Ultrafast uptake of fluoride from coal mining water by aluminum modified activated carbon prepared through one-step solid phase reaction
-
摘要:
矿井水中(F−)超标已成为制约我国西部矿区煤炭绿色开发的主要挑战之一。针对该问题,开发了机械化学法一步固相反应制备Al改性活性炭(AC-Al)的方法,解决了常规水热法改性活性炭产生废液废渣、制备周期长的问题,并实现了矿井水中F−的快速、高效去除。研究了Al添加量、pH、共存阴离子和有机物、吸附剂投加量及反应时间等对除氟性能的影响。AC-Al除氟性能与Al添加量成正比,添加量为0.32 g,吸附反应30 s时,水中F−去除率达到80%以上。pH在3~10范围内,F−去除率均大于80%,具有良好的水质适应性。吸附过程更符合Langmuir模型,即为单层吸附,理论饱和吸附量为1.47 mg/g。吸附过程符合准一级动力学模型。硫酸根离子、氯离子和碳酸氢根离子(1 000 mg/L时)、腐殖酸对F−去除没有影响,氯离子和碳酸氢根离子质量浓度为3 000 mg/L时,除氟率分别降低约21%和11%。AC-Al投加量为10 g/L时,矿井水中F−去除率达84.9%(30 s内),质量浓度从4.85 mg/L降低至0.73 mg/L,满足《地表水环境质量标准》(GB3838—2002)中F−浓度限值(I、II、III类),矿井水中F−吸附过程同样符合准一级动力学模型。元素面分布表明,Al均匀地负载于活性炭表面;F−均匀吸附在AC-Al上,与Al分布特征相似,证明Al是F−吸附潜在活性位点。X射线光电子能谱结果表明,F−吸附前后,AC-Al表面的Al元素结合能从74.20 eV升高至74.28、77.80 eV等2种状态,说明Al与F结合形成了Al-FOH、Al-F化学键,是快速稳定除氟的直接原因。同时,AC-Al吸附剂上的Al溶出量很低(0.34 μg/g)。机械化学法制备的Al改性活性炭除氟效果良好,可为除氟吸附剂制备提供新的普适性技术路径,同时为解决矿井水除氟问题提供技术支撑。
Abstract:High fluoride (F−) level in coal mining water has became one of the major challenges which restricts the green development of coal mining in western China. To resolve this problem, a mechanochemical one-step solid phase reaction method for preparing aluminum modified activated carbon (AC-Al) was developed, which avoid production of liquid and solid waste as well as long preparation period compared with conventional hydrothermal modification methods, as a result, fluoride was removed from coal mining water fast and efficiently. The effects of Al addition amount, pH, coexisting anions and organics, adsorbent dosage and reaction time on the fluorine removal capability were studied. The fluoride removal efficiency of AC-Al was proportional to the addition amount of Al, and when Al addition amount was 0.32 g, the fluoride removal from simulated water reaches >80% within 30 s. Over 80% of fluoride was removed from water under pH from 3 to 10, which showed good applicability of AC-Al for different water quality. The adsorption process fitted well with the Langmuir model, that means monolayer adsorption, and the theoretical saturated adsorption capacity of AC-Al was 1.47 mg/g. The adsorption process conformed to the pseudo-first-order kinetic model. Fluoride removal was not affected by sulfate, chloride and bicarbonate ion (
1000 mg/L), as well as humic acid, but the adsorption efficiency decreased by 21% and 11% respectively when the chloride and bicarbonate ion concentration was3000 mg/L. The removal rate of fluoride in the coal mining water reaches 84.9% when AC-Al was 10 g/L within 30 s, and the concentration was reduced from 4.85 mg/L to 0.73 mg/L, which met the requirements of “Environmental Quality Standard for Surface Water” (GB3838-2002) (Class I, II, III). The fluoride adsorption process in coal mining water conformed to the pseudo-first-order kinetic model as well. The element mapping of AC-Al showed that Al was uniformly loaded on the surface of activated carbon; and fluoride was evenly adsorbed on AC-Al which was similar to Al distribution, indicating that Al was the active site for fluoride adsorption. According to the results of X-ray photoelectron spectroscopy, the binding energy of Al increased from 74.20 eV to 74.28 eV and 77.80 eV ( two binding states), implied that the Al-FOH, Al-F were formed on the surface of AC-Al after adsorption, which is the direct cause of rapid and stable defluoridation. Meanwhile,there was very little Al dissolution from the adsorbent (0.34 μg/g). The aluminum modified activated carbon prepared by mechanochemical method had good defluoridation capacity, which could provide a new universal technical route for the preparation of adsorbents, and a support to remove fluoride from coal mining water. -
-
表 1 矿井水主要水质指标
Table 1 The major parameters of coal mining water
指标名称 数值 pH 9.30 F−质量浓度/(mg·L−1) 4.85 Cl−质量浓度/(mg·L−1) 390.5 SO42-质量浓度/(mg·L−1) 78.4 HCO3−质量浓度/(mg·L−1) 730.0 Mg2+质量浓度/(mg·L−1) 4.0 Ca2+质量浓度/(mg·L−1) 6.1 Na+质量浓度/(mg·L−1) 578.4 K+质量浓度/(mg·L−1) 4.8 TOC质量浓度/(mg·L−1) 2.4 表 2 Langmuir和Freundlich吸附等温线模型参数
Table 2 Model parameters of Langmuir and Freundlich adsorption isotherm
模型 参数 数值 Langmuir qm/(mg·g−1) 1.474 0 KL/(L·mg−1) 0.080 6 R2 0.984 2 Freundlich KF/(mg·g−1·(mg·L−1)(−1/n)) 0.183 8 1/n 0.505 0 R2 0.908 0 表 3 AC-Al吸附F−的动力学参数
Table 3 Model parameters of F− adsorption kinetics
模型 参数 数值 准一级动力学 qe/(mg·g−1) 0.412 2 K1/(s−1) 0.113 6 R2 0.999 0 准二级动力学 qe/(mg·g−1) 0.433 9 K2/(g·mg−1·s−1) 0.590 4 R2 0.997 0 表 4 吸附F-的动力学参数
Table 4 Model parameters of F- adsorption kinetics
模型 参数 数值 准一级动力学 qe/(mg·g−1) 0.421 4 K1/(s−1) 0.161 6 R2 0.920 5 准二级动力学 qe/(mg·g−1) 0.469 7 K2/(g·mg−1·s−1) 0.455 3 R2 0.877 5 -
[1] LIU J,PENG Y,LI C,et al. A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China[J]. Ecotoxicology and Environmental Safety,2021,207(3):111512.
[2] 童 庆, 徐 慧, 樊 华, 等. Al13改性羟基磷灰石的除氟性能研究[J]. 环境科学学报, 2021, 41(7): 2748−2757. TONG Qing, XU Hui, FAN Hua, et al. Study on the fluoride removal performance of Al13 modified hydroxyapatite[J]. Acta Scientiae Circumstantiae, 41(7): 2748−2757.
[3] 顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002 GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002
[4] 赵 焰,陆梦楠,孙 斌,等. 含氟矿井水混凝吸附联合除氟技术工业化应用研究[J]. 煤炭科学技术,2020,48(9):166−172. doi: 10.13199/j.cnki.cst.2020.09.021 ZHAO Yan,LU Mengnan,SUN Bin,et al. Research on industrial application of coagulation and adsorption combined with fluorine removal technology in fluorine-containing mine water[J]. Coal Science and Technology,2020,48(9):166−172. doi: 10.13199/j.cnki.cst.2020.09.021
[5] 苏双青,赵 焰,徐志清,等. 我国煤矿矿井水氟污染现状及除氟技术研究[J]. 能源与环保,2020,42(11):5−10. SU Shuangqing,ZHAO Yan,XU Zhiqing,et al. Status quo of fluoride pollution of coal mine water in China and research on fluoride removal technology[J]. China Energy and Environmental Protection,2020,42(11):5−10.
[6] 贺志丽,贺志霞,陈瑞琴. 改性活性炭对水溶液中氟离子的吸附性能[J]. 武汉工程大学学报,2012,34(1):43−47. doi: 10.3969/j.issn.1674-2869.2012.1.009 HE Zhili,HE Zhixia,CHEN Ruiqin. Adsorption of modified activated carbon to fluoride from aqueous solution[J]. Journal of Wuhan Institute of Technology,2012,34(1):43−47. doi: 10.3969/j.issn.1674-2869.2012.1.009
[7] 郑利祥,高 杰,杨建超. 载镧活性氧化铝制备及含氟废水除氟因素研究[J]. 煤炭科学技术,2018,46(9):87−92. doi: 10.13199/j.cnki.cst.2018.09.014 ZHENG Lixiang,GAO Jie,YANG Jianchao. Study on preparation of La-loaded active alumina and factors affecting fluoride removal for fluorine-containing wastewater[J]. Coal Science and Technology,2018,46(9):87−92. doi: 10.13199/j.cnki.cst.2018.09.014
[8] BAKHTA S,SADAOUI Z,LASSI U,et al. Performances of metals modified activated carbons for fluoride removal from aqueous solutions[J]. Chemical Physics Letters,2020,754:137705. doi: 10.1016/j.cplett.2020.137705
[9] HE J,YANG Y,WU Z,et al. Review of fluoride removal from water environment by adsorption[J]. Journal of Environmental Chemical Engineering,2020,8(6):104516. doi: 10.1016/j.jece.2020.104516
[10] HE Z L,HE Z F,HE Z X,et al. Effects of Co-Existing Anions on Fluoride Adsorption onto Magnesia-Amended Activated Carbon[J]. Advanced Materials Research,2012,463-464:47−51. doi: 10.4028/www.scientific.net/AMR.463-464.47
[11] SAINI A,MAHESHWARI P,TRIPATHY S S,et al. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment[J]. Journal of Water Process Engineering,2020,34:101136. doi: 10.1016/j.jwpe.2020.101136
[12] 胡之阳,唐思远,王 静,等. 载镧活性炭对水中氟离子的吸附性能研究[J]. 河南化工,2011,28(19):36−38. doi: 10.3969/j.issn.1003-3467.2011.19.027 HU Zhiyang,TANG Siyuan,WANG Jing,et al. Study on Adsorptive Properties to Fluoride Ion of Lanthanum-loaded Activated Carbon[J]. Henan Chemical Industry,2011,28(19):36−38. doi: 10.3969/j.issn.1003-3467.2011.19.027
[13] 辛思奇,赵通林,李学伟,等. 机械活化蛇纹石吸附除磷性能及机理研究[J]. 环境科学学报,2022,42(7):1−8. XIN Siqin,ZHAO Tonglin,LI Xuewei,et al. Investigation on adsorption capacity and mechanism of phosphorus by mechanochemically activated serpentine[J]. Acta Scientiae Circumstantiae,2022,42(7):1−8.
[14] 朱日欣. 机械化学法制备水滑石及去除水中磷酸盐的性能研究[D]. 济南: 济南大学, 2021. ZHU Rixin. Study on mechanochemical synthesis of layered double hydroxide for the removal of phospahte from aqueous solution[D]. Jinan: Jinan University, 2021.
[15] HUANG Y H,LO W S,KUO Y W,et al. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds[J]. Chemical Communications,2017,53:5818−5821. doi: 10.1039/C7CC03105J
[16] MARIO B,DAILY R P,RAFAEL P,et al. Mechanochemistry: Toward Sustainable Design of Advanced Nanomaterials for Electrochemical Energy Storage and Catalytic Applications[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):9530−9544.
[17] DO J L,FRISCIC T. Mechanochemistry: A Force of Synthesis[J]. Acs Cent Sci,2017,3(1):13−19. doi: 10.1021/acscentsci.6b00277
[18] ZHOU X,MIAO Y R,SUSLICK K S,et al. Mechanochemistry of Metal-Organic frameworks under pressure and shock[J]. Accounts of Chemical Research,2020,53(12):2806−2815. doi: 10.1021/acs.accounts.0c00396
[19] 赵 新,乔志华,孙玉绣,等. 机械化学法合成多配体MOF填料用于高效CO2分离[J]. 膜科学与技术,2021,41(5):11−16+25. ZHAO Xin,QIAO Zhihua,SUN Yuxiu,et al. Mechanochemical synthesis of mixed ligands MOF filler for highly efficient CO2 separation[J]. Membrane Science and Technology,2021,41(5):11−16+25.
[20] 万克记,范津津,王国强,等. 煤系腐植酸磁性颗粒对水中Pb2+和Hg2+的选择性吸附[J]. 煤炭学报,2021,46(9):2746−2754. WAN Keji,FAN Jinjin,WANG Guoqiang,et al. Humic acid magnetic nanoparticles for the selective removal of Pb2+ tand Hg2+ in water[J]. Journal of China Coal Society,2021,46(9):2746−2754.
[21] 陈红红,黄丽玫,毋福海,等. 载铝改性人造沸石对含氟水除氟效果的研究[J]. 环境科学与技术,2011,34(7):42−45,190. doi: 10.3969/j.issn.1003-6504.2011.07.012 CHEN Honghong,HUANG Limei,WU Haifu,et al. Removing fluoride from water using modified permutite[J]. Environmental Science & Technology,2011,34(7):42−45,190. doi: 10.3969/j.issn.1003-6504.2011.07.012
[22] 卢 伟,桑稳姣,李 敏,等. 介质阻挡放电等离子体老化微塑料及对Zn(II)吸附的影响[J]. 中国环境科学,2022,42(8):3744−3754. LU Wei,SANG Wenjiao,LI Min,et al. Dielectric barrier discharge plasma aging of microplastics and its effect on Zn(II) adsorption[J]. China Environmental Science,2022,42(8):3744−3754.
[23] VENCES-ALVAREZ E,VELAZQUEZ-JIMENEZ L H,CHAZARO-RUIZ L F,et al. Fluoride removal in water by a hybrid adsorbent lanthanum–carbon[J]. Journal of Colloid And Interface Science,2015,455:194−202. doi: 10.1016/j.jcis.2015.05.048
[24] MULLICK A,NEOGI S. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption[J]. Ultrasonics sonochemistry,2018,45:65−77. doi: 10.1016/j.ultsonch.2018.03.002
[25] ZHANG J,CHEN N,TANG Z,et al. A study of the mechanism of fluoride adsorption from aqueous solutions onto Fe-impregnated chitosan[J]. Physical chemistry chemical physics:PCCP,2015,17(18):12041−12050. doi: 10.1039/C5CP00817D
[26] 施 萍. 腐殖酸对SBR中活性污泥吸附去除铜离子的影响试验研究[D]. 重庆: 重庆大学, 2016. SHI Ping. Experiment of the impact of humic acid on adsorption of copper ion by activated sludge in SBR[D]. Chongqing: Chongqing University, 2016.
[27] DAIFULLAH A A M,YAKOUT S M,ELREEFY S A. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw[J]. Journal of Hazardous Materials,2007,147(1-2):633−643. doi: 10.1016/j.jhazmat.2007.01.062
[28] SINGH K,LATAYE D H,WASHEWAR K L et al. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study[J]. Journal of Fluorine Chemistry,2017,194:23−32. doi: 10.1016/j.jfluchem.2016.12.009
[29] GAO M,WANG W,CAO M,et al. Hierarchical hollow manganese-magnesium-aluminum ternary metal oxide for fluoride elimination[J]. Environmental Research,2020,188:109735. doi: 10.1016/j.envres.2020.109735
[30] HUANG L,YANG Z,LEI D,et al. Experimental and modeling studies for adsorbing different species of fluoride using lanthanum-aluminum perovskite[J]. Chemosphere,2021,263:128089. doi: 10.1016/j.chemosphere.2020.128089
[31] CHAI L,WANG Y,ZHAO N,et al. Sulfate- doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water[J]. Water Research,2013,47(12):4040−4049. doi: 10.1016/j.watres.2013.02.057
-
期刊类型引用(10)
1. 史西峰. 煤层瓦斯含量定点取样直接测定装置研发及应用. 能源技术与管理. 2025(01): 51-53 . 百度学术
2. 钟传义,曹明,龙威成,贾秉义. 淮北矿区煤层气水平井分段压裂排采效果评估技术研究. 陕西煤炭. 2025(05): 99-103 . 百度学术
3. 梁运培,朱拴成,陈亮,赵坤,孙东玲,陈建杰,张碧川. 倾斜碎软煤层群煤层气协调开发关键技术-以艾维尔沟矿区为例. 煤炭科学技术. 2024(01): 211-220 . 本站查看
4. 高明忠,宋杰,崔鹏飞,李永程,李聪,李佳南,刘贵康,游镇西,史晓军. 深部煤层原位保压保瓦斯取心技术装备及初步应用. 煤炭科学技术. 2024(04): 143-154 . 本站查看
5. 丁华忠,龙威成,程合玉,刘德贵,方有向,周伟东,万玉柱. 煤层气井抽采效果井下长距离取样检测技术研究. 陕西煤炭. 2023(02): 16-19+25 . 百度学术
6. 柴建禄. 基于梳状定向钻孔的碎软煤层瓦斯含量测定取样技术. 煤矿安全. 2022(06): 96-100+107 . 百度学术
7. 龙威成,孙四清,陈建. 碎软煤层井下长距离定点密闭取心技术研究. 煤田地质与勘探. 2022(08): 93-98 . 百度学术
8. 徐念庭. 煤层气含量密闭取芯测试技术. 化学工程与装备. 2022(07): 245-246+230 . 百度学术
9. 高晓亮,张朋,龙威成. 煤层密闭取心用超前隔水式PDC钻头设计与优化. 煤炭工程. 2021(07): 178-182 . 百度学术
10. 谢明慧. 利用低位抽采巷穿层治理煤巷条带瓦斯技术应用. 煤炭与化工. 2021(08): 99-100 . 百度学术
其他类型引用(2)