高级检索

动载扰动下深井护巷煤柱失稳破坏机理

邢闯闯, 王俊, 宁建国, 沈圳

邢闯闯,王 俊,宁建国,等. 动载扰动下深井护巷煤柱失稳破坏机理[J]. 煤炭科学技术,2023,51(3):29−36

. DOI: 10.13199/j.cnki.cst.2022-1667
引用本文:

邢闯闯,王 俊,宁建国,等. 动载扰动下深井护巷煤柱失稳破坏机理[J]. 煤炭科学技术,2023,51(3):29−36

. DOI: 10.13199/j.cnki.cst.2022-1667

XING Chuangchuang,WANG Jun,NING Jianguo,et al. Instability failure mechanism of coal pillar in deep mine under dynamic disturbance[J]. Coal Science and Technology,2023,51(3):29−36

. DOI: 10.13199/j.cnki.cst.2022-1667
Citation:

XING Chuangchuang,WANG Jun,NING Jianguo,et al. Instability failure mechanism of coal pillar in deep mine under dynamic disturbance[J]. Coal Science and Technology,2023,51(3):29−36

. DOI: 10.13199/j.cnki.cst.2022-1667

动载扰动下深井护巷煤柱失稳破坏机理

基金项目: 

国家自然科学基金青年基金资助项目(51904163);国家自然科学基金面上资助项目(52074170)

详细信息
    作者简介:

    邢闯闯: (1990—),男,河南商丘人,硕士研究生。E-mail:15275284207@139.com

    通讯作者:

    王俊: (1988—),男,山东济宁人,副教授,博士。E-mail:wangjunsdkjd@126.com

  • 中图分类号: TD322

Instability failure mechanism of coal pillar in deep mine under dynamic disturbance

Funds: 

National Natural Science Foundation of China (51904163); National Natural Science Foundation of China (52074170)

  • 摘要:

    深部矿井护巷煤柱常处于“三高一扰动”的复杂环境,护巷煤柱稳定性对煤矿通风、运输与行人起着关键作用。针对动载扰动下深井护巷煤柱已发生突变失稳的问题,以新河煤矿−980 m水平3煤层6302工作面南部集中大巷保护煤柱为工程背景,基于FLAC3D模拟软件研究了动载扰动下深部护巷煤柱破坏失稳演化过程,分析了动载强度、煤柱尺度对煤柱动力破坏演化的影响规律,进而建立了护巷煤柱动力失稳尖点突变失稳模型和判别式,揭示了动载作用下深井护巷煤柱破坏特征及突变失稳机理。研究表明:①增大护巷煤柱尺寸能够提高稳定性,减小其失稳破坏的几率;②外部动载冲击强度越大,护巷煤柱易发生整体失稳破坏;③基于护巷煤柱承载力学模型,利用尖点突变模型和弹性薄板理论推演了与外部动载强度、煤柱尺寸等因素有关的煤柱稳定性判别式,提出了动载扰动下深井护巷煤柱失稳破坏判别方法,并进行了工程验证。研究成果丰富了煤柱失稳类冲击地压的预防和控制理论体系,为现场工作面回采护巷煤柱的留设及维护提供可靠的理论指导。

    Abstract:

    The coal pillar of roadway protection in deep mine is often in the complex environment of three high and one disturbance, the stability of coal pillar plays a key role in coal mine ventilation, transportation and pedestrians. Aiming at the problem of sudden instability of coal pillar in deep roadway protection under dynamic load disturbance, based on the engineering background of the southern concentrated roadway protection coal pillar in 6302 working face of No.3 coal seam in −980 m level of Xinhe Coal Mine, the failure and instability evolution process of coal pillar in deep roadway protection under dynamic load disturbance is studied based on FLAC3D simulation software. The influence of dynamic load intensity and coal pillar scale on the dynamic failure evolution of coal pillar is analyzed, and then the dynamic instability cusp catastrophe instability model and discriminant of coal pillar in deep roadway protection are established. The failure characteristics and catastrophe instability mechanism of coal pillar in deep roadway protection under dynamic load are revealed. The results show that:①Increasing the size of coal pillar can improve the stability and reduce the probability of instability failure;②The greater the impact strength of external dynamic load, the overall instability of coal pillar is easy to occur;③Based on the bearing capacity model of coal pillar, the discriminant of coal pillar stability related to external dynamic load strength and coal pillar size is deduced by using cusp catastrophe model and elastic thin plate theory, the discriminant method of instability failure of coal pillar in deep mine under dynamic load disturbance is put forward and verified by engineering. The research results enrich the theoretical system of prevention and control of rock burst caused by coal pillar instability, provide reliable theoretical guidance for the retention and maintenance of coal pillars in the field working face, and provide theoretical basis for the safe and efficient mining of deep working face.

  • 图  1   数值计算模型

    Figure  1.   Numerical calculation model

    图  2   数值模拟和Salamon公式计算峰值强度对比

    Figure  2.   Comparison of peak strength between numerical simulation and Salamon formula calculation

    图  3   不同应力波振幅及不同尺寸保护煤柱塑性区分布规律

    Figure  3.   Distribution law of plastic zone of protective coal pillars with different sizes and different stress wave amplitudes

    图  4   煤柱承载力学模型

    Figure  4.   Coal pillar bearing mechanical model

    图  5   顶板-煤柱协同变形

    Figure  5.   Theoretical process evolution diagram of elastic thin plate

    图  6   煤柱位置示意

    Figure  6.   Position diagram of coal pillar

    表  1   煤柱模拟参数

    Table  1   Simulation parameters of protective coal pillar

    岩性粗砂岩细砂岩细粉砂岩互层泥岩3煤粉砂岩
    体积模量/GPa13.568.51432.5916
    剪切模量/GPa8.25.68.71.31.2210
    抗拉强度/MPa5.74.73.41.55.12.3
    黏聚力/MPa8.95.524.31.74.22.4
    内摩擦角/(°)313534293432
    下载: 导出CSV
  • [1] 薛成春,曹安业,牛风卫,等. 深部不规则孤岛煤柱区冲击地压机 理及防治[J]. 采矿与安全工程学报,2021,38(3):479−486.

    XUE Chengchun,CAO Anye,NIU Fengwei,et al. Mechanism and prevention of rock burst in deep irregular isolated coal pillar[J]. Journal of Mining & Safety Engineering,2021,38(3):479−486.

    [2] 杨书浩,王 俊,宁建国,等. 动载扰动下深部大断面硐室围岩“帮−顶”联动失 稳机理[J]. 煤炭科学技术,2021,49(10):23−33.

    YANG Shuhao,WANG Jun,NING Jianguo,et al. Mechanism of connected instability of “rib−roof” in deep large section chamber under dynamic disturbance[J]. Coal Science and Technology,2021,49(10):23−33.

    [3] 殷志强,王建恩,张 卓,等. 静载对节理煤岩体动态力学特性和应 力波传播的影响[J]. 岩石力学与工程学报,2022,41(2):3152−3162.

    YIN Zhiqiang,WANG Jianen,ZHANG Zhuo,et al. Influence of static load on dynamic mechanical properties and stress wave propagation of jointed coal rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(2):3152−3162.

    [4] 何永琛. 类煤岩材料组合体静载破裂能量耗散与裂隙演化耦合 特征研究 [D]. 西安: 西安科技大学, 2021: 20−37.

    HE Yongchen. Study on the coupling characteristics of static fracture energy dissipation and fracture evolution of coal-like material combination [D]. Xi’an: Xi’an University of Science and Technology, 2021: 20−37.

    [5] 艾迪昊,李成武,赵越超,等. 煤体静载破坏微震、电磁辐射及裂 纹扩展特征 研究[J]. 岩土力学,2020,41(6):2043−2051.

    AI Dihao,LI Chengwu,ZHAO Yuechao,et al. Investigation on microseismic, electromagnetic radiation and crack propagation characteristics of coal under static loading[J]. Rock and Soil Mechanics,2020,41(6):2043−2051.

    [6] 李成武,付 帅,解北京,等. 煤体静载破坏中低频磁场变化特征及 产生机制研 究[J]. 岩土力学,2019,40(2):481−488.

    LI Chengwu,FU Shuai,JIE Beijing,et al. Characteristics and generation mechanism of low-frequency magnetic field generated during the damage of coal under static load[J]. Rock and Soil Mechanics,2019,40(2):481−488.

    [7] 徐青云,黄庆国,张广超. 综放剧烈采动影响煤巷窄煤柱破裂失 稳机理与控制技术[J]. 采矿与安全工程学,2019,36(5):941−948.

    XU Qingyun,HUANG Qingguo,ZHANG Guangchao. Fracture and instability mechanism and control technology of a narrow coal pillar in an entry in fully mechanized caving mining under intense effect mining[J]. Journal of Mining & Safety Engineering,2019,36(5):941−948.

    [8] 姜学伟. 房采集中煤柱诱发动载矿压机理及防治技术研究[D]. 西安: 西安建筑科技大学, 2020: 9−13.

    JIANG Xuewei. Research on the mechanism and prevention and control of coal column induced active load ore in room collection [D]. Xi’an: Xi’an University of Architecture and Technology, 2020: 9−13.

    [9] 李 峰,方书昊,毕明鑫,等. 煤岩体在动载下的动态损伤数值模 拟[J]. 煤炭技术,2017,36(11):167−169.

    LI Feng,FANG Shuhao,BI Mingxin,et al. Numerical simulation of dynamic damage of coal and rock mass under dynamic load[J]. Coal Technology,2017,36(11):167−169.

    [10] 王方田, 梁宁宁, 李 钢, 等. 复杂应力环境煤柱坝体损伤破坏规 律研究[J]. 采矿与安全工程学报, 2019, 36(6): 1145−1152.

    WANG Fangtian, LIANG Ningning, LI Gang, et al. Failure evolution mechanism of coal pillar dams in complex stress environment[J]. Journal of Mining & Safety Engineering, 2019, 36(6): 1145−1152.

    [11] 丛 利, 翁明月, 秦子晗, 等. 坚硬顶板三次强扰动临空宽煤柱诱冲机制及防治[J]. 煤炭学报, 2022, 47(S1): 125−134.

    CONG Li, WENG Mingyue, QIN Zihan, et al. Instability mechanism and prevention of wide coal pillar with three strong stress disturbances under hard roof [J]. Journal of China Coal Society. 2022, 47(S1): 125−134.

    [12]

    WANG Jun,QIU Pengqi,NING Jianguo,et al. A numerical study of the mining-induced energy redistribution in a coal seam adjac- ent to an extracted coal panel during longwall face mining: a case st udy[J]. Energy Science & Engineering,2020,8:817−835.

    [13] 余大军, 杨张杰, 郭运华. 等基于FLAC3D横观各向同性模型的煤矿井田初始地应力场反演方法[J]. 煤炭学报,2020,45(10):3427−3434.

    YU Dajun,YANG Zhangjie,GUO Yunhua,et al. Inversion method of initial ground stress field in coal mine based on FLAC3D transverse isotropic model[J]. Journal of China Coal Society,2020,45(10):3427−3434.

    [14]

    IANNACCHIONE A T, MARK C. Evaluating coal pillar mechanics through field measurements[C]//Proceedings of the 11th International Conference on Ground Control in Mining. Wollongong: University of Wollongong, 1992: 38–47.

    [15]

    DU X, LU J, MORSY K, PENG SS. Coal pillar design formulae view and analysis[C]//Proceedings of the 27th international conference on ground control in mining. Morgantown: West Virginia University, 1992:153–160.

    [16]

    DUBINSKI J. MUTKE G. Characteristics of mining tremors within the near-wave field zone[J]. Pure and Applied Geophysics,1996,147(2):249–261.

    [17]

    HADJIGEORGIOU J, POTVIN Y. Overview of dynamic testing of ground support[C]//Proceedings of 4th International Seminar on Deep and High Stress Mining. Perth: Australian Centre for Geomechanics, 2007: 349–371.

    [18] 吴豪帅. 动静载荷下端帮开采中的条带支撑煤柱的稳定性研究[D]. 徐州: 中国矿业大学, 2018: 12–14.

    Wu Haoshuai. Stability Analysis of Rib Pillar in Highwall Mining under Dynamic and Static Loads[D]. Xuzhou: China University of Mining and Technology, 2018: 12–14.

    [19] 李玉飞. 机械施工荷载作用下采空区顶板突变失稳判据[D]. 武汉: 武汉科技大学, 2019: 11–27.

    LI Yufei. Criterion of sudden instability of goaf roof under mechanical construction loading[D]. Wuhan: Wuhan University of Science and Technology, 2019: 11–27.

    [20] 吴家龙.弹性力学[M]. 上海: 同济大学出版社. 1987.
    [21] 郑 建. 基于弹性薄板理论的地表下沉预计研究[D]. 青岛: 山东科技大学, 2020: 12–63.

    ZHENG Jian. Prediction of surface subsidence based on elastic thin plate theory[D]. Qingdao: Shandong University of Science and Technology, 2022: 12–63.

  • 期刊类型引用(13)

    1. 何琪, 周雨, 钟涛平, 李振雷. 冲击地压煤层大巷保护煤柱合理尺寸研究. 煤炭科技. 2025(03) 百度学术
    2. 解盘石, 张波, 黄宝发, 张浩, 路贝, 雷二辉, 王茜, 刘鑫. 剥蚀区影响下大巷布置优化及煤柱稳定性研究. 采矿与岩层控制工程学报. 2025(03) 百度学术
    3. 罗波远,张涛,安彦成,姚新宇,刘志刚,李树文. 厚煤层大巷保护煤柱合理尺寸优化. 煤炭技术. 2025(01): 48-51 . 百度学术
    4. 郭东明,肖博丰,赵志峰,叶贵川,刘嘉华,唐耿福. 新型叠片式吸能锚杆与普通高强度锚杆抗冲击性能对比研究. 煤矿安全. 2025(02): 109-117 . 百度学术
    5. 杨敬轩,张瑞,卢硕,孙兴平,陈建本. 工作面顶板超前预裂应力阻隔护巷机理. 中国矿业大学学报. 2024(02): 264-276 . 百度学术
    6. 左常清,刘亚楠,田晓伟. 义桥煤矿边界煤柱留设合理性研究. 山东煤炭科技. 2024(05): 31-36 . 百度学术
    7. 马斌文,谢和平,张修峰,周宏伟,陈洋,郑福润,孙文斌,朱建波. 动载扰动下巷道围岩冲击破坏与能量释放规律研究. 采矿与岩层控制工程学报. 2024(04): 5-22 . 百度学术
    8. 李庆祥,张晓广,刘道园,赵旭晔. 不同岩性煤岩组合体力学特性模拟研究. 煤. 2024(11): 53-56 . 百度学术
    9. 马小利. 双陷落柱孤岛工作面托顶煤巷关键区域防控研究. 煤炭与化工. 2024(11): 16-19+23 . 百度学术
    10. 杨敬轩,朱乐章,周萌,卢硕. 顶板应力作用下的覆岩切顶孔间距确定及切顶线位置选择. 采矿与安全工程学报. 2024(06): 1170-1178 . 百度学术
    11. 谷拴成,张炜,文嘉豪,康恽博,呼嘉龙. 防隔水煤柱合理留设宽度分析. 西安科技大学学报. 2024(06): 1060-1070 . 百度学术
    12. 李怀展,唐超,郭广礼,陈福,李伟,周华安,黄建勇. 热力耦合作用下煤炭地下气化地表沉陷预测方法. 煤炭科学技术. 2023(10): 242-251 . 本站查看
    13. 韦四江,王生柱,李鑫鹏. 煤柱留设宽度对密闭墙稳定性的影响研究. 煤炭技术. 2023(12): 1-5 . 百度学术

    其他类型引用(8)

图(6)  /  表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  27
  • PDF下载量:  76
  • 被引次数: 21
出版历程
  • 收稿日期:  2022-09-05
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-03-14

目录

    SHEN Zhen

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回