The control principle and technology of “one obstruct and three strengthen” of soft rock roadways below weak aquifers
-
摘要:
针对弱含水层下软岩巷道围岩大变形难控制的问题,以清水营煤矿110207运输巷为研究对象开展了研究工作。首先,依据现场调查与实测分析了巷道围岩的变形破坏特征,明确该巷道存在“一水三弱”的四大特征:即水与高比例黏土矿物并存、弱锚固基础、弱支护阻力扩散效能、弱围岩承载性能;其次,采用理论分析、数值模拟与现场实测的综合研究方法,揭示了巷道围岩的变形破坏机制,认为弱含水层下软岩巷道围岩变形破坏过程分为初始变形、急速变形与缓慢增长3个阶段,3个阶段的变形量占比约为10%、30%与60%,水的存在是导致该类巷道围岩后期变形缓慢增长的重要影响因素;最后,提出了针对该类巷道围岩“一隔三强”的稳定性控制原理与方法,即采取合适的方法隔断水与泥岩的接触通道,强化锚杆(索)锚固基础、强化锚杆(索)预紧力扩散表层与增强巷道围岩自身承载能力,并给出了相应的全断面“锚索+网+注浆+喷浆”的综合控制方案。将该方案付诸实践,现场实测表明:采用新方案后围岩裂隙封闭隔断了水与泥岩之间的接触通道,强化了锚索锚固力、预紧力扩散效能与围岩承载能力。矿压监测结果表明:巷道两帮最大移近量为51.9 mm,顶底板最大移近量为27.8 mm,保证了巷道的正常使用。研究成果较好解决了弱含水层下软岩巷道围岩的大变形问题,可为软岩巷道围岩稳定性控制提供一定的理论与技术参考。
Abstract:Aiming at many problems about large deformation of surrounding rock of soft rock roadway below weak aquifers, the transportation roadway of coalface 110207 of Qingshuiying Mine is taken as an object to study a series of research works. Firstly, deformation and failure characteristics are analysised according to the field investigation and measurement. It is clear that there are four weaknesses in the roadway, which are the coexistence of water and high proportion of clay minerals, weak anchorage foundation, weak support resistance diffusion efficiency and weak bearing capacity. Secondly. Theoretical analysis, numerical simulation and field measurement have revealed the failure mechanism of the transportation roadway of coalface 110207, It is believed that the deformation and failure process of roadway surrounding rock under weak aquifer can be divided into three stages: initial deformation, rapid deformation and slow growth. The deformation in the three stages accounts for about 10%, 30% and 60%. The existence of water is an important factor affecting the slow growth of surrounding rock deformation in the later period of this type of roadway. Finally, the control method and principle of “one obstruct and three strengthen” is put forward, that is, appropriate methods are adopted to cut off the contact between water and mudstone, strengthen the anchoring foundation of the bolt and cable, strengthen the diffusion surface of the preload of the bolt cable and enhance the bearing capacity of the roadway surrounding rock, and the corresponding comprehensive control scheme of “cable + net + grouting + spray” is given. The field measurement shows that the surrounding rock fissure is closed to cut off the flow way of water, and the anchorage force of anchor cable is strengthened after grouting.The maximum displacement of the two sides of the roadway is 51.9 mm, and the maximum displacement of the roof and floor is 27.8 mm, which ensures the normal use of the roadway. The problem of large deformation of surrounding rock of soft rock roadway below weak aquifer can be better solved by the research results, and provide a certain reference for the stability control of the same type of roadway.
-
Keywords:
- weak water /
- soft rock roadway /
- anchoring /
- roadway support /
- control of surrounding rock
-
表 1 数值模拟的围岩物理力学参数
Table 1 Rock mechanics parameters of numerical simulation
岩性 内摩擦角φ/(°) 黏聚力C/
MPa抗压强度/
MPa弹性模量E/
MPa粉砂岩 28 3.5 24 8.5 粗粒砂岩 32 3.8 20 10.6 泥岩 18 0.6 12 3.7 2煤 20 1.1 11 4.8 泥质粉砂岩 21 0.8 16 2.6 细粒砂岩 23 3.0 22 5.2 中粒砂岩 34 1.8 20 4.6 -
[1] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1−30. KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1−30.
[2] 郭罡业. 阳泉矿区回采巷道顶板优势结构面分布特征及对围岩稳定性影响研究[D]. 徐州: 中国矿业大学, 2019. GUO Gangye. Preferred discontinuity distribution characteristics of mining entry roof and its impact on stability of surrounding rock in Yangquan Mining Area[D]. Xuzhou: China University of Mining and Technology, 2019.
[3] 李 辉. 富碱性水弱胶结软岩巷道围岩控制机理与应用研究[D]. 徐州: 中国矿业大学, 2020. LI Hui. Research on control mechanism and application of weakly cemented soft rock roadway with alkaline water-enriched[D]. Xuzhou: China University of Mining and Technology, 2021.
[4] 康红普,姜鹏飞,杨建威,等. 煤矿千米深井巷道松软煤体高压锚注-喷浆协同控制技术[J]. 煤炭学报,2021,46(3):747−762. KANG Hongpu,JIANG Pengfei,YANG Jianwei,et al. Roadway soft coal control technology by means of grouting bolts with high pressure-shotcreting in synergy in more than 1 000 m deep coal mines[J]. Journal of China Coal Society,2021,46(3):747−762.
[5] 康红普,姜鹏飞,黄炳香,等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报,2020,45(3):845−864. KANG Hongpu,JIANG Pengfei,HUANG Bingxiang,et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society,2020,45(3):845−864.
[6] 康红普,于 斌,杨智文,等. 特厚煤层全煤巷道高预应力锚杆支护技术与实例分析[J]. 煤炭科学技术,2016,15(4):1−8. KANG Hongpu,YU Bin,YANG Zhiwen,et al. High prestress anchor bolt support technology for full coal roadway of thick coal seam and example analysis[J]. Coal Science and Technology,2016,15(4):1−8.
[7] 余伟健,王卫军,黄文忠,等. 高应力软岩巷道变形与破坏机制及返修控制技术[J]. 煤炭学报,2014,39(4):614−623. YU Weijian,WANG Weijun,HUANG Wenzhong,et al. Deformation mechanism and rework control technology of high stress and soft rock roadway[J]. Journal of China Coal Society,2014,39(4):614−623.
[8] 张红军,李海燕,张太平,等. 深部软岩巷道高预应力增阻大变形锚杆研究及工程应用[J]. 煤炭学报,2019,44(2):409−418. ZHANG Hongjun,LI Haiyan,ZHANG Taiping,et al. Research and engineering application of high pre-stressed resistance enhancement large deformation bolt in deep soft rock roadway[J]. Journal of China Coal Society,2019,44(2):409−418.
[9] 付玉凯,王 涛,孙志勇,等. 复合软岩巷道长短锚索层次控制技术及实践[J]. 采矿与安全工程学报,2021,38(2):237−245. FU Yukai,WANG Tao,SUN Zhiyong,et al. Layered control technology and practice of long and short anchor cable in composite soft rock roadway[J]. Journal of Mining and Safety Engineering,2021,38(2):237−245.
[10] 吴拥政. 锚杆附件力学性能匹配性研究[J]. 煤炭科学技术,2021,49(4):95−102. WU Yongzheng. Study on mechanical properties and compatibility of bolt components[J]. Coal Science and Technology,2021,49(4):95−102.
[11] 吴拥政. 全长预应力锚固强力支护系统的应用研究[J]. 煤炭科学技术,2011,39(11):27−30. WU Yongzheng. Application study on pre-stressed full length bol-ting powerful support system[J]. Coal Science and Technology,2011,39(11):27−30.
[12] 何满潮,胡永光,郭志飚,等. 大断面软岩巷道耦合支护技术研究[J]. 矿山压力与顶板管理,2005,22(4):1−3. HE Manchao,HUYongguang,GUOZhibiao,et al. Study on coupling support technology of large section soft rock roadway[J]. Ground Pressure and Strata Control,2005,22(4):1−3.
[13] 张广超,何富连. 深井高应力软岩巷道围岩变形破坏机制及控制[J]. 采矿与安全工程学报,2015,32(4):571−577. ZHANG Guangchao,HE Fulian. Deformation failure mechanism of high stress deep soft roadway and its control[J]. Journal of Mining and Safety Engineering,2015,32(4):571−577.
[14] 孙晓明,王 冬,杨 军,等. 新安煤矿回风石门软岩巷道恒阻大变形耦合支护对策研究[J]. 岩石力学与工程学报,2014,33(A2):10. SUN Xiaoming,WANG Dong,YANG Jun,et al. Research on countermeasure of constant resistance and large deformation coupling support of return air course soft rock roadway in XIN AN coal mine[J]. Chinese Journal of Geotechnical Engineering,2014,33(A2):10.
[15] 黄庆享,郭 强,曹 健,等. 软岩大变形巷道破坏机理与支护技术[J]. 西安科技大学学报,2019(6):934−941. HUANG Qingxiang,GUO Qiang,CAO Jian,et al. Failure mechanism and support technology in soft rock large deformation roadway[J]. Journal of Xi’an University of Science and Technology,2019(6):934−941.
[16] 柏建彪,王襄禹,贾明魁,等. 深部软岩巷道支护原理及应用[J]. 岩土工程学报,2008,30(5):633−639. doi: 10.3321/j.issn:1000-4548.2008.05.002 BAI Jianbiao,WANG Xiangyu,JIA Mingkui,et al. Theory and application of supporting in deep soft roadways[J]. Chinese Journal of Geotechnical Engineering,2008,30(5):633−639. doi: 10.3321/j.issn:1000-4548.2008.05.002
[17] 刘 高,聂德新,韩文峰. 高应力软岩巷道围岩变形破坏研究[J]. 岩石力学与工程学报,2000,19(6):726−730. doi: 10.3321/j.issn:1000-6915.2000.06.009 LIU Gao,NIE Dexin,HAN Wenfeng. Deformation And failure of surrounding rocks of roadway in high stressed soft rocks[J]. Chinese Journal of Geotechnical Engineering,2000,19(6):726−730. doi: 10.3321/j.issn:1000-6915.2000.06.009
[18] 靖洪文, 李元海, 赵保太, 等. 软岩工程支护理论与技术[M]. 徐州: 中国矿业大学出版社, 2008. [19] 王卫军,郭罡业,朱永建,等. 高应力软岩巷道围岩塑性区恶性扩展过程及其控制[J]. 煤炭学报,2015,40(12):2747−2754. WANG Weijun,GUO Gangye,ZHU Yongjian,et al. Malignant development process of plastic zone and control technology of high stress and soft rock roadway[J]. Journal of China Coal Society,2015,40(12):2747−2754.
[20] 许兴亮,张 农. 富水条件下软岩巷道变形特征与过程控制研究[J]. 中国矿业大学学报,2007,36(3):299−304. doi: 10.3321/j.issn:1000-1964.2007.03.005 XU Xingliang,ZHANG Nong. Study of control process deformation behavior and of soft rock drift under rich water condition[J]. International Journal of Mining Science and Technology,2007,36(3):299−304. doi: 10.3321/j.issn:1000-1964.2007.03.005
[21] 高明仕,赵一超,李 明,等. 软岩巷道顶、帮、底全支全让O型控制力学模型及工程实践[J]. 岩土力学,2014,35(8):2308−2315. doi: 10.16285/j.rsm.2014.08.021 GAO Mingshi,ZHAO Yichao,LI Ming,et al. Roof and support and bottom yielding support with whole section and O-shape control principle for soft rock roadway and engineering practice[J]. Rock and Soil Mechanics,2014,35(8):2308−2315. doi: 10.16285/j.rsm.2014.08.021
[22] 刘泉声,邓鹏海,毕 晨,等. 深部巷道软弱围岩破裂碎胀过程及锚喷: 注浆加固FDEM数值模拟[J]. 岩土力学,2019,40(10):4065−4072. LIU Quansheng,DENG Penghai,BI Chen,et al. FDEM numerical simulation of the fracture and extraction process of soft surrounding rock mass and its rockbolt-shotcrete-grouting reinforcement methods in the deep tunnel[J]. Rock and Soil Mechanics,2019,40(10):4065−4072.
[23] 于学馥, 郑颖人, 刘怀恒, 等. 地下工程围岩稳定分析 [M]. 北京: 煤炭工业出版社, 1983. -
期刊类型引用(13)
1. 张敏. 成庄煤矿软岩巷道变形破坏机理及控制技术. 煤矿安全. 2025(02): 166-172 . 百度学术
2. 黎劲东. 泥质弱胶结软岩回采巷道强底鼓分层硬化支护技术研究. 能源与环保. 2025(01): 233-240 . 百度学术
3. 李桂臣,郝浩然,孙元田,李菁华,杨森,邵泽宇,沃小芳. 煤矿软岩泥化巷道梯级强化控制原理与技术. 煤炭学报. 2025(02): 810-823 . 百度学术
4. 王方田,刘超,翟景辉,张洋,牛滕冲. 深井松软围岩煤巷采动增跨效应及防控技术. 采矿与岩层控制工程学报. 2024(01): 80-90 . 百度学术
5. 郝英豪,韩昌良,杨帆,白刚. 深部强矿压大变形巷道修复技术研究. 内蒙古煤炭经济. 2024(05): 9-12 . 百度学术
6. 王业楠. 基于时效特性软岩采矿进路围岩的稳定控制技术. 世界有色金属. 2024(07): 67-69 . 百度学术
7. 赵志志,李耀学,王志华,虎文广,黄彦云,闫学忠,尹发忠. 复杂软岩条件下综采工作面液压支架创新回撤方法. 能源与环保. 2024(08): 268-272+280 . 百度学术
8. 武瑞龙,车驰远,王超群,都书禹,张云,赵长政,严金全. 构造应力影响下软岩巷道围岩破坏机理及控制技术研究. 采矿与安全工程学报. 2024(05): 971-981 . 百度学术
9. 郭鹏飞,王戌,徐飞龙,孙岩,刘鑫. 软弱岩体锚杆物理锚固装置参数优化分析及试验研究. 岩土力学. 2024(10): 2961-2970 . 百度学术
10. 曹凯. 富水含水层下掘进巷道防治水技术研究. 山西化工. 2024(10): 184-186 . 百度学术
11. 王志涛. 淋水条件下碎裂围岩巷道支护方案设计及应用. 山西化工. 2024(11): 217-219 . 百度学术
12. 闫学忠,郭罡业,汪占领. 高黏结刚度锚索在层状富水软岩大变形巷道中的应用. 能源与环保. 2024(12): 45-53 . 百度学术
13. 黎劲东,汪占领,郭罡业. 淋水区膨胀性软岩切眼变形机理与隔水强力支护技术研究. 能源与环保. 2024(12): 270-278 . 百度学术
其他类型引用(3)