle drive material transport vehicle in coal mine[J]. Coal Engineering,2022,54(7):170−175.

    [36] 杨俊哲,陈苏社,王 义,等. 神东矿区绿色开采技术[J]. 煤炭科学技术,2013,41(9):34−39. doi: 10.13199/j.cnki.cst.2013.09.011

    YANG Junzhe,CHEN Sushe,WANG Yi,et al. Green Mining Technology of Shendong Mining Area[J]. Coal Science and Technology,2013,41(9):34−39. doi: 10.13199/j.cnki.cst.2013.09.011

    [37] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.13199/j.cnki.cst.2022.01.001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.13199/j.cnki.cst.2022.01.001

    [38] 杨俊哲,罗 文,杨俊彩. 神东矿区煤层智能开采技术探索与实践[J]. 中国煤炭,2019,45(6):18−25. doi: 10.19880/j.cnki.ccm.2019.06.004

    YANG Junzhe,LUO Wen,YANG Juncai. Exploration and practice of intelligent mining technology for coal seam in Shendong mining area[J]. China Coal,2019,45(6):18−25. doi: 10.19880/j.cnki.ccm.2019.06.004

    [39] 崔亚仲,白明亮,张 磊,等. 国能神东煤炭集团智能化选煤厂关键技术研究与应用[J]. 智能矿山,2022,3(6):33−42.

    CUI Yazhong,BAI Mingliang,ZHANG Lei,et al. Research and application of key technologies in intelligent coal preparation plant of Guoneng Shendong Coal Group[J]. Journal of Intelligent Mine,2022,3(6):33−42.

    [40] 樊强利. 煤炭行业数据资源开发利用能力提升策略研究[J]. 煤炭工程,2021,53(8):194−198.

    FAN Qiangli. Strategy for improving the capacity of resource exploitation and utilization in coal industry[J]. Coal Engineering,2021,53(8):194−198.

    [41] 王昌昌. 以“五零”保“双零”构建矿井安全长周期发展新格局[J]. 中国煤炭工业,2022(5):58−59. doi: 10.3969/j.issn.1673-9612.2022.05.023

    WANG Changchang. Construct a new pattern of long-term development of mine safety with “five zero” and “two zero”[J]. China Coal Industry,2022(5):58−59. doi: 10.3969/j.issn.1673-9612.2022.05.023

    [42] 马志刚. 实施“三位一体”管理模式 保障矿井安全高效发展[J]. 中国煤炭工业,2022(4):64−65.

    MA Zhigang. Implement the “trinity” management mode to ensure the safe and efficient development of coal mines[J]. China Coal Industry,2022(4):64−65.

    [43] 祝大焦,刘怀莲,史永辉. 强化安全质量标准化创建 促进矿井安全高效发展[J]. 中国煤炭工业,2022(6):56−57. doi: 10.3969/j.issn.1673-9612.2022.06.020

    ZHU Dajiao,LIU Huailian,SHI Yonghui. Strengthen the establishment of safety quality standardization and promote the development of mine safety and efficiency[J]. China Coal Industry,2022(6):56−57. doi: 10.3969/j.issn.1673-9612.2022.06.020

    [44] 杨 真,郭瑞瑞,杨永亮. 浅埋深综放工作面矿压显现规律及控制研究[J]. 工矿自动化,2020,46(9):44−50. doi: 10.13272/j.issn.1671-251x.2020060003

    YANG Zhen,GUO Ruirui,YANG Yongliang. Research on behaviour law and control of mine pressure on fully mechanized top coal caving mining face with shallow burial depth[J]. Industry and Mine Automation,2020,46(9):44−50. doi: 10.13272/j.issn.1671-251x.2020060003

    [45] 苗 涛,宋元喜. 补连塔煤矿22409综采工作面低氧呈现规律、原因分析及防治措施[J]. 煤炭科学技术,2021,49(S2):25−29.

    MIAO Tao,SONG Yuanxi. Regularity of low oxygen in 22409 fully-mechanized mining face of Bulianta Coal Mine, analysis of causes and preventive measures[J]. Coal Science and Technology,2021,49(S2):25−29.

    [46] 王想君,陈登红,华心祝,等. 神东矿区深部多次采动巷道稳定性影响规律与协调控制研究[J]. 煤炭工程,2021,53(7):48−54.

    ​ WANG Xiangjun,CHEN Denghong,HUA Xinzhu,et al. Influence law and coordinated control of the stability of multiple mining roadways in the deep part of Shendong mining area[J]. Coal Engineering,2021,53(7):48−54.

    [47] 罗 文,杨俊彩,高振宇. 强矿压矿井定向长孔分段压裂技术研究及应用[J]. 煤炭科学技术,2018,46(11):43−49. doi: 10.13199/j.cnki.cst.2018.11.007

    LUO Wen,YANG Juncai,GAO Zhenyu. Research and application of directional long-borehole staged hydraulic fracturing technology for strong rock pressure in mine[J]. Coal Science and Technology,2018,46(11):43−49. doi: 10.13199/j.cnki.cst.2018.11.007

    [48] 罗 文. 乌兰木伦煤矿空巷围岩破坏特征分析及稳定性控制[J]. 煤炭技术,2022,41(2):43−47.

    LUO Wen. Failure characteristics analysis and stability control of surrounding rock in empty roadway of Wulanmulun Coal Mine[J]. Coal Technology,2022,41(2):43−47.

    [49] 罗 文. 浅埋大采高综采工作面末采压架冒顶处理技术[J]. 煤炭科学技术,2013,41(9):122−125,142. doi: 10.13199/j.cnki.cst.2013.09.028

    LUO Wen. Handling technology of hydraulic powered support jammed and roof fall during terminal mining of fully-mechanized high cutting coal face with shallow seam[J]. Coal Science and Technology,2013,41(9):122−125,142. doi: 10.13199/j.cnki.cst.2013.09.028

    [50] 关万里. 神东矿区采空区遗煤自然发火规律研究[J]. 煤炭科学技术,2015,43(S2):71−75.

    GUAN Wanli. Research on residual coal spontaneous combustion law for mine goaf in Shendong Mining Field[J]. Coal Science and Technology,2015,43(S2):71−75.

    [51] 田 臣,李 斌. 神东矿区特大采高超长走向多煤层开采内因火灾预防技术[J]. 煤炭科学技术,2021,49(S2):183−189.

    TIAN Chen,LI Bin. Mining in multiple coal seams with super large mining height and super long strike in Shendong Mining Area internal fire prevention technology[J]. Coal Science and Technology,2021,49(S2):183−189.

    [52] 刘忠全,陈殿赋,孙炳兴,等. 高瓦斯矿井超大区域瓦斯治理技术[J]. 煤炭科学技术,2021,49(5):120−126. doi: 10.13199/j.cnki.cst.2021.05.015

    LIU Zhongquan,CHEN Dianbin,SUN Bingxing,et al. Gas control technology in super large area of high gas mine[J]. Coal Science and Technology,2021,49(5):120−126. doi: 10.13199/j.cnki.cst.2021.05.015

    [53] 师修昌. 煤矿地下水库研究进展与展望[J]. 煤炭科学技术,2022,50(10):216−225.

    SHI Xiuchang. Research progress and prospect of underground mines in coal mines[J]. Coal Science and Technology,2022,50(10):216−225.

    [54] 章丽萍,吴二勇,姚瑞涵,等. 高效除氟药剂对神东矿区含氟矿井水的处理研究[J]. 干旱区资源与环境,2022,36(2):84−90.

    ZHANG Liping,WU Eryong,YAO Ruihan,et al. Treatment of fluoride-containing mine water from Shendong Coal Mine with high efficiency defluoridation agent[J]. Journal of Arid Land Resources and Environment,2022,36(2):84−90.

    [55] 智国军,刘 润,杨瑞刚,等. 煤矿地下水库人工坝体嵌入煤柱/体的构筑参数优化研究[J]. 煤炭技术,2022,41(2):18−22. doi: 10.13301/j.cnki.ct.2022.02.005

    ZHI Guojun,LIU Run,YANG Ruigang,et al. research on optimization of cutting parameters for structuring artificial dam around underground reservoir in coal mine[J]. Coal Technology,2022,41(2):18−22. doi: 10.13301/j.cnki.ct.2022.02.005

    [56] 牛瑞芳. 神东矿区井下无岩巷布置与矸石处理技术[J]. 陕西煤炭,2008(5):83−84. doi: 10.3969/j.issn.1671-749X.2008.05.038

    NIU Ruifang. Layout of underground rock-free roadway and gangue treatment technology in Shendong mining area[J]. Shaanxi Coal,2008(5):83−84. doi: 10.3969/j.issn.1671-749X.2008.05.038

    [57] 郭洋楠,李能考,何瑞敏. 神东矿区煤矸石综合利用研究[J]. 煤炭科学技术,2014,42(6):144−147. doi: 10.13199/j.cnki.cst.2014.06.031

    GUO Yangnan,LI Nengkao,HE Ruimin. Study on comprehensive utilization of coal refuse in Shendong Mining Area[J]. Coal Science and Technology,2014,42(6):144−147. doi: 10.13199/j.cnki.cst.2014.06.031

    [58] 程 鹏. 高效煤粉锅炉替代链条炉改造的燃烧效果[J]. 工业炉,2021,43(3):1−5. doi: 10.3969/j.issn.1001-6988.2021.03.001

    CHEN Peng. Combustion effect of high-efficiency pulverized coal boiler replacing chain furnace[J]. Industrial Furnace,2021,43(3):1−5. doi: 10.3969/j.issn.1001-6988.2021.03.001

    [59] 王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1−27. doi: 10.13199/j.cnki.cst.2020.07.001

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1−27. doi: 10.13199/j.cnki.cst.2020.07.001

    [60] 郝晓丽. 企业成本与薪酬挂钩考核体系的探索与实践:以神东煤炭集团公司为例[J]. 煤炭经济研究,2018,38(3):72−79. doi: 10.13202/j.cnki.cer.2018.03.012

    HAO Xiaoli. Discovery and practices on enterprise cost and salary linked assessment system: based on Shendong Coal Group Company as case[J]. Coal Economic Research,2018,38(3):72−79. doi: 10.13202/j.cnki.cer.2018.03.012

  • 期刊类型引用(38)

    1. 袁明生, 池振波. 智能化综采工作面煤炭开采的自动化控制技术研究. 中国高新科技. 2025(12) 百度学术
    2. 高登云, 王进龙, 许欣. “矿鸿”系统在智能煤矿中的关键技术研究. 工矿自动化. 2025(S1) 百度学术
    3. 司俊鸿, 于跃洁, 李林, 范若婷. 巷道分岔角和障碍物对矿工疏散效率的影响. 中国安全科学学报. 2025(06) 百度学术
    4. 王福海. 煤矿综采工作面纯水液压技术装备研究与应用. 煤矿机械. 2025(02): 114-118 . 百度学术
    5. 范宝冬,马开德,崔卫秀,李致远. 采煤工作面刮板输送机智能控制系统研究. 工矿自动化. 2025(01): 52-60 . 百度学术
    6. 乔建伟. 多煤层开采残余煤柱—围岩联动破坏失稳灾害风险监测. 山东煤炭科技. 2025(01): 131-135 . 百度学术
    7. 韩光明,车坚女,郭龙,韩玉林,王继鹏. 基于自然语言处理的企业科技成果管理平台研究. 天然气与石油. 2025(01): 43-50 . 百度学术
    8. 郭昆明. 矿用一体化智能钻孔液综合处理系统优化设计及现场实践. 矿山机械. 2025(03): 6-11 . 百度学术
    9. 赵继云,曹超,王浩,泮延召,黄笛,韩静,苗运江. 液压支架大功率供液系统的现状与智能化发展趋势. 煤炭学报. 2025(01): 676-693 . 百度学术
    10. 高登彦,任文清. 煤矿智能连续掘进关键技术研究与应用. 陕西煤炭. 2025(04): 125-130+138 . 百度学术
    11. 程坤,张志清,洪毅,王琢,樊金璐. 新时代煤炭企业“五小”技术创新方向和主要任务. 中国煤炭. 2025(02): 113-120 . 百度学术
    12. 王海兵,苏越,刘忠全. 国家能源集团煤矿重大灾害防治多维度管控模式研究. 煤炭工程. 2025(02): 10-18 . 百度学术
    13. 蔺春乐,李春玉,叶健,陈荣明,柳国录,吴耀. 薄煤层一体移动式乳化液泵站的研制与应用. 煤矿机械. 2025(06): 164-167 . 百度学术
    14. 王广. 国内外大功率大采高采煤机发展现状及趋势. 煤炭技术. 2025(06): 225-228 . 百度学术
    15. 程利兴,王锐,张镇,李增林,任建超,汪占领,贾金河. 超大断面巷道支护关键技术及采动应力演化规律. 煤炭学报. 2025(04): 1979-1992 . 百度学术
    16. 郤云鹏. 薄煤层采煤机调高滑靴组件的设计及分析. 煤矿机械. 2024(02): 5-7 . 百度学术
    17. 李子健,贾丽敏,韩鹏彪,梁小凯,田燕,李昕悦,王蕾. 热处理工艺对40CrNiMoA合金组织及力学性能的影响. 河北科技大学学报. 2024(01): 67-73 . 百度学术
    18. 罗文,毛爱菊,杨俊彩,范润喜,彭鹏. 基于物质-场分析的可拆卸矿用锚具的优化设计研究. 煤炭工程. 2024(01): 127-133 . 百度学术
    19. 陈浮,华子宜,郭维红,朱燕峰,杨永均,马静. 美丽中国视域下矿山生态修复:逻辑演进、科学内涵和行动方略. 化工矿物与加工. 2024(02): 1-11 . 百度学术
    20. 贺海涛,宋德军,赵海兴. 煤矿辅助运输防爆车辆电动化和数智化的应用研究. 煤炭工程. 2024(02): 219-224 . 百度学术
    21. 吴晓春. 煤矿智能识别监测预警平台研究及应用. 中国煤炭. 2024(03): 97-102 . 百度学术
    22. 赵海兴. 神东矿区煤矿掘进工艺及装备智能化技术研究. 煤炭工程. 2024(03): 10-14 . 百度学术
    23. 张志强,阮柳谭. 薄煤层工作面过冲刷带技术优选及应用. 能源与节能. 2024(05): 252-255 . 百度学术
    24. 宋国利,赵云飞,曹宁宁. 薄煤层综采工作面智能化关键技术与应用. 煤炭工程. 2024(05): 84-88 . 百度学术
    25. 梅勇. 紫金煤层采空区自燃“三带”分布规律研究. 煤矿现代化. 2024(04): 72-76 . 百度学术
    26. 王磊,封新海,丁雨,张浩. 采煤机搬运车制动系统同步性优化设计. 机床与液压. 2024(14): 113-120 . 百度学术
    27. 李勇恒,刘航,胡言章,张浩. 采煤机搬运车悬挂系统智能控制与调平策略研究. 机床与液压. 2024(15): 95-101 . 百度学术
    28. 罗文,余伊河,王文. 神东矿区综采工作面过同层位空巷强矿压显现机理及控制方法. 煤炭学报. 2024(08): 3335-3352 . 百度学术
    29. 李新. 煤矿智能管控平台的设计及应用. 中国煤炭. 2024(S1): 48-52 . 百度学术
    30. 赵冰,冯志忠. 基于新质生产力下神东矿区高质量发展路径探索. 中国煤炭. 2024(S1): 428-432 . 百度学术
    31. 施长玉,王皓鹏. 低阶动力煤干湿联合分选系统应用及效果分析. 煤炭加工与综合利用. 2024(12): 20-25+31 . 百度学术
    32. 朱长军,杨东,齐波,万少博,焦军武,周雅楠,杨永涛,孙超,王清科. 采煤机智能检测控制系统设计. 煤矿机电. 2024(06): 59-62+67 . 百度学术
    33. 高平. 智能巷道素描图同步绘制系统设计与应用. 煤炭工程. 2024(S1): 1-6 . 百度学术
    34. 周爱平,辛德林,谢松岩,董俊亮,陈团团,陈虎. 新街台格庙矿区高质量发展规划评价研究. 中国煤炭. 2023(07): 31-37 . 百度学术
    35. 朱卫兵,王晓振,谢建林,赵波智,宁杉,许家林. 矿山采动覆岩内部岩移原位监测技术进展及应用. 工矿自动化. 2023(09): 1-12 . 百度学术
    36. 李文强,杨建彬,马景年,刘瑞鹏,李佳慧. 浅埋近距离煤层工作面过遗留煤柱压架机理及防治措施研究. 中国煤炭. 2023(S2): 194-201 . 百度学术
    37. 黄河. 选煤厂安全管理智能化建设路径. 自动化应用. 2023(S2): 215-217 . 百度学术
    38. 程宏志. 我国选煤工业和技术的发展. 选煤技术. 2023(06): 1-12 . 百度学术

    其他类型引用(10)

图(74)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  130
  • PDF下载量:  152
  • 被引次数: 48
出版历程
  • 收稿日期:  2023-01-02
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-03-19

目录

    LUO Wen, 1033243328@qq.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回