New energy exploitation in coal-endowed areas under the target of “double carbon”: a new path for transformation and upgrading of coal mines in the future
-
摘要:
“双碳”目标下我国能源结构正加速转型升级,以太阳能、风能、地热能等为代表的新能源正逐步替代传统煤、油、气等化石能源。推动煤炭和新能源优化组合是实现“双碳”目标提出的新要求,也是未来煤矿绿色低碳转型的重要路径。分析我国赋煤区能源分布特点,发现以煤为主的化石能源分布区域,往往也是太阳能、风能、热能等新能源富集区,适宜于在赋煤区大规模开发新能源。研究结果如下:① 提出了赋煤区全生命周期能源开发理念,将赋煤区能源发展历程划分为煤炭、煤炭与新能源优化组合、新能源3个阶段,并搭建了赋煤区新能源开发总体框架;② 在太阳能开发方面,基于赋煤区与太阳能资源富集区的重叠关系对赋煤区太阳能理论储量与开发潜力进行评估,提出了分布式/集中式光伏发电、太阳能热利用和太阳能制氢等光化利用耦合的太阳能分级综合利用方案,实现太阳能多元高效转化与利用以及与煤炭资源的协同开采;③ 在地热能开发方面,基于赋煤区与地热能资源富集区的重叠关系对赋煤区地热能开发潜力进行评估,结合矿井地热形成机理、分布规律和矿井采掘情况,构建深部矿产资源与地热资源协同开发系统,形成包含矿井热水型、岩温型、混合型的矿井地热能分级开采与热用户梯级利用的综合应用方案,实现矿井地热化“害”为“利”的战略转移;④ 在风能开发方面,基于赋煤区与风能资源富集区的重叠关系对赋煤区风能开发潜力进行评估,提出赋煤区风力发电、风力提水、风力致热技术的应用途径,构建了井上井下设施电力供应、水循环动力、供暖自足以及并网发电的风能利用框架;⑤ 考虑到目前煤炭地下开采普遍以垮落法管理顶板,垮落空间无法有效用于地下储能,提出“储能库超前规划→功能性储能库构筑→储释能运行管控”的矿井采空区储能技术路径;⑥ 针对赋煤区多能互补综合能源系统(MCIES)复杂多变特征,建立了赋煤区能源生产、供给单元的异质能量流耦合模型,统一了MCIES内部不同能源集线器的数学表达式,提出了赋煤区MCIES能源管理与优化逻辑方法以及运营模式。旨在探讨煤炭和新能源的组合路径,论证赋煤区规模化开发新能源可行性,赋予赋煤区全生命周期能源供给的功能,形成集“矿—风—光—热—储”一体化的煤炭企业能源产业发展新模式。
Abstract:Under the “dual carbon” goal, China’s energy structure is accelerating transformation and upgrading, and new energy represented by solar energy, wind energy, geothermal energy is gradually replacing traditional coal, oil, gas and other fossil energy. Promoting the optimal combination of coal and new energy is a new requirement for achieving the “double carbon” goal, and also an important path for the green and low-carbon transformation of coal mines in the future. Based on the analysis of the energy distribution characteristics of coal-endowed areas in China, it is found that the fossil energy distribution areas dominated by coal are often also areas rich in solar energy, wind energy, thermal energy and other new energy, which are suitable for large-scale development of new energy in in coal-endowed areas. The research results are as follows: ① Put forward the concept of full life cycle energy development in coal-endowed areas, divide the energy development process in coal-endowed areas into three stages: coal, coal and new energy optimization combination, and new energy, and build a general framework for new energy development in coal-endowed areas; ② In terms of solar energy development, the theoretical reserves and development potential of solar energy in the mining area are evaluated based on the overlapping relationship between the coal occurrence and the solar energy resource rich area, and a hierarchical comprehensive utilization scheme of solar energy coupled with photochemical utilization, such as distributed/centralized photovoltaic power generation, solar thermal utilization and solar hydrogen production, is proposed to achieve diversified and efficient conversion and utilization of solar energy and collaborative mining with coal resources; ③ In terms of geothermal energy development, the potential of geothermal energy development in coal-endowed areas is evaluated based on the overlapping relationship between the coal bearing area and the geothermal energy resource rich area. In combination with the formation mechanism, distribution law and mining situation of the mine geothermal, a collaborative development system of deep mineral resources and geothermal resources is established to form a comprehensive application scheme for the graded mining of mine geothermal energy and the cascade utilization of thermal users, including the hot water type, rock temperature type and mixed type of the mine, realizing the strategic transfer of “harm” to “benefit” of mine geothermal; ④ In terms of wind energy development, the potential of wind energy development in the mining area is evaluated based on the overlapping relationship between the coal occurrence and the wind energy resource rich area, and the application approaches of wind power generation, wind water lifting, and wind heating technologies in the coal bearing area are proposed, and the wind energy utilization framework for power supply, water cycle power, heating self-sufficiency, and grid connected power generation of underground and underground facilities is constructed; ⑤ Considering that the roof is generally managed by the caving method in the current underground coal mining, and the caving space cannot be effectively used for underground energy storage, a technical path of energy storage in the goaf of the mine is proposed, which is “advanced planning of energy storage reservoir → construction of energy storage reservoir using functional backfilling→ Energy storage and release operation control”; ⑥ In view of the complex and changeable characteristics of multi energy complementary integrated energy system (MCIES) in coal-endowed areas, a heterogeneous energy flow coupling model of energy production and supply units in coal-endowed areas is established, the mathematical expressions of different energy hubs in MCIES are unified, and the energy management and optimization logic method and operation mode of MCIES in coal-endowed areas are proposed. This paper aims to explore the combination path of coal and new energy, demonstrate the feasibility of large-scale development of new energy in coal-endowed areas, endow coal bearing areas with the function of energy supply in the whole life cycle, and form a new mode of energy industry development of coal enterprises integrating “mine-wind-light-heat-storage”.
-
-
表 1 我国赋煤区太阳能资源估算
Table 1 Estimation of solar energy resources in coal-endowed areas in China
省
(自治区)赋煤区
面积占
比[19]/%煤炭
储量[19]/
亿t水平面总
辐照量年
平均值[20]/(kWh·m−2)年日照时数[17]/h 太阳能理
论储量[14]/
(1014 kWh·a−1)光伏装机
潜力[18]/
万kW赋煤区 太阳能理论储量/(1015 kJ·a−1) 光伏开
发潜力/
(1012 kJ·a−1)理论储量折合标煤/(亿t·a−1) 理论储量
折合减排
CO2/(亿t·a−1)光伏开发
潜力折
合标煤/
(万t·a−1)光伏开发
潜力折
合减排/
(万t·a−1)北京 8.54 86.72 1405.94 2640 95.04 1418 8.11 11.50 9.97 26.80 39.32 105.71 天津 3.33 44.52 1402.74 2580 58.32 710 1.94 2.20 2.39 6.42 7.51 20.20 河北 3.76 601.39 1438.98 2670 1038.96 8963 39.07 32.40 48.00 129.06 110.73 297.69 山西 21.31 3899.18 1426.89 2870 829.44 7050 176.79 155.26 217.21 583.96 530.61 1426.55 内蒙古 8.88 12250.43 1581.32 2930 6391.80 43791 567.38 410.02 697.08 1874.11 1401.30 3767.40 辽宁 2.23 59.27 1381.25 2210 742.68 5209 16.56 9.24 20.35 54.70 31.58 84.91 吉林 2.45 30.03 1344.27 2280 895.32 7820 21.98 15.76 27.00 72.59 53.85 144.77 黑龙江 0.97 176.13 1294.16 2340 2149.56 12437 20.90 10.19 25.68 69.05 34.82 93.62 江苏 1.21 50.49 1307.84 2020 595.44 8842 7.22 7.80 8.87 23.85 26.65 71.65 浙江 0.02 0.44 1251.88 2040 463.68 5997 0.09 0.09 0.11 0.30 0.30 0.80 安徽 4.21 611.59 1242.51 2210 610.20 7650 25.70 25.63 31.57 84.88 87.60 235.51 福建 1.07 25.57 1291.07 1990 561.96 3667 6.02 2.81 7.39 19.88 9.61 25.85 江西 2.94 40.84 1194.24 2150 735.12 8292 21.58 18.84 26.52 71.29 64.40 173.13 山东 6.08 405.13 1379.78 2280 789.12 15541 47.98 77.55 58.94 158.47 265.05 712.59 河南 9.04 919.71 1269.41 1920 786.96 10327 71.16 64.54 87.42 235.04 220.58 593.03 湖北 0.11 2.04 1151.51 1790 804.96 9586 0.87 0.66 1.06 2.86 2.27 6.11 湖南 1.27 45.35 1077.03 1610 890.64 10929 11.35 8.08 13.95 37.50 27.60 74.20 广东 0.78 9.11 1256.01 1690 866.52 6005 6.75 2.85 8.29 22.30 9.73 26.15 广西 0.55 17.64 1186.35 1470 1022.76 10853 5.60 3.14 6.88 18.48 10.74 28.87 海南 0.00 0.01 1503.04 1870 171.36 7883 0.01 0.02 0.01 0.02 0.08 0.21 四川 2.35 303.79 1385.8 1790 2265.48 13528 53.14 20.45 65.29 175.53 69.88 187.89 贵州 18.10 1896.9 1021.26 1630 681.84 7977 123.44 84.75 151.66 407.74 289.63 778.66 云南 3.50 437.87 1490.81 2340 2078.64 16453 72.79 48.53 89.43 240.42 165.87 445.94 西藏 0.04 8.09 1920.11 3050 8498.16 32038 3.46 1.43 4.25 11.43 4.89 13.16 陕西 11.38 2031.1 1321.47 2910 936.36 9446 106.57 112.63 130.93 352.01 384.91 1034.84 甘肃 3.94 1428.87 1636.62 3000 2412.00 16339 95.14 69.61 116.89 314.27 237.89 639.57 青海 1.07 380.42 1798.11 3190 4917.60 25287 52.42 30.96 64.41 173.16 105.80 284.45 宁夏 11.45 1721.11 1617.78 2980 392.76 4294 44.95 52.73 55.23 148.49 180.20 484.46 新疆 4.56 18037.3 1626.3 2920 9741.60 57124 444.69 274.11 546.34 1468.85 936.82 2518.63 注:赋煤区太阳能理论储量=太阳能理论储量×赋煤区面积占比,赋煤区光伏开发潜力=光伏装机潜力×年日照时数×赋煤区面积占比,29 270 kJ=1 kg 标准煤,1 t标煤产生2.688 t CO2。 表 2 我国赋煤区地热资源估算
Table 2 Estimation of geothermal resources in coal-endowed areas in China
地区 赋煤区面积/
万km2[19]赋煤区面积
占比/%[19]地热资源储量/
1015 kJ[35]赋煤区地热资源
理论储量/1015 kJ折合标煤/
(万t·a−1)折合减排CO2/
(万t·a−1)北京 0.14 8.54 94.81 8.10 276.73 743.86 天津 0.04 3.33 394.51 13.14 448.92 1206.71 河北 0.71 3.76 3052.00 114.76 3920.74 10538.94 山西 3.34 21.31 897.92 191.35 6537.41 17572.56 内蒙古 10.51 8.88 176.35 15.66 535.02 1438.13 辽宁 0.33 2.23 339.91 7.58 258.97 696.11 吉林 0.46 2.45 96.00 2.35 80.29 215.81 黑龙江 0.46 0.97 236.50 2.294 78.37 210.67 江苏 0.13 1.21 266.13 3.22 110.01 295.71 浙江 0.002 0.02 1.20 0.024 0.82 2.20 安徽 0.59 4.21 60.52 2.55 87.12 234.18 福建 0.13 1.07 44.70 4.78 163.31 438.97 江西 0.49 2.94 66.66 1.96 66.96 180.00 山东 0.96 6.08 2 092.86 127.49 4355.65 11 708.00 河南 1.51 9.04 404.68 36.58 1 249.74 3 359.31 湖北 0.02 0.11 87.81 0.097 3.31 8.91 湖南 0.27 1.27 10.46 0.1328 4.54 12.20 广东 0.14 0.78 222.91 1.74 59.45 159.79 广西 0.13 0.55 256.12 1.41 48.17 129.49 海南 0.000 15 0.42 20.439 8.584 293.27 788.31 四川 1.14 2.35 6 525.40 153.35 5 239.15 14 082.84 贵州 3.19 18.10 88.08 15.943 544.69 1 464.12 云南 1.38 3.50 197.71 6.92 236.42 635.50 西藏 0.05 0.04 4807.70 1.923 65.70 176.60 陕西 2.34 11.38 68.943 7.845 7 268.05 720.51 甘肃 1.68 3.94 95.401 6 3.758 8 128.42 345.19 青海 0.77 1.07 142.50 1.52 51.93 139.59 新疆 7.60 4.56 961.00 43.82 1 497.10 4 024.19 注:地热资源储量(kJ)×赋煤区积占比(%)=赋煤区地热资源理论储量(kJ)。 表 3 我国赋煤区风能资源潜力估算
Table 3 Estimation of wind energy resources in coal-endowed areas in China
地区 风功率
密度[20]/
(W·m−2)年有效小
时数[52]/
h赋煤区面
积占比[19]/
%赋煤区
面积/
万km2理论装机
潜力/
GW理论开发
潜力/
(1016 kJ·a−1)理论折合
标煤/
(亿t·a−1)理论减排CO2/
(亿t·a−1)预估装机
潜力[53] /
万kW预估开发
潜力/
(1012 kJ·a−1)预估折合
标煤/
(万t·a−1)预估减排CO2/
(万t·a−1)北京 169.79 1816 8.54 0.14 237.8 0.16 0.53 1.43 39 0.22 0.74 2.00 天津 207.96 1965 3.33 0.04 83.1 0.06 0.20 0.54 239 0.56 1.92 5.16 河北 228.03 2144 3.76 0.71 1618.8 1.25 4.26 11.46 24832 72.07 245.91 661.13 山西 198.06 1918 21.31 3.32 6584.2 4.55 15.51 41.71 16630 244.70 834.97 2244.84 内蒙古 364.24 2305 8.88 10.51 38263.6 31.75 108.34 291.28 161016 1186.40 4048.54 10884.64 辽宁 293.01 2300 2.23 0.33 967.1 0.80 2.73 7.35 8347 15.41 52.59 141.39 吉林 317.36 2216 2.45 0.46 1457.1 1.16 3.97 10.66 10669 20.85 71.16 191.30 黑龙江 290.82 2323 0.97 0.46 1334.3 1.12 3.81 10.24 18771 15.23 51.96 139.69 江苏 200.23 1973 1.21 0.13 259.7 0.18 0.63 1.69 7484 6.43 21.95 59.01 浙江 140.33 2090 0.02 0.00 2.9 0.00 0.01 0.02 5349 0.08 0.27 0.74 安徽 167.24 1809 4.21 0.59 986.4 0.64 2.19 5.89 7020 19.25 65.68 176.57 福建 130.35 2639 1.07 0.13 169.3 0.16 0.55 1.48 6304 6.41 21.87 58.79 江西 145.73 2028 2.94 0.49 715.1 0.52 1.78 4.79 3661 7.86 26.81 72.09 山东 225.39 1863 6.08 0.96 2163.8 1.45 4.95 13.31 22033 89.84 306.57 824.24 河南 175.73 1480 9.04 1.51 2653.0 1.41 4.82 12.97 9116 43.91 149.82 402.81 湖北 124.88 1960 0.11 0.02 25.5 0.02 0.06 0.17 3798 0.29 1.01 2.70 湖南 142.48 1960 1.27 0.27 383.3 0.27 0.92 2.48 3558 3.19 10.88 29.25 广东 160.15 1612 0.78 0.14 224.5 0.13 0.44 1.20 13115 5.94 20.26 54.46 广西 191.99 2385 0.55 0.13 250.9 0.22 0.74 1.98 13040 6.16 21.01 56.49 四川 150.02 2553 2.35 1.14 1713.4 1.57 5.37 14.45 14325 30.94 105.57 283.84 贵州 159.33 1861 18.10 3.19 5081.4 3.40 11.62 31.23 6247 75.75 258.49 694.96 云南 147.59 2808 3.50 1.38 2035.8 2.06 7.02 18.88 14168 50.13 171.05 459.87 西藏 255.63 2173 0.04 0.05 125.6 0.10 0.34 0.90 47609 1.49 5.08 13.67 陕西 149.07 1931 11.38 2.34 3487.8 2.42 8.27 22.24 10340 81.80 279.12 750.42 甘肃 229.64 1787 3.94 1.68 3853.5 2.48 8.46 22.74 17626 44.68 152.45 409.86 青海 227.06 1743 0.14 0.10 234.3 0.15 0.50 1.35 14227 1.28 4.35 11.70 宁夏 235.09 1811 11.45 0.76 1787.3 1.17 3.98 10.69 3900 29.11 99.34 267.09 新疆 233.70 2147 4.56 7.59 17742.4 13.71 46.79 125.81 38960 137.32 468.56 1259.73 注:理论装机潜力=赋煤区面积×风功率密度,理论开发潜力=理论装机潜力×年有效小时数;预估可开发潜力=预估装机潜力×赋煤区面积占比×年有效小时数。 -
[1] 袁 亮,张 通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(6):2131−2139. YUAN Liang,ZHANG Tong,ZHANC Qinghe,et al. Construction of green, low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society,2022,47(6):2131−2139.
[2] 桑树勋,袁 亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451. SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
[3] 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境,2020,30(11):1−25. Project comprehensive report preparation team. A comprehensive report on China’s long-term low-carbon development strategy and transition path[J]. China Population, Resources and Environment,2020,30(11):1−25.
[4] 吴林荣,杜莉丽,王娟敏,等. 陕北榆林地区太阳能资源空间分布特征及资源潜力评估[J]. 水土保持通报,2013,33(1):238−242. WU Linrong,DU Lili,WANG Juanmin,et al. Distribution characteristic sand evaluation of potential solar energy resources in Yulin region of northern Shaanxi province[J]. Bulletin of Soil and Water Conservation,2013,33(1):238−242.
[5] 王 云,戴喜红. 榆林市长城沿线风能资源分析[J]. 陕西气象,2010(2):38−40. WANG Yun,DAI Xihong. Analysis of wind energy resources along the Great Wall of Yulin City[J]. Journal of Shaanxi Meteorology,2010(2):38−40.
[6] 朱梦博,刘 浪,王双明,等. 短−长壁工作面充填无煤柱开采方法研究[J]. 采矿与安全工程学报,2022,39(6):173−181. ZHU Mengbo,LIU Lang,WANG Shuangming,et al. Short-and long-walls backfilling pillarless coal mining method[J]. Journal of Mining & Safety Engineering,2022,39(6):173−181.
[7] 刘 浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086. LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.
[8] 吴晓华,郑厚发,李岩彬. 煤炭企业绿色矿山建设标准体系研究[J]. 中国煤炭,2022,48(6):50−55. WU Xiaohua,ZHENG Houfa,LI Yanbin. Study on the standard system of green mine construction in coal enterprises[J]. China Coal,2022,48(6):50−55.
[9] 袁 亮,姜耀东,王 凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20. YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed /abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
[10] 卞正富, 周跃进, 曾春林, 等. 废弃矿井抽水蓄能地下水库构建的基础问题探索"[J]. 煤炭学报 2021, 46(10): 3308−3318. BIAN Zhengfu, ZHOU Yuejin, ZENG Chunlin, et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society, 2021, 46(10): 3308−3318.
[11] 刘 峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15. LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
[12] 国家能源局. 我国太阳能资源是如何分布的? [EB/OL]. (2014-08-03.) [2022-12-06]. http://www.nea.gov.cn/2014-08/03/c_133617073.htm. [13] 宋洪柱. 中国煤炭资源分布特征与勘查开发前景研究[D]. 北京: 中国地质大学(北京), 2013. SONG Hongzhu. Study on the distribution characteristics and the exploration and development prospect of coal resource of china[D]. Beijing: China University of Geosciences (Beijing), 2013.
[14] 朱瑞兆. 中国分省太阳能资源图集[R]. 北京: 中国科学院电工研究所, 2006:1‒29. ZHU Ruizhao. Atlas of solar energy resources by province in China[R]. Beijing: Institute of Electrical Engineering Chinese Academy of Sciences, 2006: 1‒29.
[15] 吴林荣, 杜莉丽, 王娟敏, 等. 陕北榆林地区太阳能资源空间分布特征及资源潜力评估[J]. 水土保持通报, 2013, 33 (1): 238-242. WU Linrong, DU Lili, WANG Juanmin, et al. Distribution characteristics and evaluation of potential solar energy resources in Yulin region of northern Shaanxi province[J]. Bulletin of Soil and Water Conservation. 2013, 33 (1): 238-242.
[16] 姚玉璧,郑绍忠,杨 扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报,2022,43(10):524−535. YAO Yubi,ZHENG Shaozhong,YANG Yang,et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica,2022,43(10):524−535.
[17] 沈 义. 我国太阳能的空间分布及地区开发利用综合潜力评价[D]. 兰州: 兰州大学, 2014. SHEN Yi. The spatial distribution of solar energy and the comprehensive potential evaluation of regional exploitation and utilization in China[D]. Lanzhou: Lanzhou University, 2014.
[18] 郑舒虹. 中国可再生电力“供−输−需”协同度测算与优化研究[D]. 武汉: 中国地质大学, 2022. ZHENG Shuhong. Research on “supply-transmission-demand” synergy evaluation and optimization for China's renewable power[D]. Wuhan: China University of Geosciences, 2022.
[19] 李 华. 煤炭资源预测之全国煤炭资源预测的结果[EB/OL]. (2017-10-14) [2022-12-06]. https://www.mining120.com/tech/show-htm-itemid-48463.html. [20] 中国气象局风能太阳能中心. 2021年中国风能太阳能资源年景公报[R]. 北京: 中国气象局风能太阳能中心, 2022. [21] 中华人民共和国中央人民政府. 截至10月底全国发电装机容量约25亿千瓦[EB/OL]. (2022-11-23) [2022-12-06]. http://www.gov.cn/xinwen/2022-11/23/content_5728363.htm. [22] 国家能源局. 我国光伏发电并网装机容量突破3亿千瓦 分布式发展成为新亮点[EB/OL]. (2022-01-20) [2022-12-06]. http://www.nea.gov.cn/2022-01/20/c_1310432517.htm. [23] 神华之声. 向太阳要能量!神华国华投资在宁夏建设首个光伏项目[EB/OL]. (2017-04-12) [2022-12-06]. https://www.sohu.com/a/133538790_663324. [24] 中新网新疆. 煤矿边上建光伏电站!哈密首个煤矿分布式光伏项目并网发电[EB/OL]. (2022-03-15) [2022-12-06]. http://www.xj.chinanews.com.cn/dizhou/2022-03-15/detail-ihawqrpf1210044.shtml. [25] 中国电力网. 深入推进采煤沉陷区综合治理 聚焦“光伏+采煤沉陷区”融合发展[EB/OL]. (2022-02-04) [2022-12-06]. http://www.chinapower.com.cn/tynfd/hyyw/20220224/135254.html. [26] 谢友泉,高 辉,苏志国,等. 废弃矿井资源的可再生能源开发利用[J]. 可再生能源,2020,38(3):423−426. Xie Youquan,Gao Hui,Su Zhiguo,et al. Exploitation and utilization of renewable energy from waste mine resources[J]. Renewable Energy Resources,2020,38(3):423−426.
[27] 中国煤炭报. 中国煤炭报独家调查: 那些废弃煤矿, 如何转型获得新生? [N/OL]. (2021-08-27) [2022-12-06]. http://www.chinacaj.net/i,16,13940,0.html. [28] 朱晓飞. 安徽祁南煤矿采煤沉陷区光伏发电场地稳定性评价[D]. 淮南: 安徽理工大学, 2019. ZHU Xiaofei. Stability evaluation of photovoltaic power generation site in mining subsidence area of Qinan coal mine, Anhui province[D]. Huainan: AnHui University of Science and Technologg, 2019.
[29] 白淑娟,陈华锋,李林林. 采煤沉陷区建造光伏电站关键技术分析[J]. 低碳技术,2022,1:49−51. BAI Shujuan,CHEN Huafeng,LI Linlin. Analysis of key technologies for the construction of photovoltaic power plants in coal mining subsidence areas[J]. Low Carbon World,2022,1:49−51.
[30] 王君杰. 太阳能在煤矿供热系统中的利用探讨[J]. 企业技术开发,2014,33(14):177−178. WANG Junjie. Discussion on the utilization of solar energy in heating system of coal mine[J]. Technological Development of Enterprise,2014,33(14):177−178.
[31] 王 锋,周化岚,张建国. 太阳能驱动二氧化碳转化[J]. 自然杂志,2021,43(1):61−70. WANG Feng,ZHOU Hualan,ZHANG Jianguo. Carbon dioxide conversion by solar energy[J]. Chinese Journal of Nature,2021,43(1):61−70.
[32] 陈 靖,董树杰,周红军. 太阳能光伏效应制氢研究进展[J]. 煤化工,2022,50(3):79−85. CHEN Jing,DONG Shujie,ZHOU Hongjun. Research progress on hydrogen production through solar photovoltaic effect[J]. Coal Chemical Industry,2022,50(3):79−85.
[33] 中华人民共和国中央人民政府. 工业和信息化部 住房和城乡建设部 交通运输部 农业农村部 国家能源局 关于印发《智能光伏产业创新发展行动计划(2021—2025年)》的通知[EB/OL]. (2021-12-31) [2022-12-06]. http://www.gov.cn/zhengce/zhengceku/2022-01/05/content_5666484.htm. [34] 王贵玲,刘彦广,朱 喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1−9. WANG Guiling,LIU Yanguang,ZHU Xi et al. The status and development tend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1−9.
[35] 地质云全国地热资源数据与信息服务系统. 地热潜力. [EB/OL]. (2022-12-06) [2022-12-06]. https://222.223.214.100:3068/?code=6004c690c4314cb486ee812839013d8b&state=helloWelcome#/zyql. [36] 袁 亮,杨 科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(1):16−24. YUAN Liang,YANG Ke. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines[J]. Journal of China Coal Society,2021,46(1):16−24.
[37] 刘 明,李树志. 废弃煤矿资源再利用及生态修复现状问题及对策探讨[J]. 矿山测量,2016,44(3):70−72,127. LIU Ming,LI Shuzhi. Study on problems and countermeasures of present stuation of abandoned coal mine resource reuse and ecological restoration[J]. Mine Surveying,2016,44(3):70−72,127.
[38] 刘 峰,李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报,2017,42(9):2205−2213. LIU Feng,LI Shuzhi. Discussion on the new development and utilization of underground space resources of transitional coal mines[J]. Journal of China Coal Society,2017,42(9):2205−2213.
[39] 张 波,薛攀源,刘 浪,等. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报,2021,46(9):2824−2837. ZHANG Bo,XUE Panyuan,LIU Lang,et al. Exploration on the method of ore deposit-geothermal energy synergetic mining in deep backfill mines[J]. Journal of China Coal Society,2021,46(9):2824−2837.
[40] ZHAO Yujiao , LIU Lang, WEN De, et al. Recycling waste material for backfill coupled heat exchanger systems in underground stopes of mines[J]. Energy and Buildings, 2022,256: 111703.
[41] ZHAO Yujiao,LIU Lang,Wen De,et al. Experimental study of horizontal ground heat exchangers embedded in the backfilled mine stopes[J]. Geothermics,2022,100:102344. doi: 10.1016/j.geothermics.2021.102344
[42] ZHANG Xiaoyan,XU Muyan,LIU Lang,et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology-JMR& T,2020,9(2):2164−2175.
[43] ZHANG Xiaoyan,ZHAO Min,LIU Lang,et al. Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger[J]. Construction and Building Materials,2020,265:120340. doi: 10.1016/j.conbuildmat.2020.120340
[44] ZHANG Xiaoyan,ZHAO Min,LIU Lang,et al. Phase-change heat storage backfill: Experimental study on rheological properties of backfill slurry with paraffin added[J]. Construction and Building Materials,2020,262:120736. doi: 10.1016/j.conbuildmat.2020.120736
[45] ZHANG Xiaoyan,XU Muyan,LIU Lang, et al. Study on thermal performance of casing-type mine heat recovery device with phase change materials filling in annular space[J]. International Journal of Energy Research,2021,45(12):17577−17596. doi: 10.1002/er.7008
[46] ZHANG Xiaoyan,ZHAO Min,LIU Lang,et al. Numerical simulation on thermal accumulation of cemented tailings backfill[J]. Journal of Central South University,2021,28(7):2221−2237. doi: 10.1007/s11771-021-4760-4
[47] 张小艳,文 德,赵玉娇,等. 矿山蓄热/储能充填体的热-力性能与传热过程[J]. 煤炭学报,2021,46(9):3158−3171. ZHANG Xiaoyan,WEN De,ZHAO Yujiao,et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine[J]. Journal of china coal society,2021,46(9):3158−3171.
[48] 亢方超, 唐春安. 基于开挖的增强型地热系统概述[J]. 地学前缘, 2020, 27(1): 185-193. KANG Wanchao, TANG Chun’an. Overvies of enhanced geothermal system (EGS) based on excavation in China[J]. Earth Science Frontiers, 2020, 27(1): 185-193.
[49] IRENA (2022), Renewable Energy Statistics 2022[R]. Abu Dhabi: The International Renewable Energy Agency,2022 .
[50] 秦海岩. 十八大以来我国风电产业实现高质量发展[J]. 风能,2022(9):1. QIN Haiyan. Chinese wind power industry has achieved high-quality development since the 18th National Congress[J]. Wind Energy,2022(9):1.
[51] 国家发展改革委. 国家能源局关于完善能源绿色低碳转型体制机制和政策措施的意见(发改能源(2022)206号) [EB/OL]. [2022-12-7]. http://www.gov.cn/zhengce/zhengceku/2022-02/11/content_5673015.htm. [52] 国际风力发电网. 全国各省2014-2020年风电利用小时数[EB/OL].(2021-11-26). [2022-12-06]. https://wind.in-en.com/html/wind-2412128.shtml. [53] 郑舒虹. 中国可再生电力“供−输−需”协同度测算与优化研究[D]. 武汉: 中国地质大学, 2022. ZHENG Shuhong. Research on Calculation and Optimization of “supply-demand-demand” synergy degree of renewable power in China[D]. Wuhan: China University of Geosciences, 2022.
[54] CHOI Yosoon ,SONG Jinyoung. Review of photovoltaic and wind power systems utilized in the mining industry[J]. Renewable and Sustainable Energy Reviews,2017,75:1386−1391. doi: 10.1016/j.rser.2016.11.127
[55] Business News Americas. DeWind ships first turbine to Seawind for Veladero[EB/OL]. (2007-9-20) [2017-07-26]. http://www.bnamericas.com/news/mining/DeWind_ships_first_turbine_to_Seawind_for_Veladero.
[56] BRADEN Bill. Great Gusto[J]. Canadian Mining Journal, 2012,283:54‒54.
[57] ENERGATI. Canada Gets its First Large Wind and Energy Storage System. Energati [EB/OL]. (2014-9-12) [2022-12-06]. http://www.engerati.com/article/canada-gets-its first-large-wind-and-energy-storage-system.
[58] Power Technology. El Arrayan Wind Farm. [EB/OL]. (2014-9-9) [2022-12-06]. http://www.power-technology.com/projects/el-arrayn-wind-farm.
[59] United States Environmental Protection Agency. A Breath of Fresh Air for America’s Abandoned Mine Lands[EB/OL]. (2012-3-20) [2022-12-06]. (https://semspub.epa.gov/work/11/176038.pdf).
[60] Pennsylvania Wind Working Group. Wind Farms in Pennsylvania[EB/OL]. (2016-9-15) [2022-12-06]. http://www.pawindenergynow.org/pa/farms.html.
[61] RAICHLE W. Brian, CARSON W. Richard, Wind resource assessment of the Southern Appalachian Ridges in the Southeastern United States[J]. Renewable and Sustainable Energy Reviews,2009, 13: 1104‒1110.
[62] 陈 雷,邢作霞,陈明阳,等. 基于运行曲线的机械式风力提水机组匹配性设计方法研究[J]. 太阳能学报,2022,43(2):465−470. CHEN Lei,XING Zuoxia,CHEN Mingyang,et al. Research on Matching design method of mechanical wind turbine based on running curve[J]. Journal of Solar Energy,2022,43(2):465−470.
[63] 苏亚欣, 毛玉如, 赵敬德. 新能源与可再生能源概论[M]. 北京: 化学工业出版社, 2006. SU Yaru, MAO Yuru, ZHAO Jingde. Introduction to New and renewable energy[M]. Beijing: Chemical Industry Press, 2006.
[64] FRANKW Osterwald, JOHN B Sennetti. Preliminary investigation of seismic tremors in the general area of the Leyden coal mine gas-storage reservoir[R]. Colorado: Department of the Interior Geological Survey, 1973.
[65] XIE H,ZHAO J,ZHOU H,et al. Secondary utilizations and perspectives of mined underground space[J]. Tunneling and Underground Space Technology,2020,96:103129. doi: 10.1016/j.tust.2019.103129
[66] 邱华富,刘 浪,王 美,等. 金属矿采矿−充填−建库协同系统及充填储库结构[J]. 石油学报,2018,39(11):1308−1316. QIU Huafu,LIU Lang,WANG Mei,et al. Mining-backfill-storage building synergetic system in metal mine and its backfill storage structure[J]. Acta Petrolei Sinica,2018,39(11):1308−1316.
[67] 彭振华,李俊彦,杨 森,等. 利用废弃石膏矿储存原油可行性分析[J]. 工程地质学报,2013,21(3):470−475. PENG Zhenhua,LI Junyan,YANG Sen,et al. Feasibility Analysis of Utilization of Waste Gypsum Mine for Crude Oil Storage[J]. Journal of Engineering Geology,2013,21(3):470−475.
[68] 谢和平,侯正猛,高 峰,等. 煤矿井下抽水蓄能发电新技术: 原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972. XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped-storage power in underground coal mine: Principles, present situation and future[J]. Journal of China coal society,2015,40(5):965−972.
[69] 葛帅帅,冯国瑞,姚西龙,等. 煤矿废弃井巷抽水储能理论与技术框架[J]. 煤炭工程,2021,53(7):91−96. GE Shuaishuai,FENG Guorui,YAO Xilong,et al. Theory and technical framework of pumped storage in abandoned wells and roadways[J]. Coal Engineering,2021,53(7):91−96.
[70] 卞正富,周跃进,曾春林,等. 废弃矿井抽水蓄能地下水库构建的基础问题探索[J]. 煤炭学报,2021,46(10):3308−3318. BIAN Zhengfu,ZHOU Yuejin,ZENG Chunlin,et al. A discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China coal society,2021,46(10):3308−3318.
[71] Menéndez J, Loredo J, Fernandez J M, et al. Underground pumped-storage hydropower plants with mine water in abandoned coal mines[C]//Proceedings of the IMWA 13th International Congress. 2017: 6-13.
[72] 陈苏社. 神东矿区井下采空区水库水资源循环利用关键技术研究[D]. 西安: 西安科技大学, 2016. CHEN Sushe. Research on the key technology of water resources recycling utilization in the underground goaf reservoir in Shendong mining area. Xi’an: Xi’an University of Science and Technology, 2016.
[73] LUO Xing,WANG Jihong,DOONER Mark,et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy,2015,137:511−536. doi: 10.1016/j.apenergy.2014.09.081
[74] PEJOVIC Stanislav, KARNEY Bryan, MARICIC Tihomir. Smart Grids better with integrated energy system[C]//2009 IEEE Electrical Power & Energy Conference (EPEC). Montreal, QC, Canada. 2009: 1‒8.
[75] 艾 芊,郝 然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化,2018,42(4):2−10. AI Qian,HAO Ran. Key Technologies and challenges of multi energy complementary, integrated and optimized energy sSystems[J]. Automation of Electric Power System,2018,42(4):2−10.
[76] GEIDL Martin, KOEPPEL Gaudenz, FAVRE-PERROD Patrick, et al. Energy Hubs for the future[J]. IEEE Power and Energy Magazine, 2007, 5(1): 24‒30.
[77] GEIDL Martin, ANDERSSON, Göran. A modeling and optimization approach for multiple energy carrier power flow[C]//2005 IEEE Russia Power Tech, Saint Petersburg, Russia. 2005:1‒7.
[78] 熊 文,刘育权,苏万煌,等. 考虑多能互补的区域综合能源系统多种储能优化配置[J]. 电力自动化设备,2019,39(1):118−126. XIONG Wen,LIU Yuquan,SU Wanhuang et al. Optimal allocation of multiple energy storage in regional integrated energy system considering multiple energy complementarities[J]. Automation of Electric Power System,2019,39(1):118−126.
[79] 刁涵彬,李培强,王继飞,等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报,2020,35(21):4532−4543. DIAO Hanbin,LI Peiqiang,WANG Jifei,et al. Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society,2020,35(21):4532−4543.
-
期刊类型引用(24)
1. 刘刚, 褚廷湘, 朱天儒, 张曦, 王雨钒, 孟金伟. 气体抽排对上隅角低氧治理效果及采空区煤自燃影响研究. 工矿自动化. 2025(05) 百度学术
2. 李超跃, 周春山, 张玉龙, 齐金龙. 浅埋藏近距离煤层综采面CO来源分析与超限防治. 煤炭工程. 2025(05) 百度学术
3. 孙珍平,刘啸,潘陶. 小煤柱工作面随采过程中相邻采空区遗煤自燃特性研究. 煤矿安全. 2025(02): 102-108 . 百度学术
4. 安小磊,张豫鹏,张云峰,陈俊涛,贾慧霖. 基于回采工作面与地表的低氧超前预警系统研制. 能源与环保. 2025(02): 62-69+74 . 百度学术
5. 姚志强. 浅埋多煤层开采工作面回风隅角低氧致因及防控技术研究. 技术与市场. 2025(04): 113-118 . 百度学术
6. 裴晓东,蒋曙光,吴征艳,朱佳诺,赵粟,姚志远. 局部正压通风方法解决采面低氧问题的试验及模拟研究. 安全与环境学报. 2024(01): 176-185 . 百度学术
7. 毛华晋. 近距离下层煤开采区段煤柱合理错距研究. 煤炭工程. 2024(05): 24-30 . 百度学术
8. 杨文政,马文伟. 综放工作面上隅角低氧及CO异常治理技术研究. 能源技术与管理. 2024(05): 36-38+151 . 百度学术
9. 张园勃,张玉涛,邓军,李亚清,史学强,任小芳. 贫氧作用下煤氧化放热关键基团演变特征及其热效应. 煤炭学报. 2024(10): 4336-4350 . 百度学术
10. 张鹏明,张玉龙,王大鹏,韩昌江,王俊峰,郝子靖,周春山. 近距离煤层采空区气体分布特征及运移规律研究. 煤矿安全. 2023(01): 46-55 . 百度学术
11. 惠保安,孙刘咏,罗荣卫. 综放工作面上隅角低氧研究及治理技术. 陕西煤炭. 2023(02): 82-86+124 . 百度学术
12. 苗宇岐,李琨,辛毅,赵强强. 浅埋煤层工作面上隅角低氧隐患形成规律及防治技术. 煤炭与化工. 2023(10): 127-131+136 . 百度学术
13. 金永飞,冯异,刘荫,任晓伟. 回采工作面上隅角低氧现象成因及防治技术. 煤炭技术. 2022(03): 108-111 . 百度学术
14. 宋双林. 自吸式泡沫发生器发泡机理及其优化设计. 煤炭科学技术. 2022(06): 239-244 . 本站查看
15. 田臣,周海丰. 基于涌现性特点的采空区氧化升温带高浓度CO治理技术. 煤炭科学技术. 2022(07): 163-170 . 本站查看
16. 霍建军,杨景惠,孙波. 综采辅巷多通道回撤工艺通风系统管理研究. 煤炭科学技术. 2022(S1): 142-146 . 本站查看
17. 高瑞青,王飞,刘红威,张小龙,贺志宏,刘振明,王子邦,宫彪. 特厚易自燃煤层回采工作面上隅角贫氧致因机理研究. 煤矿安全. 2022(10): 160-167 . 百度学术
18. 张岱岳,张翔,李鹏. 浅埋深近距离煤层群采空区覆岩结构对工作面低氧影响研究. 煤炭工程. 2022(12): 84-89 . 百度学术
19. 张岱岳,艾子博,李鹏. 浅埋煤层开采采空区漏风规律分析及治理研究. 矿业安全与环保. 2022(06): 1-6+33 . 百度学术
20. 李玉福,翟春宝,吕帅,赵晋伯. 浅埋深近距离煤层群工作面低氧防治技术. 煤炭工程. 2022(S1): 99-102 . 百度学术
21. 孙长斌. 浅埋深薄基岩下综采工作面回风隅角低氧治理. 中国安全科学学报. 2022(S2): 136-141 . 百度学术
22. 朱寅生,王玉怀,高嵩,李更川,牛瑞华,杨浩. 浅埋深煤层工作面回风隅角低氧防治技术研究. 华北科技学院学报. 2021(04): 32-35 . 百度学术
23. 李东武. 浅埋近距离煤层群回采工作面均压通风技术研究. 山西能源学院学报. 2021(06): 13-15 . 百度学术
24. 苗涛,宋元喜. 补连塔煤矿22409综采工作面低氧呈现规律、原因分析及防治措施. 煤炭科学技术. 2021(S2): 147-151 . 本站查看
其他类型引用(10)