高级检索

大倾角大采高开采支架动载失稳机理及控制

解盘石, 吴少港, 罗生虎, 伍永平, 陈建杰

解盘石,吴少港,罗生虎,等. 大倾角大采高开采支架动载失稳机理及控制[J]. 煤炭科学技术,2023,51(2):58−71

. DOI: 10.13199/j.cnki.cst.2022-1746
引用本文:

解盘石,吴少港,罗生虎,等. 大倾角大采高开采支架动载失稳机理及控制[J]. 煤炭科学技术,2023,51(2):58−71

. DOI: 10.13199/j.cnki.cst.2022-1746

XIE Panshi,WU Shaogang,LUO Shenghu,et al. Dynamic instability mechanism of support and its control in longwall mining of steeply dipping coal seam[J]. Coal Science and Technology,2023,51(2):58−71

. DOI: 10.13199/j.cnki.cst.2022-1746
Citation:

XIE Panshi,WU Shaogang,LUO Shenghu,et al. Dynamic instability mechanism of support and its control in longwall mining of steeply dipping coal seam[J]. Coal Science and Technology,2023,51(2):58−71

. DOI: 10.13199/j.cnki.cst.2022-1746

大倾角大采高开采支架动载失稳机理及控制

基金项目: 

国家自然科学基金面上资助项目(52174126);陕西省自然科学基础研究计划-陕煤联合基金资助项目(2021JLM-10);陕西高校青年创新团队资助项目

详细信息
    作者简介:

    解盘石: (1981—),男,陕西三原人,教授,博士。E-mail:tay584@qq.com

    通讯作者:

    吴少港: (1997—),男,陕西西安人,硕士研究生。E-mail:wu.shao.gang@qq.com

  • 中图分类号: TD 327

Dynamic instability mechanism of support and its control in longwall mining of steeply dipping coal seam

Funds: 

National Natural Science Foundation of China (52174126); Shaanxi Natural Science Basic Research Program - Shaanxi Coal Joint Fund Project (2021JLM-10); Shaanxi University youth innovation team project

  • 摘要:

    动载下支架(群)稳定性控制是大倾角煤层开采难题之一,以大倾角大采高综采工作面支架为研究对象,采用现场实测、物理模拟、理论分析和数值模拟等研究方法,总结了大倾角大采高坚硬顶板工作面典型动载的特征,分析了支架在多维动载作用下的失稳机理,提出支架动态稳定性控制对策。结果表明:周期来压时大倾角大采高工作面对支架顶梁或掩护梁易产生来压动载,来压时垮落顶板易产生正压冲击型动载和后推冲击型动载,垮落矸石滑滚易造成架间(侧推)动载。给出了不同影响因素下支架下滑和转动基本运动模式及其耦合状态的动力学方程,得出了支架转动(倾倒趋势)和架间作用力随着顶板法向载荷的减小、顶板切向载荷的增大、顶板偏载程度的增大和采高的增大而增大。数值模拟表明:在正压冲击作用下,支架后柱受载大于前柱;后推作用下,立柱底部受载大于中上部;架间作用时,同一支架内上部立柱受载大于下部,上方支架受载大于下方支架,且均具有明显的非对称受载特征。基于研究结论,提出了坚硬顶板超前周期性爆破弱化、降低底板比压、增设双向侧推装置、采用擦顶带压移架等措施,现场实测表明有效降低了动载对支架稳定性的影响。

    Abstract:

    Stability control of supports under dynamic load is one of the challenges of mining steeply dipping seam. The research object is to study the dynamic load destabilisation mechanism of the support for high cutting and steeply dipping mining working face by using field measurement, physical simulation, theoretical analysis and numerical simulation. The characteristics of typical dynamic loads on hard roof working face with thigh cutting and steeply dipping mining working face are summarized, and the destabilization mechanism of the support under the action of multi-dimensional dynamic loads is analyzed. The results show that when the periodic weighting, the high cutting and steeply dipping mining working face is easy to produce the incoming pressure dynamic load on the top beam or caving shield, when the top plate collapses, it is easy to produce the positive pressure impact type dynamic load and back push impact type dynamic load, and the collapsed gangue slip and roll is easy to cause the inter-frame (side push) dynamic load. The kinetic equations of the basic modes of motion of the support sliding and rotating and their coupling states under different influencing factors are given, and it is concluded that the support rotation (tilting tendency) and the inter-frame force increase with the decrease of the normal load of the roof plate, the increase of the tangential load of the roof plate, the increase of the degree of deflection of the roof plate and the increase of the mining height.Numerical simulation shows that under the action of positive pressure impact, the support rear column is more loaded than the front column; under the action of rear push, the bottom of the column is more loaded than the middle and upper part; when the action between frames, the upper column in the same support is more loaded than the lower part, and the upper bracket between brackets is more loaded than the lower bracket, and all have obvious asymmetric loading characteristics. Based on the findings of the study, measures such as weakening the hard top plate by overrunning periodic blasting, reducing the specific pressure of the bottom plate, installing additional bi-directional lateral pushing devices and using touch top with pressure to move the support were proposed to effectively reduce the impact of dynamic load on the stability of the support.

  • 图  1   物理相似模拟试验

    Figure  1.   Physical similarity simultion experiment

    图  2   大倾角工作面支架(群)数值模型

    Figure  2.   Numerical model of steeply dipping mining working face suppurt (group)

    图  3   工作面不同区域支架阻力变化特征

    Figure  3.   Variation characteristics of support resistance in different areas of working face

    图  4   大尺度顶板下压对支架作用

    Figure  4.   Large-scale roof downward pressure on role of support

    图  5   来压动载下顶板冒落对支架冲击

    Figure  5.   Impact of the roof falling on the support under the incoming dynamic load

    图  6   来压动载示意

    Figure  6.   Schematic of incoming dynamic load

    图  7   架间作用

    Figure  7.   Inter-supports roles

    图  8   架间动态作用

    Figure  8.   Inter-support dynamic load

    图  9   支架动力学模型

    Figure  9.   Dynamical model of the support

    图  10   采高对支架稳定性的影响

    Figure  10.   Effect of height mining on support stability

    图  12   顶板切向载荷对支架稳定性的影响

    Figure  12.   Effect of roof plate tangential load on support stability

    图  11   顶板载荷作用位置对支架稳定性的影响

    Figure  11.   Influence of the position of the roof load on the stability of the support

    图  13   正压冲击下顶梁应力演化规律

    Figure  13.   Evolution of top stress under positive pressure impact

    图  14   正压冲击下相邻支架立柱应力变化规律

    Figure  14.   Stress variation law of columns of adjacent supports under positive pressure impact

    图  15   后推冲击下掩护梁应力演化规律

    Figure  15.   Stress evolution law of cover beam under backward pushing impact

    图  16   后推作用下相邻支架立柱应力变化规律

    Figure  16.   Stress variation law of columns of adjacent brackets under backward pushing action

    图  17   侧推作用下顶梁应力演化规律

    Figure  17.   Stress evolution of top beam under lateral thrust

    图  18   侧推作用下相邻支架立柱应力变化规律

    Figure  18.   Stress variation law of columns of adjacent supports under action of lateral thrust

    图  19   坚硬顶板超前预爆破技术

    Figure  19.   Advanced prediction technology for hard roof

    图  20   支架防失稳装置

    Figure  20.   Support anti-stability measures

    表  1   煤岩特性

    Table  1   Characteristics of coal and rock strata

    顶底板岩性厚度/m弹性模量/MPa泊松比黏聚力/MPa内摩擦角/(°)抗拉强度/MPa特性
    基本顶中砂岩16.592.0×1040.242.9301.6石英为主、抗风化能力强、层面发育
    直接顶含砾粗砂岩2.320.2×1040.260.8231.1灰白色,泥质胶结、风化易碎
    煤层5号煤5.000.3×1040.31.6282.0含3~5层夹矸,煤矸互层1.4~2.5 m
    直接底炭质泥岩17.060.2×1040.350.8231.1灰白色,矿质胶结
    基本底粗砂岩9.02.0×1040.213.1351.8节理发育,风化易碎
    下载: 导出CSV

    表  2   相似材料配比

    Table  2   Similar material proportioning

    序号岩性岩层厚度/m模型厚度/m配比
    1灰白色含砾粗砂岩1785.08∶4∶6
    2炭质泥岩0.84.08∶2∶8
    35号煤5.025.020∶1∶3∶15
    4灰白色含砾粗砂岩2.412.08∶4∶6
    5灰白色中砂岩16.281.08∶3∶7
    注:配比为河沙、石膏、大白粉、(煤)的质量比。
    下载: 导出CSV
    支架宽度a/m 1.6
    支架高度b/m 4
    支架重心高度h b/2
    支架重量G/kN 15×9.8
    底板等效转角弹性常数kφ/(kN·m−3) 1.0×105
    底板阻尼系数cφ/(kN·s) 1.25×103
    防倒千斤顶刚度ks1/(kN·m−1) 1000
    防滑千斤顶刚度ks2/(kN·m−1) 1000
    支架与顶板间摩擦因数μ1 0.3
    支架与底板间摩擦因数μ2 0.3
    下载: 导出CSV
  • [1] 杨科,刘文杰,李志华,等. 厚硬顶板下大倾角软煤开采灾变机制与防控技术[J]. 煤炭科学技术,2021,49(2):12−20.

    YANG Ke,LIU Wenjie,LI Zhihua,et al. Catastrophemechanism and prevention and control technology of soft coal mining with large inclination angle under thick and hard roof[J]. Coal Science and Technology,2021,49(2):12−20.

    [2] 伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采: 进展、实践、科学问题[J]. 煤炭学报,2020,45(1):24−34.

    WU Yongping,YUN Dongfeng,XIE Panshi,et al. Progress, practice and scientific issues in steeply dipping coal seams fully-mechanized mining[J]. Journal of China Coal Society,2020,45(1):24−34.

    [3] 郭金刚,缪协兴,杨仁顺,等. 论采场支架的动载[J]. 矿山压力与顶板管理,1995(3/4):72−75.

    GUO Jingang,Miao Xiexing,YANG Renshun,et al. Comment on dynamic load acting on support[J]. Ground Pressure and Strata Control,1995(3/4):72−75.

    [4] 解盘石,伍永平,张 浩,等. 大倾角煤层长壁大采高综采支架动态载荷特征分析[J]. 煤炭科学技术,2016,44(4):101−105.

    XIE Panshi,WU Yongping,ZHANG Hao,et al. Changeful load analysis of supports in large mining height fully-mechanized face of steeply dipping seam[J]. Coal Science and Technology,2016,44(4):101−105.

    [5] 解盘石,伍永平,罗生虎,等. 大倾角大采高采场倾向梯阶结构演化及稳定性分析[J]. 采矿与安全工程学报,2018,35(5):1611−1618.

    XIE Panshi,WU Yongping,LUO Shenghu,et al. Structural evolution of ladder roof and its stability analyses for a fully-mechanized working face with a large mining height in steeply inclined coal seam[J]. Journal of Mining & Safety Engineering,2018,35(5):1611−1618.

    [6] 章之燕. 大倾角综放液压支架稳定性动态分析和防倒防滑措施[J]. 煤炭学报,2007,32(7):705−709. doi: 10.3321/j.issn:0253-9993.2007.07.007

    ZHANG Zhiyan. Dynamic analysis on stability of hydraulic powered support in deep inclined fully mechanized wall and prevention slips measures[J]. Journal of China Coal Society,2007,32(7):705−709. doi: 10.3321/j.issn:0253-9993.2007.07.007

    [7] 王红伟,伍永平,解盘石,等. 大倾角变角度综放工作面顶板运移与支架稳定性分析[J]. 中国矿业大学学报,2017,46(3):507−513.

    WANG Hongwei,WU Yongping,XIE Panshi,et al. Research on strata movement and support stability of fully mechanized sublevel caving workface with variable angle in steeply dipping seam[J]. Journal of China University of Mining & Technology,2017,46(3):507−513.

    [8] 张东升,吴 鑫,张 炜,等. 大倾角工作面特殊开采时期支架稳定性分析[J]. 采矿与安全工程学报,2013,30(3):331−336.

    ZHANG Dongsheng,WU Xin,ZHANG Wei,et al. Stability analysis on support in large inclined coal face during special mining period[J]. Journal of Mining & Safety Engineering,2013,30(3):331−336.

    [9] 杨超锋,李志勇,张旭和. 大倾角工作面液压支架稳定性机理分析[J]. 煤炭科学技术,2013,41(7):47−50.

    YANG Chaofeng,LI Zhiyong,ZHANG Xuhe. Analysis on mechanism of hydraulic support stability in large inclined angle mining face[J]. Coal Science and Technology,2013,41(7):47−50.

    [10] 解盘石,屈利利,伍永平,等. 大倾角近距离煤层群长壁采场顶板破断机理[J]. 煤炭科学技术,2022,50(2):65−74.

    XIE Panshi,QU Lili,WU Yongping. Roof breaking mechanism of longwall stope with steeply dipping contugous coal seam group[J]. Coal Science and Technology,2022,50(2):65−74.

    [11] 曲秋扬,毛德兵. 大倾角大采高综采工作面支架工作阻力分布特征研究[J]. 中国煤炭,2014,40(3):45−48.

    QU Qiuyang,MAO Debing. Research on working resistance distribution features of support in fully-mechanized mining face with large angle and height[J]. China Coal,2014,40(3):45−48.

    [12] 罗生虎,伍永平,刘孔智,等. 大倾角煤层长壁开采空间应力拱壳形态研究[J]. 煤炭学报,2016,41(12):2993−2998.

    LUO Shenghu,WU Yongping,LIU Kongzhi,et al. Study on the shape of the space stress arch shell in steeply dipping coal seam mining[J]. Journal of China Coal Society,2016,41(12):2993−2998.

    [13] 王家臣,魏炜杰,张锦旺,等. 急倾斜厚煤层走向长壁综放开采支架稳定性分析[J]. 煤炭学报,2017,42(11):2783−2791. doi: 10.13225/j.cnki.jccs.2017.0914

    WANG Jiachen,WEI Weijie,ZHANG Jinwang,et al. Stability analysis of support around the longwall top-coal caving mining in steeply thick coal seam[J]. Journal of China Coal Society,2017,42(11):2783−2791. doi: 10.13225/j.cnki.jccs.2017.0914

    [14] 伍永平,郎 丁,解盘石. 大倾角松软煤层综放工作面支架倾倒机理研究[J]. 煤炭科学技术,2016,44(1):73−78. doi: 10.13199/j.cnki.cst.2016.01.012

    WU Yongping,LANG Ding,XIE Panshi. Study on tipping mechanism of hydraulic powered support applied in fully mechanized top coal caving mining face with high inclined soft seam[J]. Coal Science and Technology,2016,44(1):73−78. doi: 10.13199/j.cnki.cst.2016.01.012

    [15] 赵洪亮,袁 永,张 琳. 大倾角松软煤层综放面矿压规律及控制[J]. 采矿与安全工程学报,2007,24(3):345−348. doi: 10.3969/j.issn.1673-3363.2007.03.020

    ZHAO Hongliang,YUAN Yong,ZHANG Lin. Strata behavior in fully mechanized top coal caving face of steep soft coal seams and its control[J]. Journal of Mining & Safety Engineering,2007,24(3):345−348. doi: 10.3969/j.issn.1673-3363.2007.03.020

    [16] 王金安,张基伟,高小明,等. 大倾角厚煤层长壁综放开采基本顶破断模式及演化过程(Ⅰ): 初次破断[J]. 煤炭学报,2015,40(6):1353−1360.

    WANG Jinan,ZHANG Jiwei,GAO Xiaoming,et al. Fracture mode and evolution of main roof stratum above longwall fully mechanized top coal caving in steeply inclined thick coal seam (I): initial fracture[J]. Journal of China Coal Society,2015,40(6):1353−1360.

    [17]

    XIE Panshi ZHANG Yingyi, LUO Shenghu, et al. Instability mechanism of a multi-layer gangue roof and determination of support resistance under inclination and gravity[J]. Mining, Metallurgy & Exploration, 2020, 37: 1487−1498.

    [18] 高喜才,伍永平,曹沛沛,等. 大倾角煤层变角度综放工作面开采覆岩运移规律[J]. 采矿与安全工程学报,2016,33(3):381−386. doi: 10.13545/j.cnki.jmse.2016.03.001

    GAO Xicai,WU Yongping,CAO Peipei,et al. overlying strata movement property of fully mechanized caving angle-varied workface in steep dipping seam[J]. Journal of Mining & Safety Engineering,2016,33(3):381−386. doi: 10.13545/j.cnki.jmse.2016.03.001

    [19] 林忠明,陈忠辉,谢俊文,等. 大倾角综放开采液压支架稳定性分析与控制措施[J]. 煤炭学报,2004,29(3):264−268. doi: 10.3321/j.issn:0253-9993.2004.03.003

    LIN Zhongming,CHEN Zhonghui,XIE Junwen,et al. Stability analysis and control measures of powered supports in greater inclined full-mechanized coal seam[J]. Journal of China Coal Society,2004,29(3):264−268. doi: 10.3321/j.issn:0253-9993.2004.03.003

    [20]

    XIE Panshi,WU Yongping,LUO Shenghu,et al. Structural evolution of ladder roof and its stability around the large mining height fully-mechanized face in steeply dipping coal seam[J]. Journal of Mining & Safety Engineering,2015,32(1):345−348.

    [21] 伍永平, 解盘石, 贠东风, 等. 大倾角层状采动煤岩体重力-倾角效应与岩层控制[J/OL]. 煤炭学报: 1-13[2022-12-04]. DOI: 10.13225/j.cnki.jccs.2022.0648.

    WU Yongping, XIE Panshi, YUN Dongfeng, et al. Gravity-dip effect and strata control in mining of the steeply dipping coal seam[J/OL]. Journal of China Coal Society, 1-13[2022-12-04]. DOI: 10.13225/j.cnki.jccs.2022.0648.

    [22] 解盘石,伍永平,王红伟,等. 大倾角煤层大采高综采围岩运移与支架相互作用规律[J]. 采矿与安全工程学报,2015,32(1):14−19. doi: 10.13545/j.cnki.jmse.2015.01.003

    XIE Panshi,WU Yongping,WANG Hongwei,et al. Interaction characteristics between strata movement and support system around large mining height fully-mechanized face in steeply dipping seam[J]. Coal Science and Technology,2015,32(1):14−19. doi: 10.13545/j.cnki.jmse.2015.01.003

    [23] 贠东风, 李浩男, 伍永平, 等. 大倾角煤层综采产效要素系统分析与促产提效精准策略研究[J/OL]. 煤炭科学技术: 1-11 [2023-03-11]. http://kns.cnki.net/kcms/detail/11.2402.TD.20220704.1352.002.html.

    YUN Dongfeng, LI Haonan, WU Yongping, et al. Systematic analysis of production and efficiency factors of fully mechanized mining in steeply dipping seam and research on precise strategy of promoting production and efficiency[J]. Coal Science and Technology: 1-11[2023-03-11]. http://kns.cnki.net/kcms/detail/11.2402.TD.20220704.1352.002.html.

    [24] 伍永平, 贠东风, 解盘石, 等. 大倾角煤层长壁综采理论与技术[M]. 北京: 科学出版社, 2017.
    [25] 贠东风, 伍永平. 大倾角煤层综采工作面调伪仰斜原理与方法[J]. 辽宁工程技术大学学报, 2001, 20(2): 152-155.

    YUN Dongfeng, WU Yongping. Research into principle and method on readjusting high angle full-mechanized coalface to false forward slant [J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(2): 152-155.

    [26] 贠东风, 谷 斌, 伍永平, 等. 大倾角煤层长壁综采支架典型应用实例及改进研究[J]. 煤炭科学技术, 2017, 45(1): 60-67, 72.

    YUN Dongfeng, GU Bin, WU Yongping, et al. Typical application examples and improvement research of hydraulic poweredsupport applied to fully-mechanized longwall coal mining face in steep dipping seam[J]. Coal Science and Technology, 2017, 45(1): 60-67, 72.

    [27] 罗生虎,伍永平,刘孔智,等. 大倾角大采高综采工作面煤壁非对称受载失稳特征[J]. 煤炭学报,2018,43(7):1829−1836. doi: 10.13225/j.cnki.jccs.2018.0134

    LUO Shenghu,WU Yongping,LIU Kongzhi. Asymmetric load and instability characteristics of coal wall at large mining height fully-mechanized face in steeply dipping seam[J]. Journal of China Coal Society,2018,43(7):1829−1836. doi: 10.13225/j.cnki.jccs.2018.0134

    [28] 刘欣科,赵忠辉,赵 锐. 冲击载荷作用下液压支架立柱动态特性研究[J]. 煤炭科学技术,2012,40(12):66−70. doi: 10.13199/j.cst.2012.12.72.liuxk.028

    LIU Xinke,ZHAO Zhonghui,ZHAO Rui. Study on dynamic features of leg applied to hydraulic powered support under bumping load[J]. Coal Science and Technology,2012,40(12):66−70. doi: 10.13199/j.cst.2012.12.72.liuxk.028

    [29] 周登辉, 伍永平, 解盘石. 大倾角坚硬顶板深孔超前预爆破研究与应用[J]. 西安科技大学学报, 2009, 29(5): 510-514.

    ZHOU Denghui, WU Yongping, XIE Panshi. Research and application of deep hole advance pre-blasting in hard roof of steeply dipping seam mining [J]. Xi’an University of Science and Technology, 2009, 29(5): 510-514.

  • 期刊类型引用(10)

    1. 贺兵兵, 任麒亨, 王青祥, 张福成, 马灵军, 许亚优, 王宝富, 宋小林. 高压磨料水射流流场形态及煤体冲蚀破坏特征试验研究. 煤矿安全. 2025(08) 百度学术
    2. 魏建平,蔡玉波,刘勇,余大炀,黄逸,李兴,高梦雅. 非刀具破岩理论与技术研究进展与趋势. 煤炭学报. 2024(02): 801-832 . 百度学术
    3. 刘送永,朱瑞,左辉,杨雪源. 采煤机滚筒适应性设计方法研究. 中南大学学报(自然科学版). 2024(12): 4544-4559 . 百度学术
    4. 刘送永,李洪盛,江红祥,张强,崔玉明,刘晓辉. 矿山煤岩破碎方法研究进展及展望. 煤炭学报. 2023(02): 1047-1069 . 百度学术
    5. 卢义玉,朱志丹,汤积仁,刘文川,凌远非,张洋凯,杨盛,姚奇. 增压式脉冲水射流破碎硬岩性能研究. 振动与冲击. 2023(07): 114-122 . 百度学术
    6. 顾聪聪,刘送永,李洪盛,孙敦凯,江红祥,周小磊. 高压聚能射流发生装置设计及性能. 煤炭学报. 2023(12): 4632-4646 . 百度学术
    7. 张强,张润鑫,刘峻铭,王聪,张赫哲,田莹. 煤矿智能化开采煤岩识别技术综述. 煤炭科学技术. 2022(02): 1-26 . 本站查看
    8. 张强,张赫哲,田莹,王聪. 截齿辅助冲击作用下坚硬煤体的破碎特性. 煤炭学报. 2022(02): 1002-1016 . 百度学术
    9. 刘春生,刘爽,刘若涵,徐鹏. 多自由度悬臂截割机构碟盘刀具的空间位姿模型. 黑龙江科技大学学报. 2022(05): 641-648 . 百度学术
    10. 刘波,刘道园,杨云博. 矿用5G多频段融合组网应用研究. 工矿自动化. 2022(S1): 108-111 . 百度学术

    其他类型引用(5)

图(20)  /  表(3)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  33
  • PDF下载量:  62
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-10-21
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-03-19

目录

    CHEN Jianjie

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回