Future of circulating fluidized bed combustion technology in China for carbon neutralization
-
摘要:
循环流化床(CFB)燃烧技术因其独特的低成本污染控制优势得到了高度重视,近年来我国在此领域的技术发展取得了长足的进步。回顾了我国CFB燃烧技术的发展历程,从最初的跟踪学习到技术创新,走出了一条适应中国国情的独立创新发展道路,先后开发出高性能CFB锅炉、节能型CFB锅炉和超低排放CFB锅炉,同时提高蒸汽参数和大型化,引领了CFB技术的国际发展。目前我国成为世界上CFB锅炉最大的设备供应商和使用者,CFB发电机组作为我国燃煤发电体系中的重要组成部分,为可靠廉价电力供应和劣质燃料消纳做出了重要贡献。碳中和条件下,煤炭作为保底能源在电力系统安全托底中不可或缺。作为低热值煤以及难燃高硫无烟煤的高效清洁发电利用的主要方式,CFB锅炉应在深度调峰和快速变负荷灵活性方面展现更大优势。结合新能源高比例消纳的调峰需求,可以开发粉煤CFB锅炉技术、探索分布式小容量高参数CFB锅炉、挖掘CFB机组0~100%负荷长周期压火与快速热态启动潜力,进一步提高CFB机组运行灵活性;在运行灵活性基础上发挥CFB锅炉燃料灵活性的优势,突破高硫无烟煤超超临界高效发电与超低排放同步实现的难题,消纳煤炭绿色开采洗选副产的劣质燃料,纯烧或者掺烧城市污泥、生活垃圾、生物质等低碳可燃废弃物,开发灵活性下的超低排放控制技术,实现CFB机组智能化,助力我国能源结构转型发展。
Abstract:More attention is paid on the circulating fluidized bed (CFB) combustion technology because of its advantage in low cost emission control. Recently, great achievements have been realized in China. The development history of CFB combustion technology in China for decades is reviewed in this paper, from learning to independent technological innovation. High-performance CFB boilers, energy-saving CFB boilers and ultra-low emissions CFB boilers have be successively developed, while improving steam parameters and realizing large-scale. At present, China has become the largest equipment supplier and user of CFB boilers in the world. As an important part of China's coal-fired power generation system, important contributions have been made to reliable and cheap power supply and low-quality fuel consumption. For the carbon neutralization, coal will be indispensable in the security of power system as the guaranteed energy. As the main way of efficient and clean utilization of low calorific value coal and high sulfur anthracite, greater advantages of CFB boiler in deep peak regulation and rapid load changing flexibility should be exploited. To meet the peak regulating demand of high proportion of new energy consumption, pulverized coal CFB technology can be developed, distributed small-capacity high-parameter CFBs can be explored, and the potential of 0-100% load long-term combustion break and fast restart of CFB units can be explored, so as to further improve the operational flexibility of CFB units. On the basis of operation flexibility, the advantages of CFB boiler fuel flexibility are used to realize high-sulfur anthracite ultra-supercritical high-efficiency power generation and to achieve ultra-low emissions simultaneously. Furthermore, mixed fuel CFB power generation should be developed to realize the consumption of low-carbon combustible wastes such as municipal sludge, domestic waste, biomass and other inferior fuels from of coal mining and washing. In addition, ultra-low emission control technology under flexible operation and intelligent CFB power generation technology should be developed to assist the transformation and development of China's energy structure.
-
0. 引 言
在煤矿生产领域中,矿井提升机设备逐渐走向集成化、自动化和智能化[1],提升机的安全和稳定的性能直接影响煤矿的经济效益和井下工作人员的安全[2-4]。突发的故障停机造成的损失越来越大,由于其备件的故障间隔离散性较大,定期维修会造成较高的维修成本和较多的设备机器失效。因此做到定位维修位置能有效降低维修成本,具有很高的投资收益比[5-6]。已有的基于声音特征的矿井提升机故障诊断主要侧重于对声音特征参数的提取来判断故障的类别,这种方式只能实现事后维护,对矿井提升机进一步寻找故障源头,浪费了大量的时间[7-8]。很少涉及对矿井提升机故障声源主动定位的研究[9],鉴于此,提出一种基于MFCC-CS-MUSIC的矿井提升机故障源精准识别方法。
梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficient, MFCC)[10-11]是一种声音信号的频域分析方法,其对于输入的音频信号的种类没有限制,具有更好的鲁邦性,抗干扰性强,当噪比降低时仍然具有较好的识别性能[12]。MUSIC算法 (Multiple Signal classification)[13-14]只要已知天线阵的布阵形式,不管阵元是否等间距分布,构建谱函数以寻求波峰估计值,从而得到高分辨率的定位结果[15]。布谷鸟算法(Cuckoo Search,CS)[16-17]通过模拟某些种属布谷鸟的寄生育雏的行为,来有效地求解最优化问题,具有强大的搜寻能力,需要的参数少等优点[18]。
笔者基于音频的矿井提升机故障运用MFCC算法来识别故障,通过梅尔频率倒谱系数的不同分别出故障的类型。MUSIC算法来定位故障源的确切位置,同时为解决矿井提升机周边环境复杂,可听声信号的随机性强,信噪比较低,定位效果会不理想的问题,提出引用布谷鸟算法进行优化,通过最小化波达方向(direction of arrival,DOA)[19-20]的实际值和计算值之间的差异,从而提高定位的精度。
1. 矿井提升机故障识别算法分析
矿井提升机故障识别过程主要采用MFCC算法,通过对麦克风采集的音频信号进行特征提取和识别模型训练,当训练好提升机异常声音识别模型时,引入提升机声音测试样本进行识别,并对最终的识别结果进行决策和评价。基于MFCC的数据识别步骤如图1所示。
1)预加重。将采集到的提升机音频时域信号
x(t) 通过一阶FIR高通滤波器以此来增强x(t)的高频部分。其结果为:x′(n)=x(n)−kx(n−1) (1) 式中,
k 为加强系数,k=0.97 ;x(n)表示预加重后提升机频域信号,0≤n≤N−1,N为采样数。2)分帧加窗。对预加重之后
x′(n) 先进行分帧处理(分帧长度为256点分为一帧,步长为512),然后对音频信号进行汉明加窗,从而降低时变和非稳态对音频信号x′(n) 的影响,达到去除干扰与噪声的目的,变成更加平滑的音频信号x″ 。3)
{\rm{FFT}} 。对每帧提升机音频信号x''(n) 进行快速傅立叶变换,{\rm{FFT}} 变换的长度为256,采样频率为16000 Hz。时域音频信号{x}_{i}\left(t\right) 变为频域音频信号X(i,j) 即:X(i,j) = {\rm{FFT}}[{x_i}(t)] (2) 4)根据提升机的声音信号频域值计算每一帧的功率谱,并经过梅尔滤波器得到经过该滤波器滤波后的声音能量。
E(i,j) = {[X(i,j)]^2} (3) 其中,
i 为第i 帧;j 为频域中的第j 条谱线;E(i,j) 为每一帧的能量。5)
{\rm{Mel}} 滤波器滤波。设计的{\rm{Mel}} 滤波器(其阶数为24)使得每一个E(i,j) 都变换为{\rm{Mel}} 刻度下的值,其{\rm{Mel}} 频率可以用以下公式表达:{f_{\rm{Mel}}} = 2\;595 lg (1 + f/700) (4) 式中,
{f}_{{\rm{Mel}}} 为感知频率;f 为实际频率。6)取对数DCT。对滤波器输出的能量值进行对数变换,再进行DCT变换,从而得到MFCC参数。具体为
{\rm{MFCC}}\left(i,j\right)=\sqrt{\frac{2}{M}}\displaystyle\sum \limits_{m=0}^{M-1}\lg L(i,m){\rm{cos}}\left[\frac{\pi j(2m-1)}{2M}\right] (5) 其中:
\mathrm{L}\left({i},{m}\right)=\displaystyle\sum\limits _{k=0}^{N-1}X(i,j{)}^{2}{H}_{m}\left(k\right);0\leqslant {m} < {M} ,{H}_{m}\left(k\right) 为滤波器的频率响应;m为第m个滤波器。根据以上计算流程可以得到提升机音频信号的MFCC特征参数,通常取12维系数作为特征参数并添加一维能量值,再对其分别进行一阶差分,二阶差分,去除首尾两帧,认为这两帧的一阶差分参数为0,共得37维特征参数。从每种提升机故障样本集中分别选取多个样本,提取各提升机故障样本各帧的MFCC,如图2为提升机运行正常,图3为提升机超载故障,图4为提升机电机电流故障,图5为提升机机械故障。MFCC特征参数的变化曲线,其中x轴为维数,y轴为倒谱数。
由图2、图3可知,不同种类的提升机故障的MFCC特征值存在着较大差异,具有不同的静态特征,在同一维度下其特征参数的幅值和变换趋势都不相同。利用37维MFCC参数表征提升机声音信号所包含的信息,可用来区分出提升机不同故障。
2. CS优化的MUSIC定位算法
2.1 CS-MUSIC算法分析
基于四元十字形传声器阵列如图6所示。当识别到提升机故障时,如果能够判断出其故障的位置,可有效地提高矿井工作人员的生命安全以及工作效率,使其更快地找出故障的缘由。传统的MUSIC算法采用均匀圆型麦克风阵列实时采集矿井提升机声音信号,以提升机为探测目标,设计的MUSIC算法流程如下:
1)将采集的四路声音信号进行预处理其中包括对信号进行二次分帧(长度为L步长为分帧长度的一半),然后对分帧后的信号做FFT变换,公式如下:
X\left(k\right)=\displaystyle\sum\limits _{n=0}^{N-1}x\left(n\right){W}_{N}^{kn} (6) 其中,
k=\mathrm{0,1},\cdots, L-1; \; W_N={e}^{-j\frac{2\pi }{N}} ,N为采样数,n=1,2,…,N−1。可以得到音频信号频域模型为:
{X\left({f}_{j}\right)={\boldsymbol{A}}}_{\theta }\left({f}_{j}\right)S\left({f}_{j}\right)+N\left({f}_{j}\right) (7) 其中,
{{\boldsymbol{A}}}_{\theta }\left(f_j\right)=\left[\begin{array}{c}{{\bf{e}}}^{-j2\pi f{\tau }_{1}\left(\theta \right)}\\ {{\bf{e}}}^{-j2\pi f{\tau }_{2}\left(\theta \right)}\\ {{\bf{e}}}^{-j2\pi f{\tau }_{3}\left(\theta \right)}\\ {{\bf{e}}}^{-j2\pi f{\tau }_{4}\left(\theta \right)}\end{array}\right] 为方向响应向量,{\tau }_{P} (θ)(p=1, 2, 3, 4)是信号之间的时延X(fj);S(fj)为提升机发出的声音信号;N(fj)为阵列噪声。j=\mathrm{1,2},3,\cdots, L-1 ,{f}_{j}=\dfrac{{f}_{s}}{L} k,{f}_{s} 为信号频率。2)求协方差矩阵的估计值。
{{\boldsymbol{R}}}_{x}=\frac{1}{N}\displaystyle\sum \limits_{k=1}^{N}{\boldsymbol{X}}\left(k\right){{\boldsymbol{X}}}^{H}\left(k\right) (8) 其中,XH(k)为X(k)的共轭转置矩阵。
3)对以上步骤得到的
{{\boldsymbol{R}}}_{x} 进行特征分解得:{{\boldsymbol{R}}}_{x}\left({f}_{i}\right)={{\boldsymbol{U}}}_{S}\displaystyle\sum \limits_{S}{{\boldsymbol{U}}}_{S}^{H}+{{\boldsymbol{U}}}_{N}\displaystyle\sum \limits_{N}{{\boldsymbol{U}}}_{N}^{H} (9) 其中,
{{\boldsymbol{U}}}_{S} 为信号子空间,其特征值大于噪声功率;{{\boldsymbol{U}}}_{N} 为噪声子空间,其特征值等于噪声功率。4)从而得到MUSIC的谱估计函数为:
{P}_{{\rm{MU}}}\left(\theta \right)=\frac{1}{{a}^{H}\left(\theta \right){U}_{N}{U}_{N}^{H}a\left(\theta \right)}\text{,}\theta \in \vartheta (10) 其中,
\vartheta 为观察扇面;\theta 为俯仰角(0°<\theta ≤90°)。5)通过θ在观察扇面
\vartheta 内进行扫描,从而得出式在各扫描方位对应的数值,当该函数出现峰值的方位,记作\gamma ,即为提升机故障信号方位。为解决MUSIC算法易受噪音影响,定位不精准等问题,提出布谷鸟搜索算法(CS)对其进行优化,布谷鸟在自然环境中会在一块区域内随机寻找最好的鸟巢来寄生,该算法利用布谷鸟的独特育雏寄生行为并于莱维飞行相结合来解决最优化的问题。
为模拟布谷鸟寻巢的方式,设定以下3个理想状态[14]:
1)每只布谷鸟在随机选择的一个鸟巢中,只产1个蛋;
2)保留到下一代的巢是有最好质量的蛋;
3)鸟巢数量n是固定的,外来的鸟蛋被宿主鸟发现的概率为Pa,其中Pa为0.25。
若满足以上假设,则该算法的位置和路径更新原则可用以下公式表示:
\begin{gathered} {X_i}^{(f + 1)} = {X_i}^{(f)} + a \otimes {\rm{levy}}(s,d) \\ \end{gathered} (11) 其中,
{X_i}^{^f} 为第i 个(i = 1,2, \cdots ,n) 鸟巢在第f 代的位置;a 为步长控制量;\otimes 为点积运算;{\rm{levy}}(s,d) 为{\rm{levy}} 随机路径,即:{\rm{levy}}(s,d) = \frac{{d\varGamma (d)\sin (\pi d/2)}}{\pi }\frac{1}{{{s^{1 + d}}}} (12) 其中:
s 为步长;d 为常数(1 < d < 3) ;\varGamma 为标准{\rm{Gamma}} 函数。当外来的鸟蛋被宿主鸟发现时,则按以下公式:
{X_i}^{(f + 1)} = {X_i}^{^{(f)}} + r({X_i}^{^{(f)}} - {X_j}^{^{(f)}}) (13) 其中,r为0~1分布的随机数,当r>Pa时,随机更新鸟巢位置。
2.2 CS-MUSIC定位
基于CS的MUSIC定位过程如图7所示,图中ε为人为赋予的一趋于0的极小参量,主要分为以下几个步骤:
1)首先设目标函数如下:
J(\gamma ) = \min ||\kappa (\psi ,\theta ) - {\kappa ^*}(\psi ,\theta )|| (14) 其中,
\kappa (\psi ,\theta ) 为故障点计算坐标位置;{\kappa ^*}(\psi ,\theta ) 为故障点测量坐标位置。目标函数满足:
J(\varPsi ) < \varepsilon (15) 时,迭代结束。
通过MUSIC算法计算出到故障源的位置
\kappa (\psi ,\theta ) ;1) 用CS算法生成一组初值,根据式(14)计算出每个鸟巢的适应度以及目标函数的最小值,选出最好的鸟巢;
2)验证目标函数能否满足式(15),如果满足,则输出最优解,反之执行第5步;
3)通过式(11)更新新的鸟巢,以目标函数来保留目前最优鸟巢;
4)通过Pa遗弃部分鸟巢,通过式(13)来更新相应数量的鸟巢。
如果满足
J(\varPsi ) < \varepsilon ,输出最优解。3. 应用实例分析
3.1 矿井提升机故障源精准定位系统设计
矿井提升机故障声音识别与定位系统主要通过4个MAX9814型的麦克风采集多声道的声音信号、传递给K210芯片,K210通过WIFI上传音频信号至局域网,实现音频信号传输,使用32GSD卡于K210存储实时音频,对采集到的声音通过MATLAB程序进行预处理、异常声音识别以及定位,其采集装置如图8所示,现场安装照片如图9所示。
矿井提升机异常定位系统的流程如图10所示。具体实现过程为:
1)利用基于十字形麦克风阵列采集矿井提升机的一次完整运行的音频信号,并以wav格式存储,然后读取存储的声音进行预处理。其中包括对声音的预处理、分帧、加窗。
2)对处理过的四路音频信号,每一帧单通道信号进行MFCC特征参数提取,其中包括:FFT、梅尔滤波器滤波、取对数以及DCT变换。识别提升机是否出现故障。
3)当识别出故障时,对提升机这一次完整运行的音频的每一帧四通道信号进行MUSIC定位算法,根据定位算法求得故障声音的定位结果分布,找到定位峰值通过CS算法对结果进行寻优,从而得出提升机故障源的精确位置。
3.2 矿井提升机结构
如图11所示,矿井提升机主要由电动机,减速器,滚筒,天轮等构成。主要结构如图12所示。其中电动机为整个装置提供动力;减速器使提升机滚筒的转速与电机输出转速相匹配;滚筒和天轮负责对钢丝绳下放和收起。当故障发生时,定位出具体那个部件存在故障,进一步对此进行检修。
3.3 数据样本分析
采取某矿的主提升机各轴承声音信号作为测试数据,数据集来源于淮南矿业(集团)有限责任公司潘集第三煤矿,提升机运作时间大约为1 h,通过基于四元十字形的麦克风采集提升机的音频数据,采集时间周期为2个月,共提取500组数据(设置音频存储为wav格式)。其中450组作为训练集,50组作为测试集。为验证提出的基于矿井提升机故障声源定位系统方法的准确性和可行性,试验以机械故障为例,以数字标注各轴承的位置。图12中提升机各个轴承(以中心轴来计算)真实坐标见表1。以轴承1为坐标原点,测得各轴承坐标。测得以麦克风阵列为参考点,测得各轴承的方位角ψ和仰角θ见表1。
表 1 轴承坐标参数Table 1. Bearing coordinate parameters轴承编号 坐标(x, y, z)/m 标定入射角(ψ,θ) 1 (0,0,0.1) (0,20.31) 2 (0.5,0,0.1) (30.00,24.56) 3 (0.7,0,0.1) (45.11,23.37) 4 (1.1,0,0.1) (60.37,22.58) 5 (1.3,0,0.1) (70.56.20.89) 6 (1.6,0,0.1) (80.96,23.43) 7 (1.3,0,3.6) (60.68,50.94) 8 (1.6,0,3.6) (83.29,50.56) 3.4 故障识别结果分析
采取前面所描述的步骤,先对采集的音频数据进行预处理,其原始正常样本数据和预处理后的样本数据如图13和图14所示。
采用MFCC对提升机轴承进行故障识别,当识别出有故障时,对提升机这一次完整运行的音频的每一帧四通道信号进行MUSIC定位算法,根据定位算法求得故障声音的2组定位结果分布,第一组找到定位峰值如图15所示为二维定位结果。如图16所示为三维故障定位图,其中x轴为方位角y轴为俯仰角,z轴为归一化后的谱峰值,其三维相比二维定位结果(图17)更加直观精准。可得出定位结果为(41°,19°)。
第二组找到定位峰值如图18,图19所示可得出定位结果为(74°,19°)。
用CS算法进行寻优后坐标分别为(44°,24°),(73°,20°)如图19—图22所示。从而得出在允许的误差范围内提升机轴承故障的具体位置为减速器前轴承和滚筒的东轴承发生故障。
对50组测试集进行识别和定位结果进行统计,优化后定位坐标与实际坐标偏差结果如图23所示。
由图23可知,利用CS算法优化后music算法得到的定位坐标与实际位置坐标方位角误差Δψ在5°以内,Δθ在4°以内,说明此方法可以给出提升机故障源具体部位,从而为及时发现异常提供技术支持。
4. 结 语
提出了一种基于MFCC-CS-MUSIC的矿井提升机故障源精准识别方法。通过提取矿井提升机不同状态时的MFCC音频特征,实现了少量数据获得准确的矿井提升机故障信息,利用CS优化的MUSIC算法,对目标函数进行寻优,提升了故障定位的精准度。结果表明,该系统可快速精准的检测矿井提升机所产生的故障,并通过此方法定位出具体产生故障的位置具有较高的可靠性。
-
-
[1] 国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021 [2] 袁 亮,张 农,阚甲广,等. 我国绿色煤炭资源量概念、模型及预测[J]. 中国矿业大学学报,2018,47(1):1−8. YUAN Liang,ZHANG Nong,KAN Jiaguang,et al. The concept, model and reserve forecast of green coal resources in China[J]. Journal of China University of Mining & Technology,2018,47(1):1−8.
[3] 谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197. XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.
[4] BO Leckner. Fluidized bed combustion: mixing and pollutant limitation[J]. Progress in Energy and Combustion Science,1998,24(1):31−61.
[5] JOHNSSON J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion[J]. Fuel,1994,73(9):1398−1415. doi: 10.1016/0016-2361(94)90055-8
[6] 徐旭常, 吕俊复, 张 海. 燃烧理论与燃烧设备[M]. 北京: 科学出版社, 2012. [7] WANG X,GIBBS B M,RHODES M J. Impact of air staging on the fate of NO and N2O in a circulating fluidized-bed combustor[J]. Combustion and Flame,1994,99(3/4):508−515. doi: 10.1016/0010-2180(94)90043-4
[8] 李建锋,郝继红,吕俊复,等. 中国 300 MWe 级循环流化床锅炉机组运行现状分析[J]. 锅炉技术,2010,41(5):37−41. doi: 10.3969/j.issn.1672-4763.2010.05.010 LI Jianfeng,HAO Jihong,LYU Junfu,et al. Status of 300 MWe circulating fluidized bed boiler operation in China[J]. Boiler Technology,2010,41(5):37−41. doi: 10.3969/j.issn.1672-4763.2010.05.010
[9] BASU P. Combustion of coal in circulating fluidized-bed boilers: a review[J]. Chemical Engineering Science,1999,54(22):5547−5557.
[10] YUE Guangxi,CAI Runxia,LYU Junfu,et al. From a CFB reactor to a CFB boiler - the review of R&D progress of CFB coal combustion technology in China[J]. Powder Technology,2017,316:18−28. doi: 10.1016/j.powtec.2016.10.062
[11] ARJUNWADKAR A,BASU P,ACHARYA B. A review of some operation and maintenance issues of CFBC boilers[J]. Applied Thermal Engineering,2016,102:672−694. doi: 10.1016/j.applthermaleng.2016.04.008
[12] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 中华人民共和国国务院公报, 2020-09-22(3). [13] 杨海瑞,BO Leckner,RAFAL Kobylecki,等. 国际对话: “碳达峰、碳中和”背景下循环流化床锅炉的发展与挑战[J]. 电力学报,2022,37(2):118−120. YANG Hairui,BO Leckner,RAFAL Kobylecki,et al. International Dialogue: Development and challenges of CFB boiler under the background of “Carbon emission peak and carbon neutralization”[J]. Journal of Electric Power,2022,37(2):118−120.
[14] YUE Guangxi, YANG Hairui, LYU Junfu, et al. Latest development of CFB boilers in China [C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Xi’an: 2009, 3-12.
[15] 杨海瑞,岳光溪,王 宇,等. 循环流化床锅炉物料平衡分析[J]. 热能动力工程,2005,20(3):291−295. doi: 10.3969/j.issn.1001-2060.2005.03.018 YANG Hairui,YUE Guangxi,WANG Yu,et al. Analysis of mass balance in a circulating fluidized bed boiler[J]. Journal of Engineering for Thermal Energy and Power,2005,20(3):291−295. doi: 10.3969/j.issn.1001-2060.2005.03.018
[16] LI Shaohua,YANG Hairui,ZHANG Hai. Measurements of solid concentration and particle velocity distributions near the wall of a cyclone[J]. Chemical Engineering Journal,2009,150(1):168−173. doi: 10.1016/j.cej.2008.12.019
[17] JIN Xiaozhong,LYU Junfu,YANG Hairui,et al. Comprehensive mathematical model for coal combustion in the circulating fluidized bed combustor[J]. Tsinghua Science and Technology,2010,6(4):319−325.
[18] LU Junfu,ZHANG Jiansheng,YUE Guangxi,et al. Heat transfer coefficient calculation method of the heater in the circulating fluidized bed furnace[J]. Heat Transfer,2002,31(7):540−550. doi: 10.1002/htj.10056
[19] 骆仲泱,何宏舟,王勤辉,等. 循环流化床锅炉技术的现状及发展前景[J]. 动力工程,2004(6):761−767. LUO Zhongyang,HE Hongzhou,WANG Qinhui,et al. Status quo-technology of circulating fluidized bed boiler and its prospects of development[J]. Journal of Chinese Society of Power Engineering,2004(6):761−767.
[20] YUE Guangxi, LYU Junfu, ZHANG Hai, et al. Design theory of circulating fluidized bed boilers[C]//Proceeding of the 18th International Conference on Fluidized Bed Combustion. Toronto: ASME, 2005: 135−146.
[21] 杨 石, 杨海瑞, 吕俊复, 等. 基于流态重构的低能耗循环流化床锅炉技术[J]. 电力技术, 2010, 19(2): 9−16. YANG Shi, YANG Hairui, LYU Junfu, et al. The lower energy consumption(LEC) CFB technology based on state specification design theory[J]. Electric Power Technology, 2010, 19(2): 9−16.
[22] SU Jianmin,HU Nan. Application of fluidization reconstruction energy-saving combustion technology on 300MW CFB boiler[J]. Advanced Materials Research,2012,516-517:140−145. doi: 10.4028/www.scientific.net/AMR.516-517.140
[23] 汪佩宁, 蔡润夏, 柳成亮, 等. 300 MWe节能型循环流化床锅炉的设计与运行[J]. 沈阳工程学院学报(自然科学版), 2016, 12(4): 308-313. WANG Peining, CAI Runxia, LIU Chengliang, et al. Design and operation of a 300 MWe low energy consumption CFB boiler[J]. Journal of Shenyang Institute of Engineering( Natural Science), 2016, 12(4): 308-313.
[24] 蔡润夏, 柯希玮, 葛荣存, 等. 循环流化床超细石灰石炉内脱硫研究[J]. 中国电机工程学报, 2018, 38(10): 3042-3048,3155. CAI Runxia, KE Xiwei, GE Rongcun, et al. The in-situ desulfurization with ultra-fine limestone for circulating fluidized bed boilers[J]. Proceedings of the CSEE, 2018, 38(10): 3042-3048,3155.
[25] CAI Runxia,KE Xiwei,HUANG Yiqun,et al. Applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers[J]. Environmental Science & Technology,2019,53(22):13514−13523.
[26] 柯希玮,蒋 苓,吕俊复,等. 循环流化床燃烧低污染排放技术研究展望[J]. 中国工程科学,2021,23(3):120−128. KE Xiwei,JIANG Ling,LYU Junfu,et al. Prospects for the low pollutant emission control of circulating fluidized bed combustion technology[J]. Strategic Study of CAE,2021,23(3):120−128.
[27] 程乐鸣, 周星龙, 郑成航, 等. 大型循环流化床锅炉的发展[J]. 动力工程, 2008, 28(6): 817-826. CHENG Lemin, ZHOU Xinglong, ZHENG Chenghang, et al. Development of large-scale circulating fluidized bed boiler [J] Journal of Chinese Society of Power Engineering, 2008, 28(6): 817-826.
[28] 胡 南,刘雪敏,杨 石,等. 双分离器并联CFB系统的稳定性分析[J]. 动力工程学报,2013,33(7):497−501. HU Nan,LIU Xuemin,YANG Shi,et al. Stability analysis on CFB system with two cyclones in parallel[J]. Journal of Chinese Society of Power Engineering,2013,33(7):497−501.
[29] 胡 南,郭兆君,杨海瑞,等. CFB锅炉炉膛内颗粒横向扩散系数研究[J]. 动力工程学报,2016,36(3):168−171,206. doi: 10.3969/j.issn.1674-7607.2016.03.001 HU Nan,GUO Zhaojun,YANG Hairui,et al. Experimental study on lateral dispersion coefficient of solid particles in a CFB boiler[J]. Journal of Chinese Society of Power Engineering,2016,36(3):168−171,206. doi: 10.3969/j.issn.1674-7607.2016.03.001
[30] 鲁佳易, 卢啸风, 王 虎, 等. 引进300 MW循环流化床锅炉后燃特性试验研究[J]. 中国电机工程学报, 2012, 32(8): 12-18. LU Jiayi, LU Xiaofeng, WANG Hu, et al. Experimental study on post combustion characteristics of the imported 300 MW circulating fluidized bed boiler [J]. Proceedings of the CSEE, 2012, 32(8): 12-18.
[31] 周 旭,杨 冬,肖 峰,等. 超临界循环流化床锅炉中等质量流速水冷壁流量分配及壁温计算[J]. 中国电机工程学报,2009,29(26):13−18. doi: 10.3321/j.issn:0258-8013.2009.26.003 ZHOU Xu,YANG Dong,XIAO Feng,et al. Mass flow rate profile and metal temperature calculation in water wall of an supercritical circulating fluidized bed boiler at medium mass flow rate[J]. Proceedings of the CSEE,2009,29(26):13−18. doi: 10.3321/j.issn:0258-8013.2009.26.003
[32] CAI Runxia, KE Xiwei, LYU Junfu, et al. Progress of circulating fluidized bed combustion technology in China: a review[J]. Clean Energy, 2017, 1(1): 36−49.
[33] 凌 文,吕俊复,周 托,等. 660 MW超超临界循环流化床锅炉研究开发进展[J]. 中国电机工程学报,2019,39(9):2515−2523. LING Wen,LYU Junfu,ZHOU Tuo,et al. Research and development progress of the 660 MW Ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE,2019,39(9):2515−2523.
[34] 肖惠仁,姚禹歌,张 缦,等. 流化床锥形阀流量特性实验研究[J]. 煤炭学报,2021,46(5):1694−1700. XIAO Huiren,YAO Yuge,ZHANG Man,et al. Experimental investigation on flow characteristics of fluidized bed cone valve[J]. Journal of China Coal Society,2021,46(5):1694−1700.
[35] 莫 鑫,黄逸群,向柏祥,等. 燃煤循环流化床锅炉中并联分离器的性能实验研究[J]. 煤炭学报,2016,41(10):2503−2507. MO Xin,HUANG Yiqun,XIANG Baixiang,et al. Experimental study on the performance of parallel cyclones in a coal-fired CFB boiler[J]. Journal of China Coal Society,2016,41(10):2503−2507.
[36] 聂 立, 巩李明, 邓启刚, 等. 东方660 MW高效超超临界CFB锅炉的设计[J]. 电站系统工程, 2019, 35(4): 21−24. NIE Li, GONG Liming, DENG Qigang, et al. Design of Dongfang 660 MW highly-efficient ultra-supercritical CFB boiler [J]. Power System Engineering, 2019, 35(4): 21−24.
[37] 陈陆剑,陶 欣,张 缦,等. 660 MW超超临界CFB锅炉物料平衡模拟[J]. 煤炭学报,2020,45(11):3913−3920. CHEN Lujian,TAO Xin,ZHANG Man,et al. Simulation of material balance in a 660 MW ultra-supercritical CFB boiler[J]. Journal of China Coal Society,2020,45(11):3913−3920.
[38] 尚曼霞, 黄 中, 张 缦, 等. 一种极窄筛分粒径粉煤循环流化床燃烧系统[P]. 中国专利: CN114353059A, 2022-04-15. [39] 李金晶,李 燕,吕俊复,等. 循环流化床锅炉热惯性分析[J]. 热能动力工程,2009,24(5):609−613. LI Jinjing,LI Yan,LU Junfu,et al. An analysis of thermal inertia of a CFB(circulating fluidized bed) boiler[J]. Journal of Engineering for Thermal Energy and Power,2009,24(5):609−613.
[40] 吕俊复,佟博恒,董建勋,等. 循环流化床内煤矸石一维燃烧模型[J]. 煤炭学报,2016,41(10):2418−2425. LYU Junfu,TONG Boheng,DONG Jianxun,et al. One-dimensional model of coal gangue combustion in circulating fluidized bed boiler[J]. Journal of China Coal Society,2016,41(10):2418−2425.
[41] 张瑞卿,杨海瑞,吕俊复,等. 循环流化床锅炉炉膛的传热计算[J]. 动力工程学报,2011,31(4):248−252. ZHANG Ruiqing,YANG Hairui,LYU Junfu,et al. Calculation of heat transfer in furnace of a circulating fluidized bed boiler[J]. Journal of Chinese Society of Power Engineering,2011,31(4):248−252.
[42] 贺辉宝, 胡 南, 吕俊复, 等. 低灰分燃料循环流化床锅炉的外加物料河沙粒度分析. 动力工程学报, 2010, 30(4): 409−414. HE Huibao, HU Nan, LYU Junfu, et al. Sand size of a circulating fluidized bed boiler fired low ash fuel. Journal of Chinese Society of Power Engineering, 2010, 30(4): 409−414.
[43] 张 海, 吕俊复, 岳光溪. 美国能源部Coal FIRST计划介绍[C]//中国动力工程学会锅炉专业委员会2020年会, 成都: 2020. ZHANG Hai, LYU Junfu, YUE Guangxi. Introduction of Coal FIRST Initiative[C]//2020 Annual meeting of the Chinese Power Engineering Society Boiler, Chengdu:2020.
[44] LI Zhouhang,WU Yuxin,LU Junfu,et al. Heat transfer to supercritical water in circular tubes with circumferentially non-uniform heating[J]. Applied Thermal Engineering,2014,70(1):190−200. doi: 10.1016/j.applthermaleng.2014.05.013
[45] LI Zhouhang,WU Yuxin,TANG Guoli,et al. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube[J]. International Journal of Heat and Mass Transfer,2015,84:529−541. doi: 10.1016/j.ijheatmasstransfer.2015.01.047
[46] LI Zhouhang,LU Junfu,TANG Guoli,et al. Effects of rib geometries and property variations on heat transfer to supercritical water in internally ribbed tubes[J]. Applied Thermal Engineering,2015,78:303−314. doi: 10.1016/j.applthermaleng.2014.12.067
[47] TANG Guoli,ZHANG Man,GU Junping,et al. Thermal-hydraulic calculation and analysis on evaporator system of a 660 MWe ultra-supercritical CFB boiler[J]. Applied Thermal Engineering,2019,151:385−393. doi: 10.1016/j.applthermaleng.2019.01.060
[48] TANG Guoli,LI Zhouhang,LYU Junfu,et al. The critical mass flux for positive flow characteristic of heated tubes in the vertical water wall[J]. Applied Thermal Engineering,2019,153:29−38. doi: 10.1016/j.applthermaleng.2019.02.076
[49] 高 琴, 孔 皓, 杨海瑞, 等. 超高参数二次再热循环流化床锅炉技术可行性分析[J]. 热力发电, 2020,49(6),32-37. GAO Qin, KONG Hao, YANG Hairui, et al. Feasibility analysis for ultra-high parameter CFB boiler with secondary reheat[J]. Thermal Power Generation, 2020, 49(6), 32-37.
[50] YAO Yuge,JIANG Ling,DENG Boyu,et al. Heat transfer analysis of stationary bed materials in a CFB boiler after a sudden power failure[J]. Fuel Processing Technology,2021,211:106857.
[51] YAO Yuge,JIANG Ling,XIAO Huiren,et al. Restart-up performance of a CFB boiler after a sudden power failure accident[J]. Journal of Thermal Science,2022,31(3):830−839. doi: 10.1007/s11630-022-1585-x
[52] JIANG Ling,LI Yiran,YAO Yuge,et al. Heat transfer and protection of high-temperature reheater of a 660 MW circulating fluidized bed boiler after black out[J]. Applied Thermal Engineering,2022,213:118654. doi: 10.1016/j.applthermaleng.2022.118654
[53] 王鹏程,蔡 晋,王 珂,等. 超临界 350 MW 循环流化床锅炉煤种变化对运行的影响[J]. 热力发电,2021,50(3):145−151. WANG Pengcheng,CAI Jin,WANG Ke,et al. Influence of coal variation on operation performance of supercritical 350 MW CFB boiler[J]. Thermal Power Generation,2021,50(3):145−151.
[54] 尹炜迪,李 博,吴玉新,等. 循环流化床锅炉煤泥燃烧行为模型[J]. 煤炭学报,2015,40(7):1628−1633. YIN Weidi,LI Bo,WU Yuxin,et al. Model of coal slime combustion behavior in CFB boiler[J]. Journal of China Coal Society,2015,40(7):1628−1633.
[55] 张 平,陈陆剑,江 华,等. 300 MW循环流化床锅炉大比例掺烧煤泥试验研究[J]. 洁净煤技术,2020,26(1):65−70. ZHANG Ping,CHEN Lujian,JIANG Hua,et al. Research on large proportion of coal slimeco-combustion in a 300 MW CFB boiler[J]. Clean Coal Technology,2020,26(1):65−70.
[56] 柯希玮, 吕俊复, 郭学茂, 等. 高参数生物质循环流化床锅炉技术研发与应用[J]. 热力发电, 2022, 51(6): 1−8. KE Xiwei, LYU Junfu, GUO Xuemao, et al. Development and application of the biomass-fired circulating fluidized bed boiler with high steam parameters [J]. Thermal Power Generation, 2022, 51(6): 1−8.
[57] 柯希玮,张 缦,杨海瑞,等. 循环流化床锅炉NOx生成和排放特性研究进展[J]. 中国电机工程学报,2021,41(8):2757−2770. KE Xiwei,ZHANG Man,YANG Hairui,et al. Research progress on the characteristics of NOx emission in circulating fluidized bed boiler[J]. Proceedings of the CSEE,2021,41(8):2757−2770.
-
期刊类型引用(5)
1. 胡华斌, 方旭东, 张小光. 基于相似性度量的矿井提升机振动故障检测方法. 矿山机械. 2025(07) 百度学术
2. 周之榛,刘亚丹. 煤矿机电设备运行故障智能监测方法研究. 中国煤炭. 2025(03): 110-117 . 百度学术
3. 罗蕾. 煤矿多绳摩擦式提升机上天轮轴承故障诊断方法研究. 凿岩机械气动工具. 2025(05): 181-184 . 百度学术
4. 李振雷,李娜,杨菲,宋大钊,何学秋,薛雅荣,王洪磊,殷山. 声发射梅尔倒谱系数在砂岩破裂分析的应用. 煤炭学报. 2023(02): 714-729 . 百度学术
5. 王景阳,王有杰,孙守瑄. 基于深度域对抗迁移学习的提升机健康状态诊断系统. 能源与环保. 2023(11): 225-231 . 百度学术
其他类型引用(1)