Early-warning evaluation and warning of rock burst using acoustic emission characteristics of coal sample failure
-
摘要:
冲击地压作为深部煤矿开采中最常见的煤岩动力灾害,严重影响煤炭资源安全高效开采。精准及时的预测预报是冲击地压防治的关键。为研究煤岩体冲击前兆信息特征,建立高效精准的动态预测模型,通过对冲击倾向性煤样进行三轴压缩试验,获取煤样破坏过程声发射特征参数,选取典型冲击矿井工作面微震参数监测值,与实验室所得声发射参数进行对比,分析实验室和工程尺度下的声发射与微震参数特征之间的相似性,建立两者之间冲击声学信息的表征关系。结果表明,煤样压缩过程中声发射累计能量的“阶梯状”增长与大能量矿震事件发生前的“缺震”现象都揭示了煤岩体能量的孕育过程。同一能量指标在不同尺度下对大能量事件的发生具有相同的演化趋势,经量化后可作为冲击地压危险性预警指标。继而选取影响工作面冲击地压发生的静态因素与应力动态因素,结合所得微震参数指标分别赋予动态权重,并引入贝叶斯概率进行修正,构建冲击地压动−静态协同综合评价预警模型。利用该模型对河南某冲击矿井工作面危险性进行评价预警,获得优于传统评价模型的预警结果,展现了该模型的工程适用性与准确性。
Abstract:As the most common dynamic disaster of coal rock in deep coal mining, rock burst seriously affects the safe and efficient mining of coal resources. Accurate and timely to predict the rock burst is the best way to control and prevent it. In order to study the precursory information characteristics of coal rock impact to establish an efficient and accurate dynamic prediction model. The triaxial compression test of coal bursting liability performed to get the acoustic emission characteristic parameters of coal failure process, meanwhile the monitoring values of microseismic parameters of typical impact mine face were selected and compared with the AE parameters obtained in the laboratory, then based on the similarity of them, the relationship between laboratory-scale and engineering-scale impact acoustic information representation had been built. It shows the “stepwise” increase of accumulated AE energy during coal sample compression and the “lack of earthquake” phenomenon before the occurrence of large energy seismic events have a good correlation, both of them could be used to revealed the energy breeding process of coal and rock mass. The same energy index has the same evolutionary trend for the occurrence of large energy events at different scales, and it can be used as an early warning index of rock burst risk after quantification. In addition, the static factors and stress dynamic factors affecting the occurrence of rock burst in working face are selected, and the dynamic weights are given respectively by combining the microseismic parameters obtained, which modified by using the Bayesian probability, then a static cooperative comprehensive evaluation and early warning model of rock burst is constructed. Furthermore, the model is used to evaluate and warn the danger of a mining face in Henan Province, and the results are better than those of the traditional evaluation model, which shows the engineering applicability and accuracy of the model.
-
-
表 1 2019年强矿震事件发生日期及能量
Table 1 Occurrence date and energy of strong ore earthquake events in 2019
事件
编号日期 能量/J 事件
编号日期 能量/J 1* 01−03 9.2×105 6* 06−14 5.2×105 2* 01−13 1.6×106 7* 07−09 1.7×107 3* 02−26 7.8×105 8* 08−05 5.2×105 4* 03−25 1.3×106 09* 10−08 5.7×105 5* 04−24 6.5×105 10* 12−01 7.9×105 表 2 静态指标Wt危险分级
Table 2 Static index Wt hazard classification
等级 无 弱冲击 中等冲击 强冲击 Wt [0~0.25] (0.25~0.5] (0.5~0.75] (0.75~1] 表 3 应力指数St危险分级
Table 3 Stress index St hazard classification
等级 无 弱冲击 中等冲击 强冲击 St [0~0.25] (0.25~0.5] (0.5~0.75] (0.75~1] 表 4 微震指标Wij危险分级
Table 4 Risk classification of microseismic index Wij
等级 无 弱冲击 中等冲击 强冲击 Wij [0~0.25] (0.25~0.5] (0.5~0.75] (0.75~1] 表 5 冲击地压综合指标Z危险分级
Table 5 Hazard classification of comprehensive index Z of rock burst
等级 无 弱 中等 强 Z [0~0.25] (0.25~0.5] (0.5~0.75] (0.75~1] 表 6 综合预警模型工程应用测试结果
Table 6 Comprehensive early warning model engineering application test results
日期
(月−日)Wt
危险性St
危险性Wij
危险性综合模型
预警结果综合模型
准确性01-03 中 弱 弱 弱 是 01-13 弱 弱 中 弱 是 01-18 弱 弱 弱 弱 是 02-03 中 中 弱 弱 是 02-04 弱 弱 弱 弱 是 02-06 弱 弱 弱 弱 是 02-08 弱 弱 弱 弱 是 02-26 中 中 弱 弱 是 03-25 弱 中 中 中 否 表 7 冲击地压传统评价方法优缺点对比
Table 7 Comparison of advantages and disadvantages of traditional evaluation methods for rock burst
评价方法 优点 缺点 综合指数法 方法简单,指标设定灵活,可将定性数据定量化分析 过度依赖评定指标,在复杂矿井及开采动态过程中准确性较低 模糊综合评价法 将定性评价转化为定量评价,可对多因素非确定性问题进行综合评价 计算复杂,指标较多时权向量和模糊矩阵难以匹配,对指标权重的确定主观性较强 层次分析法 定性与定量相结合,适用于多因素多准则等难以量化处理的系统评价 准确度依赖人的定性主观判断,综合考虑冲击地压多因素影响指标时权重难以确定 突变级数法 无需确定各指标具体权重值,减少权重数值误差带来的影响 准确度依赖于指标相对重要度评定,指标排序问题受主观影响较大 表 8 不同模型评价结果对比
Table 8 Comparison of evaluation results of different models
日期
(月−日)综合
指数法模糊综合
评价法层次
分析法突变
级数法综合评价
预警模型01-03 弱 弱 弱 弱 弱 01-13 弱 弱 弱 弱 弱 01-18 无 弱 弱 弱 弱 02-03 中 弱 中 弱 弱 02-04 弱 弱 弱 弱 弱 02-06 弱 弱 弱 弱 弱 02-08 弱 弱 弱 弱 弱 02-26 弱 弱 弱 弱 弱 03-25 中 中 弱 中 中 -
[1] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211. XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
[2] 袁 亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725. YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.
[3] 谢和平,高 峰,鞠 杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161−2178. XIE Heping,GAO Feng,JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161−2178.
[4] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171. DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171.
[5] 夏永学,康立军,齐庆新,等. 基于微震监测的5个指标及其在冲击地压预测中的应用[J]. 煤炭学报,2010,35(12):2011−2016. XIA Yongxue,KANG Lijun,QI Qingxin,et al. Five indexes of microseismic and their application in rock burst forecastion[J]. Journal of China Coal Society,2010,35(12):2011−2016.
[6] 金佩剑,王恩元,刘晓斐,等. 冲击地压危险性综合评价的突变级数法研究[J]. 采矿与安全工程学报,2013,30(2):256−261. JIN Peijian,WANG Enyuan,LIU Xiaofei,et al. Catastrophe progression method on comprehensive evaluation of rock burst[J]. Journal of Mining & Safety Engineering,2013,30(2):256−261.
[7] 潘俊锋,秦子晗,王书文,等. 冲击危险性分源权重综合评价方法[J]. 煤炭学报,2015,40(10):2327−2335. PAN Junfeng,QIN Zihan,WANG Shuwen,et al. Preliminary study on early warning method based on weight comprehensive and different-load sources of coal bump[J]. Journal of China Coal Society,2015,40(10):2327−2335.
[8] 蒋军军. 煤岩失稳破坏声发射—微震特征及在冲击地压预测中应用[D]. 北京: 煤炭科学研究总院, 2016: 78-84. JIANG Junjun. The characteristics of ae-microseism in the instability destruction of coal-rock mass and their application in rock burst prediction[D]. Beijing: China Coal Research Inst tute, 2016: 78-84
[9] CAI Wu,DOU Linming,SI Guangyao,et al. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2019,123:104086. doi: 10.1016/j.ijrmms.2019.104086
[10] CHEN Jie,ZHU Chao,DU Junsheng,et al. A quantitative pre-warning for coal burst hazardous zones in a deep coal mine based on the spatio-temporal forecast of microseismic events[J]. Process Safety and Environmental Protection,2022,159:1105−1112. doi: 10.1016/j.psep.2022.01.082
[11] YANG Zengqiang,LIU Chang,ZHU Hengzhong,et al. Mechanism of rock burst caused by fracture of key strata during irregular working face mining and its prevention methods[J]. International Journal of Mining Science and Technology,2019,29(6):889−897. doi: 10.1016/j.ijmst.2018.07.005
[12] 何 俊,潘结南,王安虎. 三轴循环加卸载作用下煤样的声发射特征[J]. 煤炭学报,2014,39(1):84−90. HE Jun,PAN Jienan,WANG Anhu. Acoustic emission characteristics of coal specimen under triaxial cyclic loading and unloading[J]. Journal of China Coal Society,2014,39(1):84−90.
[13] 韩泽鹏. 煤矿冲击矿压前兆信息识别及预警模型研究[D]. 徐州: 中国矿业大学, 2020: 27−30. HAN Zepeng. Study on identification precursor information and early warning model of coal mine rock burst [D]. Xuzhou: China University of Mining and Technology, 2020: 27−30.
[14] 张 帆,韩晓明,陈立峰,等. 鄂尔多斯地块北缘b值的时空特征及其地震预测效能分析[J]. 地震学报,2018,40(6):785−796,832. ZHANG Fan,HAN Xiaoming,CHEN Lifeng,et al. Spatio temporal characteristics of b value in the northern margin of Ordos block and its earthquake prediction efficiency[J]. Acta Seismologica Sinica,2018,40(6):785−796,832.
[15] 曾宪伟,赵小艳,李蒙亚,等. 2021年5月21日漾濞4次MS≥5.0地震前后b值变化[J]. 地震学报,2022,44(3):401−412. ZENG Xianwei,ZHAO Xiaoyan,LI Mengya,et al. Variation of b-value before and after Yangbi four MS≥5.0 earthquakes on May 21, 2021[J]. Acta Seismologica Sinica,2022,44(3):401−412.
[16] 蒋军军,邓志刚,欧阳振华,等. 不同尺寸冲击倾向性煤样声发射b值特征研究[J]. 煤炭科学技术,2019,47(3):120−124. JIANG Junjun,DENG Zhigang,OUYANG Zhenhua,et al. Study on acoustic emission b-value characteristics of bump-prone coal sample with different sizes[J]. Coal Science and Technology,2019,47(3):120−124.
[17] 王书文. 矿井微震信号b值计算样本及参数选取研究[J]. 煤炭科学技术,2016,44(12):51−56. WANG Shuwen. Study on calculation sample and parameter selection of mine microseism signal b value[J]. Coal Science and Technology,2016,44(12):51−56.
[18] 吴 果,周 庆,冉洪流. 震级−频度关系中b值的极大似然法估计及其影响因素分析[J]. 地震地质,2019,41(1):21−43. WU Guo,ZHOU Qing,RAN Hongliu. The maximum likelihood estimation of b-value in magnitude-frequency relation and analysis of its influencing factors[J]. Seismology And Geology,2019,41(1):21−43.
[19] 夏永学. 冲击地压动−静态评估方法及综合预警模型研究[D]. 北京: 煤炭科学研究总院, 2020: 59−72. XIA Yongxue. Research on the method of dynamic-static evaluation of rock burst and comprehensive early warning mode[D]. Beijing: China Coal Research Institute, 2020: 59−72.
[20] 胡菊华. 基于残差分析的线性回归模型的诊断与修正[J]. 统计与决策,2019,35(24):5−8. HU Juhua. Diagnosis and correction of linear regression model based on residual analysis[J]. Statistics & Decision,2019,35(24):5−8.
[21] 郭建伟. 煤矿复合动力灾害危险性评价与监测预警技术[D]. 徐州: 中国矿业大学, 2013: 90−96. GUO Jianwei. Hazard assessment and monitoring technology of compound dynamic disaster in mine[D]. Xuzhou: China University of Mining and Technology, 2013: 90−96.
[22] 陈 结,杜俊生,蒲源源,等. 冲击地压“双驱动”智能预警架构与工程应用[J]. 煤炭学报,2022,47(2):791−806. CHEN Jie,DU Junsheng,PU Yuanyuan,et al. “Dual-driven" intelligent pre-warning framework of the coal burst disaster in coal mine and its engineering application[J]. Journal of China Coal Society,2022,47(2):791−806.
[23] 陈为帅. 褶皱区域煤柱型冲击矿压前兆信息与监测预警指标研究[D]. 徐州: 中国矿业大学, 2019: 56−58. CHEN Weishuai. Study on the precursor information and forecasting inedices of pillar-rock burst in fold area[D]. Xuzhou: China University of Mining and Technology, 2019: 56−58.
[24] DU Junsheng,CHEN Jie,PU Yuanyuan,et al. Risk assessment of dynamic disasters in deep coal mines based on multi-source, multi-parameter indexes, and engineering application[J]. Process Safety and Environmental Protection,2021,155:575−586. doi: 10.1016/j.psep.2021.09.034
[25] 熊俊杰. 基于综合指数法的矿井冲击地压危险性研究[J]. 煤炭科技,2014(4):9−12. doi: 10.3969/j.issn.1008-3731.2014.04.004 XIONG Junjie. Study on mine rock burst risk based on comprehensive index method[J]. Coal Science & Technology Magzine,2014(4):9−12. doi: 10.3969/j.issn.1008-3731.2014.04.004
[26] 张科学,亢 磊,何满潮,等. 矿井煤层冲击危险性多层次综合评价研究[J]. 煤炭科学技术,2020,48(8):82−89. ZHANG Kexue,KANG Lei,HE Manchao,et al. Research on multi-level comprehensive evaluation of coal seam rock burst risk in underground mine[J]. Coal Science and Technology,2020,48(8):82−89.
[27] 崔怀鹏,武俊峰,梁燕华. 基于层次分析法的冲击地压模糊综合评价[J]. 科学技术与工程,2019,19(26):136−140. doi: 10.3969/j.issn.1671-1815.2019.26.020 CUI Huaipeng,WU Junfeng,LIANG Yanhua. Fuzzy comprehensive evaluation of rock burst based on analytic hierarchy process[J]. Science Technology and Engineering,2019,19(26):136−140. doi: 10.3969/j.issn.1671-1815.2019.26.020
-
期刊类型引用(11)
1. 曾庆良,雷小万,孟昭胜,万丽荣,班新亮,胡雨龙. 基于运动姿态感知的综放支架主动控顶空间研究. 煤炭学报. 2025(01): 645-660 . 百度学术
2. 赵光瑞, 刘青林. 掘锚一体机举升油缸连接销轴失效分析和优化设计. 中国煤炭. 2024(S2) 百度学术
3. 史慧芳,穆大林. 销轴连接对ZF5000/17/28型液压支架稳定性的影响. 机械管理开发. 2024(07): 62-64 . 百度学术
4. 谭礼健,秦程. 基于虚拟仿真技术的机器视觉与工业机器人实训平台研究. 内燃机与配件. 2024(24): 143-145 . 百度学术
5. 彭婧,李旭涛,李胜利. 基于ADAMS的液压支架运动学仿真分析. 煤炭技术. 2023(08): 237-239 . 百度学术
6. 王洁,赵显昆,姜彪,张建卓,郭昊. 基于AHP-模糊模型的液压支架试验台中梁销轴节点优化研究. 煤炭科学技术. 2023(08): 250-259 . 本站查看
7. 李东辉,李东印,王伸,黄志增,刘清,张学亮,郑立军,张旭和,朱时廷. 液压支架放煤机构安全过煤临界准则及放煤口精准控制方法研究. 煤炭科学技术. 2023(09): 251-260 . 本站查看
8. 庞义辉,刘新华,王泓博,姜志刚,关书方,张自发,王伟. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法. 采矿与安全工程学报. 2023(06): 1231-1242 . 百度学术
9. 朱良辰,王世博,马光明,王赟,朱煜. 液压支架硬件在环仿真系统研究. 煤炭科学技术. 2023(S2): 294-305 . 本站查看
10. 孟祥军,李伟. 山东能源集团煤炭产业技术创新体系建设. 煤炭科学技术. 2022(04): 1-41 . 本站查看
11. 王中华,曹建军. 深部远距离煤层群卸压主控因素及首采层优选方法研究. 煤炭科学技术. 2021(08): 154-161 . 本站查看
其他类型引用(7)