高级检索

基于分形特征的煤泥滤饼孔渗关系模型研究

冯泽宇, 董宪姝, 陈茹霞

冯泽宇,董宪姝,陈茹霞. 基于分形特征的煤泥滤饼孔渗关系模型研究[J]. 煤炭科学技术,2023,51(10):312−322. DOI: 10.13199/j.cnki.cst.2022-2207
引用本文: 冯泽宇,董宪姝,陈茹霞. 基于分形特征的煤泥滤饼孔渗关系模型研究[J]. 煤炭科学技术,2023,51(10):312−322. DOI: 10.13199/j.cnki.cst.2022-2207
FENG Zeyu,DONG Xianshu,CHEN Ruxia. The relationship between permeability and pore structure of coal slime filter cake based on fractal characteristics[J]. Coal Science and Technology,2023,51(10):312−322. DOI: 10.13199/j.cnki.cst.2022-2207
Citation: FENG Zeyu,DONG Xianshu,CHEN Ruxia. The relationship between permeability and pore structure of coal slime filter cake based on fractal characteristics[J]. Coal Science and Technology,2023,51(10):312−322. DOI: 10.13199/j.cnki.cst.2022-2207

基于分形特征的煤泥滤饼孔渗关系模型研究

基金项目: 

国家自然科学基金资助项目(51820105006);山西省基础研究计划(自由探索类)青年资助项目(202103021223081,202203021212198)

详细信息
    作者简介:

    冯泽宇: (1991—),男,山西繁峙人,讲师,博士。E-mail:feng18636976878@163.com

    通讯作者:

    董宪姝: (1964—),女,辽宁葫芦岛人,教授,博士生导师。E-mail:dxshu520@163.com

  • 中图分类号: TD94

The relationship between permeability and pore structure of coal slime filter cake based on fractal characteristics

Funds: 

National Natural Science Foundation of China(51820105006); Youth Funding Project of Shanxi Basic Research Program (Free Exploration Category) (202103021223081202203021212198)

  • 摘要:

    建立滤饼复杂微观孔隙结构特征与宏观渗流行为的相关关系是解决煤泥脱水困难的重要基础。为了真实、精确、直观地表征滤饼孔隙结构特征并建立其孔−渗关系模型,选取煤泥复杂组分中的精煤、石英、高岭石和蒙脱石4种主要矿物为研究对象,分别对其进行加压过滤试验并对其滤饼样品进行CT扫描成像,构建三维数字滤饼并提取孔隙网络模型,最终实现了滤饼孔隙结构的三维显示和定量表征,深入对比分析了经典KC方程和双重分形渗透率模型在滤饼渗透率计算方面的局限性,基于分形理论、Hagen-Poiseulle定律和Darcy定律,结合低场核磁共振技术引入束缚水饱和度和孔隙形状分形维数,对现有分形渗透率模型进行修正,建立了滤饼微观渗透率预测模型,结果表明:煤泥滤饼中矿物成分非常复杂,各个矿物所形成的滤饼具有明显的特征差异,精煤和石英脱水效果最佳,精煤滤饼的孔径分布以大孔为主,但内部存在一定量的孤立小孔,连通性一般,孔隙迂曲度最低,石英滤饼孔隙率最大,连通性最高,但迂曲度较大;蒙脱石和高岭石所形成的滤饼,孔隙数量极少,而且多由10 μm以下的细孔所组成,迂曲度较大,连通性也较差,脱水十分困难;煤泥滤饼以狭窄条状分布为主,且孔径较小,总体孔隙率较低,连通性差,迂曲度高,脱水困难。滤饼微观渗透率预测模型对石英和精煤滤饼渗透率预测精度高,相对误差分别为1.34%和1.15%,对于复杂组分的煤泥滤饼以及高岭石滤饼,其渗透率预测误差能够控制在5%之内,而且蒙脱石滤饼渗透率的计算误差也可降低至13.42%。

    Abstract:

    Establishing the correlation between the complex microscopic pore structure characteristics of the filter cake and the macroscopic seepage behavior is an important basis for solving the difficulty of coal slime dewatering. In order to characterize the pore structure of the filter cake accurately, four main minerals in the coal slime such as clean coal, quartz, kaolinite and montmorillonite were used as the research objects. The samples were scanned and imaged by CT, a 3D digital filter cake was constructed and a pore network model was extracted. Finally, the 3D display and quantitative characterization of the pore structure of the filter cake was realized. The classical K-C equation and the double fractal permeability model were deeply compared and analyzed in the filter cake permeability calculation. Based on fractal theory, Hagen-Poiseulle law and Darcy's law, combined with low-field nuclear magnetic resonance technology, bound water saturation and pore shape fractal dimension were introduced, and the existing fractal permeability model was revised to establish a filter cake microstructure. The permeability prediction model, the results show that the mineral composition in the slime filter cake is very complex, the filter cake formed by each mineral has obvious characteristic differences, the dewatering effect of clean coal and quartz is the best, and the pore size distribution of the clean coal filter cake is in the order of large pores. Mainly, but there are a certain amount of isolated pores inside, the connectivity is average, the pore tortuosity is the lowest, the porosity of the quartz filter cake is the largest, the connectivity is the highest, but the tortuosity is large. The filter cake formed by montmorillonite and kaolinite, the number of their pores is very small, and most of them are composed of pores below 10 μm, with large tortuosity, poor connectivity, which cause the poor dewatering performance. The filter cake of coal slime is mainly distributed in narrow strips, and the pore size is small. The overall porosity is low, the connectivity is poor, the tortuosity is high, and dehydration is difficult. The filter cake micro-permeability prediction model has high prediction accuracy for the permeability of quartz and clean coal filter cake, with relative errors of 1.34% and 1.15%, respectively. For the complex composition of slime filter cake and kaolinite filter cake, its permeability prediction error can be controlled within 5%, and the calculation error of the permeability of the montmorillonite filter cake can also be reduced to 13.42%.

  • 图  1   煤泥中矿物质的XRD分析

    Figure  1.   XRD analysis of minerals in coal slime

    图  2   不同矿物的粒度分布

    Figure  2.   Particle size distribution of different minerals

    图  3   加压过滤装置

    Figure  3.   A schematic of the filtration experimental setup

    图  4   nanoVoxel-4000系列X射线三维显微镜

    Figure  4.   NanoVoxel-4000 series X-ray 3D microscope

    图  5   不同矿物滤饼的原始二维切片

    Figure  5.   Original two-dimensional slice images of cakes with different mineral

    图  6   CT图像阈值分割结果

    Figure  6.   Threshold segmentation results of cakes

    图  7   滤饼孔隙空间三维重构结果

    Figure  7.   Three-dimensional reconstruction results of filter cake pore space

    图  8   滤饼孔隙空间分割结果

    Figure  8.   Filter cake pore space segmentation results

    图  9   样品孔径累计分布

    Figure  9.   Cumulative distribution of sample pore size

    图  10   不同矿物滤饼的孔隙中轴线提取结果

    Figure  10.   Extraction results of pore central axis of cakes with different minerals

    图  11   不同矿物滤饼的孔隙迂曲度计算结果

    Figure  11.   Calculation results of pore tortuosity of cakes with different minerals

    图  12   实际多孔介质孔隙截面示意

    Figure  12.   Schematic diagram of pore section of porous media

    图  13   不同矿物滤饼的横向弛豫时间分布曲线

    Figure  13.   Transverse relaxation time distribution curve of different mineral filter cake

    图  14   包含束缚水的多孔介质孔隙空间模型

    Figure  14.   Pore space model of porous media containing bound water

    表  1   不同矿物的过滤性能分析结果

    Table  1   Statistic results of filtration performance

    样品滤饼水分/
    %
    滤饼比阻/
    (m·kg−1
    渗透率/
    (10-12·m2)
    平均过滤速度/
    (m·s−1
    蒙脱石67.734.96×10133.65×10−71.35×10−6
    高岭石39.672.17×10131.84×10−34.55×10−6
    石英17.489.80×1083.731.47×10−3
    精煤19.314.58×1081.747.81×10−4
    煤泥29.651.13×10100.258.27×10−5
    下载: 导出CSV

    表  2   孔隙连通性分析结果

    Table  2   Analysis results of pore connectivity

    样品实测孔隙率/%总孔隙率/%有效孔隙率/%孤立孔比例/%
    高岭石6.346.225.1117.81
    蒙脱石5.185.733.8932.09
    石英50.3351.1449.822.58
    精煤40.0641.1538.586.24
    煤泥16.9318.1816.529.13
    下载: 导出CSV

    表  3   不同渗透率模型预测结果对比

    Table  3   Comparison of prediction results of different permeability models

    样品渗透率实测值/
    (10−12·m2)
    KC方程
    (k=5)
    KC方程
    (k=3.36)
    双重分形模型
    渗透率/(10−12·m2)
    蒙脱石3.65×10−78.09×10−81.20×10−78.15×10−7
    高岭石1.84×10−43.49×10−45.19×10−42.93×10−4
    石英3.732.884.283.14
    精煤1.740.851.271.91
    煤泥0.251.87×10−32.78×10−30.13
    下载: 导出CSV

    表  4   滤饼渗透率实测值与预测值的对比

    Table  4   Results of measured and calculated permeability

    样品水测渗透率/
    (10−12·m2)
    三重分形模型
    渗透率/(10−12·m2)
    相对误差/%
    蒙脱石3.65×10−75.12×10−740.27
    高岭石1.84×10−42.05×10−411.41
    石英3.733.812.14
    精煤1.741.782.30
    煤泥0.250.278.00
    下载: 导出CSV

    表  5   不同矿物滤饼的水分相态划分结果

    Table  5   Results of water phase state partition of different mineral filter cake

    样品水分分类峰面积峰比例/%
    精煤颗粒间束缚水1.9110.038
    自由水5039.23199.962
    高岭石颗粒内束缚水297.6187.604
    自由水3616.55292.396
    蒙脱石颗粒内束缚水1201.0195.396
    颗粒间束缚水45.3213.6
    自由水12.6421.004
    石英颗粒内束缚水86.1423.11
    自由水2683.29496.89
    煤泥颗粒内束缚水1113.26452.964
    自由水988.66547.036
    下载: 导出CSV

    表  6   滤饼渗透率实测值和模拟值的对比

    Table  6   Comparison of measured and simulated permeability of filter cake

    样品水测渗透率/
    (10−12 m2)
    Fts模型预测渗透率/
    (10−12 m2)
    预测相对误差/%
    蒙脱石3.65×10−73.16×10−713.42
    高岭石1.84×10−41.92×10−44.34
    石英3.733.781.34
    精煤1.741.761.15
    煤泥0.250.2423.59
    下载: 导出CSV
  • [1] 胡振琪,理源源,李根生,等. 碳中和目标下矿区土地复垦与生态修复的机遇与挑战[J]. 煤炭科学技术,2023,51(1):474−483.

    HU Zhenqi,LI Yuanyuan,LI Gensheng,et al. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target[J]. Coal Science and Technology,2023,51(1):474−483.

    [2] 周宏强,宗 召,毕传祥,等. 碳中和愿景下潘三选煤厂的发展方 向研究[J]. 煤炭加工与综合利用,2021(9):11−14.

    ZHOU Hongqiang,ZONG Zhao,BI Chuanxiang,et al. Research on the development direction of Pansan Coal Preparation Plant under the vision of carbon neutrality[J]. Coal Processing& Comprehensive utilization,2021(9):11−14.

    [3]

    KHAZAIE A,Mazarji M,Samali B,et al. A Review on coagulation/flocculation in dewatering of coal slurry[J]. Water (Basel),2022,14(6):918.

    [4] 张 辰,马晓敏,樊玉萍,等. OP/TX表面活性剂对煤泥加压脱水效果及滤饼结构的影响[J]. 煤炭科学技术,2023,51(6):275−285. doi: 10.13199/j.cnki.cst.2022-0327

    ZHANG Chen,MA Xiaomin,FAN Yuping,et al. Effect of OP/TX emulsifiers on the effectiveness of pressurised dewatering of coal slurry and the structure of the filter cake[J]. Coal Science and Technology,2023,51(6):275−285. doi: 10.13199/j.cnki.cst.2022-0327

    [5] 陈茹霞,樊玉萍,董宪姝,等. 复合助滤剂对煤泥表面改性及滤饼结构的影响[J]. 中国矿业大学学报,2021,50(6):1195−1203.

    CHEN Ruxia,FAN Yuping,DONG Xianshu,et al. The influence of composite filter aid on the surface modification and filter cake structure of coal slime[J]. Journal of China University of Mining & Technology,2021,50(6):1195−1203.

    [6]

    FENG Zeyu,FAN Yuping,DONG Xianshu,et al. Permeability estimation in filter cake based on X-ray microtomography and Lattice Boltzmann method[J]. Separation and Purification Technology,2021,275:119114. doi: 10.1016/j.seppur.2021.119114

    [7] 闵凡飞,任 豹,陈 军,等. 基于水化膜弱化促进煤泥脱水机理及试验研究[J]. 煤炭学报,2020,45(1):368−376.

    MIN Fanfei,REN Bao,CHEN Jun,et al. Mechanism and experimental study on promoting coal slime dewatering based on weakening of hydration layer[J]. Journal of China Coal Society,2020,45(1):368−376.

    [8] 刘国强,刘文礼,王东辉,等. 蒙脱石水化膨胀抑制对煤泥水过滤的影响[J]. 煤炭学报,2018,43(S2):553−559.

    LIU Guoqiang,LIU Wenli,WANG Donghui,et al. Effect of inhibiting montmorillonite hydration swelling on coal slurry filtration[J]. Journal of China Coal Society,2018,43(S2):553−559.

    [9]

    GUO Zhimin, LIU Jiandong, LEI Zhiwu, et al. Enhancement of flocculant-aided filtration performance of coal tailings under alternating low and high shear rates[J]. Powder Technology, 2022, 399.

    [10]

    EJTEMAEI M,RAMLI S,OSBORNE D,et al. Synergistic effects of surfactant-flocculant mixtures on ultrafine coal dewatering and their linkage with interfacial chemistry[J]. Journal of Cleaner Production,2019,232:953−965.

    [11] 石常省,谢广元,张悦秋. 细粒煤压滤滤饼的微观结构分析[J]. 中国矿业大学学报,2006,35(1):99−103.

    SHI Changsheng,XIE Guangyuan,ZHANGYueqiu. Microstructure analysis of press filter cake of fine coal[J]. Journal of China University of Mining & Technology,2006,35(1):99−103.

    [12] 徐吉钊,翟 成,桑树勋,等. 基于低场核磁共振技术的液态CO2循环致裂煤体孔隙特征演化规律[J]. 煤炭学报,2021,46(11):3578−3589.

    XU Jizhao,ZHAI Cheng,SANG Shuxun,et al. Low-field nuclear magnetic resonance (NMR)-based evolution law of pore characteristics of liquid CO2-cycling cracked coal body[J]. Journal of China Coal Society,2021,46(11):3578−3589.

    [13]

    ZHANG P,Lu S,Li J,et al. Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: A case study on the dongying depression, Bohai Bay Basin, China[J]. Energy & Fuels,2017,31(9):9232−9239.

    [14]

    YAO Yanbin,Liu Dameng. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel,2012,95:152−158. doi: 10.1016/j.fuel.2011.12.039

    [15] 王东辉. 基于滤饼孔隙结构的煤泥水过滤脱水机理与调控研究[D]. 北京: 中国矿业大学(北京), 2018.

    WANG Donghui. Study on the mechanism and regulation of coal slurry dewatering based on the pore structure of filter cake[D]. Beijing: China University of Mining & Technology(Beijing), 2018.

    [16] 冯泽宇. 微细矿物滤饼微观孔隙结构特征及渗流机理研究[D]. 太原: 太原理工大学, 2021.

    FENG Zeyu. Study on micro-pore structure and percolation mechanism of micro-mineral filter cake [D] . Taiyuan: Taiyuan University of Technology, 2021.

    [17]

    LIN C L,Miller J D. Pore structure analysis of particle beds for fluid transport simulation during filtration[J]. International Journal of Mineral Processing,2004,73(2):281−294.

    [18]

    LIN C L,Miller J D. Pore structure and network analysis of filter cake[J]. Chemical Engineering Journal,2000,80(1−3):221−231.

    [19]

    FENG Zeyu,DONG Xianshu,FAN Yuping,et al. Use of X-ray microtomography to quantitatively characterize the pore structure of three-dimensional filter cakes[J]. Minerals Engineering,2020,152:106275. doi: 10.1016/j.mineng.2020.106275

    [20]

    LI Yijiang,XIA Wencheng,WEN Baofeng,et al. Filtration and dewatering of the mixture of quartz and kaolinite in different proportions[J]. Journal of Colloid and Interface Science,2019,555:731−739. doi: 10.1016/j.jcis.2019.08.031

    [21]

    XU P,YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in water resources,2008,31(1):74−81. doi: 10.1016/j.advwatres.2007.06.003

    [22] 陈孝君. 低渗砂岩储层孔隙结构模型构建与输运机理研究[D]. 北京: 中国地质大学, 2019.

    CHEN Xiaojun. Pore structure modeling and transport mechanism of low permeability sandstone reservoir [D] . Beijing: China University of Geosciences, 2019.

    [23]

    HENDERSON N,JC Brêttas,Sacco W F. A three-parameter Kozeny–Carman generalized equation for fractal porous media[J]. Chemical Engineering Science,2010,65(15):4432−4442. doi: 10.1016/j.ces.2010.04.006

    [24] 房营光,陈 建,谷任国,等. 基于有效比表面积修正的Kozeny-Carman方程在黏土渗透中的适用性研究[J]. 岩土力学,2020,41(8):2547−2554. doi: 10.16285/j.rsm.2019.2157

    FANG Yingguang,CHEN Jian,GU Renguo,et al. Applicability of Kozeny-Carman equation based on effective specific surface area correction in clay infiltration[J]. Rock and Soil Mechanics,2020,41(8):2547−2554. doi: 10.16285/j.rsm.2019.2157

    [25] 徐 鹏,邱淑霞,姜舟婷,等. 各向同性多孔介质中Kozeny-Carman常数的分形分析[J]. 重庆大学学报(自然科学版),2011,34(4):78−82.

    XU Peng,QIU Shuxia,JIANG Zhouting,et al. Fractal analysis of Kozeny-Carman constant in isotropic porous media[J]. Acta Chongqing University(Natural Sciences),2011,34(4):78−82.

    [26] 聂笃宪,曾文曲,文有为. 分形维数计算方法的研究[J]. 微机发展,2004,14(9):17−19,22.

    NIE Duxian,ZENG Wenqv,WEN Youwei. Study on the calculation method of fractal dimension[J]. Computer Development,2004,14(9):17−19,22.

  • 期刊类型引用(0)

    其他类型引用(2)

图(14)  /  表(6)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  34
  • PDF下载量:  30
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-12-18
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2023-10-19

目录

    CHEN Ruxia

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回