Mechanism of short-wall block backfill water-preserved mining based on water-conducting fractures development-heavy metal ions migration
-
摘要:
短壁块段式充填采煤技术可有效解决煤炭资源浪费、水资源流失和矸石堆积等问题,然而,采空区矸石充填材料受到矿井水的长期作用后,其内部重金属离子可能会发生浸出,对矿区水资源造成一定潜在污染影响。为此,结合短壁块段式充填采煤技术,系统地对采动造成的水资源流失和水资源污染综合防治展开研究。首先,针对矿区水资源流失防治,基于“煤柱、充填体−阻隔层−隔水层”的层位组合关系,研究短壁块段式充填采煤覆岩导水裂隙发育特征,揭示短壁块段式充填采煤诱发的覆岩结构演变下水资源保护的控制机理。其次,针对矿区水资源污染防治,建立采空区矸石充填材料重金属离子迁移模型,揭示矸石充填材料对水资源的污染机理,分析矸石充填材料重金属离子迁移规律。并由此总结矿区水资源流失-污染综合防治技术,提出基于水资源流失−污染防治的充实率设计方法。结果表明:在水资源流失防治方面,矸石材料作为充填体充入采空区后,作为永久承载体与块段间保护煤柱共同承担上覆岩层的载荷,有效阻止了低位岩层组的垮落,限制覆岩导水裂隙贯穿隔水层,确保高位岩层组的完整性;在水资源污染防治方面,矸石充填材料重金属离子在渗流、浓度、应力的耦合作用下,以矿井水为载体,在重力势能和水头压力的驱动下沿着煤柱侧向以及底板下方进行迁移运动,且重金属离子迁移距离随底板岩层渗透率、重金属离子浸出浓度/污染源强、底板裂隙深度和水位高度的增大而增大,随矸石粒径和围岩应力的增大而减小。基于此,总结了矿区水资源流失−污染综合防治技术,包括开采参数调控技术、充填参数调控技术、污染源头调控技术、传播途径调控技术以及水体原位调控技术,并提出基于水资源流失−污染防治的充实率设计方法,实现矿区水资源流失−污染综合防治。研究成果对综合防治煤炭开采造成的矿区水资源破坏问题提供一定的科学理论依据和工程指导。
Abstract:Short-wall block backfill mining (SBBM) technology can effectively solve the problems of coal resources waste, water resources loss and gangue waste accumulation. However, after the long-term effect of mine water, the internal heavy metal ions in the gangue backfill materials may be leached, which have a certain potential impact on the groundwater environment in the mining area. Therefore, according to the technical characteristics of SBBM technology, comprehensive prevention of water resources loss and water resources pollution during SBBM was studied systematically. First, prevention and control of water resources loss in the mining area. Based on the combination relationship of “coal pillar, backfill body-barrier layer-aquifuge”, The development of water-conducting fractures in overlying strata under SBBM were analysed. The control mechanism of water resources protection under the evolution of overlying strata structure induced during SBBM was revealed. Secondly, prevention and control of water resources pollution in mining areas. The migration model of heavy metal ions in the gob was established. Then, the pollution mechanism of gangue backfill materials to water resources was revealed, the migration law of heavy metal ions in gangue backfill materials was analyzed, the comprehensive prevention and control technology of water resources destruction in mining area was summarized, the comprehensive prevention and control technology of water resources loss-pollution in mining area was summarized, and the design method of filling ratio based on water resources loss-pollution prevention was put forward. The results show that the gangue materials were filled into the gob as the backfill body, the gangue materials would be the permanent bearing body, which bore the load of the overlying strata accompanied with the protective coal pillar among the blocks, which could greatly prevents the collapse of the low-level stratum, restrict the water-conducting fractures to penetrate the barrier layer and protect the integrity of the high-level stratum. In addition, the heavy metal ions in gangue backfill materials were subjected to the coupled action of seepage, concentration, and stress and then driven by water head pressure and gravitational potential energy to migrate along the side of the coal pillar and below the floor stratum, during which mine water served as the carrier. The migration distance of heavy metal ions increased with increasing of the permeability of floor strata, leaching concentration of heavy metal ions/pollution source intensity, depth of floor breaks and water level heights, and decreases with the increase of gangue particle size and surrounding rock stress. Based on this, the comprehensive prevention and control technology of water resources loss-pollution in mining area was summarized, it included mining parameter control technology, backfill parameter control technology, pollution source control technology, transmission route control technology and in-situ water control technology. and the design method of filling ratio based on water resource loss-pollution prevention and control was put forward, which can realize the comprehensive prevention and control of water resource loss-pollution in mining area. This study will provide scientific theoretical basis and guidance for the comprehensive prevention and control of the water resources destruction problems caused by coal mining.
-
表 1 相似模拟实验材料配比参数
Table 1 Proportional parameters of materials for simulation experimental
序号 岩层 模拟厚度/cm 模拟强度/kPa 砂质量/kg 碳酸钙质量/kg 石膏质量/kg 水质量/kg 1 黄土 22.8 0.2 179.55 17.96 7.69 22.8 2 泥岩 7.3 70.0 57.49 5.75 2.46 7.3 3 粗粒砂岩 20.9 174.4 161.23 8.06 18.81 20.9 4 泥岩 2.2 70.0 17.33 1.73 0.74 2.2 5 细砂岩 3.3 202.0 22.28 3.71 3.71 3.3 6 砂质泥岩 9.5 103.2 74.81 5.34 5.34 9.5 7 泥岩 11.3 70.0 89.0 8.9 3.8 11.3 8 粉砂岩 3.3 180.0 25.46 1.27 2.97 3.3 9 泥岩 3.9 70.0 30.71 3.07 1.32 3.9 10 粉砂岩 8.5 180.0 65.57 3.28 7.65 8.5 11 泥岩 1.3 70.0 10.24 1.02 0.44 1.3 12 煤 2.6 63.2 20.48 2.05 0.87 2.6 13 砂质泥岩 2.0 129.2 15.75 0.68 1.57 2.0 表 2 矸石试样级配方案
Table 2 Gradation scheme of gangue sample
级配方案 各粒径范围的矸石体积占比/% 0~15 mm 15~30 mm 30~50 mm 1 70.0 30.0 — 2 30.0 40.0 30.0 3 — 30.0 70.0 表 3 矸石中离子或化合物成分及含量
Table 3 Composition and content of ions or compounds in gangue
化学成分 含量/% 化学成分 含量/% SiO2 59.90 Ba 0.10 Al2O3 20.70 Mn 0.094 Fe2O3 6.70 F ≤0.045 K2O 2.40 Be 0.011 CaO 2.00 Zn 0.009 MgO 1.80 Cu 0.0006 S 1.53 Pb <0.0002 Na2O 0.65 As <0.0001 P 0.05 Cd <0.0001 Ti 0.50 表 4 模拟方案
Table 4 Simulation program
序号 底板岩性 重金属离子浸出浓度/(mol·L−1) 矸石粒径/mm 围岩应力/MPa 底板裂隙深度/m 水位高度/m 1 灰岩/细粒砂岩/泥岩/中粒砂岩 3.2×10-5 15~30 6.5 0 3.8 2 泥岩 1.2×10−5/2.2×10−5/3.2×10−5/4.2×10−5 15~30 6.5 0 3.8 3 泥岩 3.2×10-5 0~15/15~30/30~50 6.5 0 3.8 4 泥岩 3.2×10-5 15~30 5.0/6.5/8.0/9.5 0 3.8 5 泥岩 3.2×10-5 15~30 6.5 0/5.0/10/15.0 3.8 6 泥岩 3.2×10-5 15~30 6.5 0 0.8/1.8/2.8/3.8 -
[1] 郭文兵,赵高博,杨伟强,等. 高耸构筑物采动变形特征与地基精准注浆加固机理[J]. 煤炭学报,2022,47(5):1908−1920. GUO Wenbing,ZHAO Gaobo,YANG Weiqiang,et al. Deformation charateristics of high-rise structures due to coal mining and their precise grouting reinforcement mechanisms[J]. Journal of China Coal Society,2022,47(5):1908−1920.
[2] 张彦禄,王步康,张小峰,等. 我国连续采煤机短壁机械化开采技术发展40a与展望[J]. 煤炭学报,2021,46(1):86−99. ZHANG Yanlu,WANG Bukang,ZHANG Xiaofeng,et al. Forty years development and future prospect on mechanized shortwall mining technology with continuous miner in China[J]. Journal of China Coal Society,2021,46(1):86−99.
[3] 曹 鑫. 唐口煤矿深部充填开采地表变形规律研究[D]. 徐州: 中国矿业大学, 2019. CAO Xin. Study on surface deformation law of deep filling mining in Tangkou Coal Mine[D]. Xuzhou: China University of Mining & Technology, 2019.
[4] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010. QIAN Minggao, SHI Pingwu, XU Jialin. Mining pressure and strata control[M]. Xuzhou: China University of Mining & Technology Press, 2010.
[5] 高保彬,刘云鹏,潘家宇,等. 水体下采煤中导水裂隙带高度的探测与分析[J]. 岩石力学与工程学报,2014,33(S1):3384−3390. GAO Baobin,LIU Yunpeng,PAN Jiayu,et al. Delection and analysis of height of water flowing fractured zone in underwater mining[J]. Chinese Journal of Rock Mechanics & Engineering,2014,33(S1):3384−3390.
[6] SUN Kui,FAN Limin,XIA Yucheng,et al. Impact of coal mining on groundwater of Luohe Formation in Binchang mining area[J]. International Journal of Coal Science & Technology,2021,8(1):88−102.
[7] 张 云,曹胜根,郭 帅,等. 含水层下短壁块段式采煤导水裂隙带高度发育规律研究[J]. 采矿与安全工程学报,2018,35(1):106−111. ZHANG Yun,CAO Shenggen,GUO Shuai,et al. Study on the height of fractured water-conducting zone under aquifer for short wall blocking mining[J]. Journal of Mining & Safety Engineering,2018,35(1):106−111.
[8] WU Qiang,SHEN Jianjun,LIU Weitao,et al. A RBFNN-based method for the prediction of the developed height of a water-conductive fractured zone for fully mechanized mining with sublevel caving[J]. Arabian Journal of Geosciences,2017,10(7):1−9.
[9] LI Jiayan,WANG Jinman. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946
[10] XUE Qiang,LU Haijun,ZHAO Ying,et al. The metal ions release and microstructure of coal gangue corroded by acid-based chemical solution[J]. Environmental Earth Sciences,2014,71(7):3235−3244. doi: 10.1007/s12665-013-2743-y
[11] 张 云,曹胜根,来兴平,等. 短壁块段式充填采煤覆岩导水裂隙发育机理及控制研究[J]. 采矿与安全工程学报,2019,36(6):1086−1092. ZHANG Yun,CAO Shenggen,LAI Xingping,et al. Study on the development mechanism and control of water-conducting fractures in short-wall block backfill mining[J]. Journal of Mining & Safety Engineering,2019,36(6):1086−1092.
[12] 周茂普. 连续采煤机块段式开采工艺与围岩控制技术研究[D]. 徐州: 中国矿业大学, 2014. ZHOU Maopu. Research on continuous mining methods and rock control technology[D]. Xuzhou: China University of Mining & Technology, 2014.
[13] 曹胜根,曹 洋,姜海军. 块段式开采区段煤柱突变失稳机理研究[J]. 采矿与安全工程学报,2014,31(6):907−913. CAO Shenggen,CAO Yang,JIANG Haijun. Research on catastrophe instability mechanism of section coal pillars in block mining[J]. Journal of Mining & Safety Engineering,2014,31(6):907−913.
[14] 张 云,曹胜根,来兴平,等. 短壁块段式采煤覆岩导水裂隙发育力学特性分析[J]. 煤炭学报,2020,45(S2):551−560. ZHANG Yun,CAO Shenggen,LAI Xingping,et al. Analysis on the mechanical properties of water-conducting fractures development during the shortwall block mining[J]. Journal of China Coal Society,2020,45(S2):551−560.
[15] BAI Haibo,MA Dan,CHEN Zhanqing. Mechanical behavior of groundwater seepage in karst collapse pillars[J]. Engineering Geology,2013,164:101−106. doi: 10.1016/j.enggeo.2013.07.003
[16] 董霁红,卞正富,王贺封. 矿山充填复垦场地重金属含量对比研究[J]. 中国矿业大学学报,2007,37(4):531−536. DONG Jihong,BIAN Zhengfu,WANG Hefeng. Comparison of heavy metal contents between different reclaimed soils and the control soil[J]. Journal of China University of Mining & Technology,2007,37(4):531−536.
[17] LI Meng,RUI Zuo,WANG Jinshen,et al. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model[J]. Journal of Contaminant Hydrology,2018,218:70−83. doi: 10.1016/j.jconhyd.2018.10.005
[18] 刘建功,赵利涛. 基于充填采煤的保水开采理论与实践应用[J]. 煤炭学报,2014,39(8):1545−1551. LIU Jiangong,ZHAO Litao. Theory of water based protection and practice application in mining on the backfilling mining technology[J]. Journal of China Coal Society,2014,39(8):1545−1551.
[19] 刘建功,李新旺,何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150. LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.
[20] 马立强,张东升,王烁康,等. “采充并行”式保水采煤方法[J]. 煤炭学报,2018,43(1):62−69. MA Liqiang,ZHANG Dongsheng,WANG Shuokang,et al. Study on the method of water conservation and coal mining in para-llel with mining and charging[J]. Journal of China Coal Society,2018,43(1):62−69.
[21] MA Liqiang,JIN Zhiyuan,LIANG Jimeng,et al. Simulation of water resource loss in short-distance coal seams disturbed by repeated mining[J]. Environmental Earth Sciences,2015,74(7):5653−5662. doi: 10.1007/s12665-015-4581-6
[22] 李 猛,张吉雄,邓雪杰,等. 含水层下固体充填保水开采方法与应用[J]. 煤炭学报,2017,42(1):127−133. LI Meng,ZHANG Jixiong,DENG Xuejie,et al. Method of water protection based on solid backfill mining under water bearing strata and its application[J]. Journal of China Coal Society,2017,42(1):127−133.
[23] 李 猛,吴晓刚,姜海强,等. 基于充实率控制的导水裂隙带发育高度研究[J]. 中国煤炭,2014,40(1):50−57. doi: 10.3969/j.issn.1006-530X.2014.01.013 LI Meng,WU Xiaogang,JIANG Haiqiang,et al. Study on development height of water fracture zone based on the control of filling rate[J]. Coal Science and Technology Magazine,2014,40(1):50−57. doi: 10.3969/j.issn.1006-530X.2014.01.013
[24] 肖利萍,梁 冰,陆海军,等. 煤矸石浸泡污染物溶解释放规律研究-阜新市新邱露天煤矿不同风化煤矸石在不同固液比条件下浸泡实验[J]. 中国地质灾害与防治学报,2006,17(2):151−155,163. XIAO Liping,LIANG Bing,LU Haijun,et al. Releasement of contaminants within coal gangue based on soaking experiment-A case study of coal gangue in Xinqiu Coal Mine, Fuxin[J]. The Chinese Journal of Geological Hazard & Control,2006,17(2):151−155,163.
[25] 肖利萍. 煤矸石淋溶液对地下水系统污染规律的研究[D]. 阜新: 辽宁工程技术大学, 2007. XIAO Liping, Study on pollution laws of coal gangue leaching solution to groundwater system[D]. Fuxin: Liaoning Technical University, 2007.
[26] 杨 建,陈家军,王心义,等. 演马矿煤矸石堆周围环境中重金属分布特征[J]. 环境科学研究,2008,21(1):90−96. YANG Jian,CHEN Jiajun,WANG Xinyi,et al. Yanma coal mine coal gangue in the surrounding environment of the distribution characteristics of heavy metals[J]. Environmental Science Research,2008,21(1):90−96.
[27] 王 岩,梁 冰. 煤矸石淋滤液中多组分溶质对地下水污染的研究[J]. 湖南科技大学学报(自然科学版),2006,21(2):81−86. WANG Yan,LIANG Bing. Study on the multi-component solute in coal gangue leachate for groundwater pollution[J]. Journal of Hunan university of science & technology (natural science edition),2006,21(2):81−86.
[28] SY/T5163-2018. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法[S]. 北京: 石油工业出版社. [29] GB/T 14848-2017. 地下水质量标准[S]. 北京: 中国环境科学出版社. [30] GB 50108-2008. 地下工程防水技术规范[S]. 北京: 中国计划出版社. [31] 张豪哲,李 文,杜明泽,等. 闭坑矿山地下水污染防治技术研究现状和展望[J]. 煤炭工程,2022,54(11):170−176. ZHANG Haozhe,LI Wen,DU Mingze,et al. Progress and prospect of groundwater pollution control technology for closed mine[J]. Coal Engineering,2022,54(11):170−176.
-
期刊类型引用(7)
1. 张云, 张龙, 来兴平, 曹胜根, 杨彦斌, 刘永孜, 詹睿, 白立丞, 叶昊. 短壁胶结充填开采房式遗留煤柱采场结构稳定性控制研究. 煤炭科学技术. 2025(06) 本站查看
2. 周楠, 张吉雄, 许健飞, 张羽者, 李泽君. 西部矿区含水层下采动空间矸石注浆间隔充填岩层控制机制研究. 岩石力学与工程学报. 2025(07) 百度学术
3. 史全林,龙力华,杨前,王少辉,谢大伟. 煤矸石在绿色矿山建设中的规模化利用技术研究进展. 煤田地质与勘探. 2025(03): 113-125 . 百度学术
4. 刘浪,罗屹骁,朱梦博,苏臣,吴涛涛,王建友,杭彦龙. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践. 煤炭科学技术. 2024(04): 83-92 . 本站查看
5. 卓庆奉,巴蕾,王晶,王奇峰. 大采高工作面矸石充填开采技术研究. 设备管理与维修. 2024(10): 181-184 . 百度学术
6. Xuejie Deng,Yuan Jiao,Shicong Li,Nan Zhou,Yan An,Erol Yilmaz,Qingxue Zheng,Xifeng Liang. Evaluation of the migration and environmental effects of metal elements within cementitious gangue-fly ash backfill in underground coal mines. International Journal of Mining Science and Technology. 2024(11): 1551-1562 . 必应学术
7. 岳阳,阳元中,郭敬中. 浅部矿体开采覆岩运移及导水裂隙带发育高度分析. 有色金属工程. 2023(07): 120-127+146 . 百度学术
其他类型引用(5)