高级检索

复杂构造区页岩孔隙结构、吸附特征及其影响因素

尚福华, 苗科, 朱炎铭, 王猛, 唐鑫, 王阳, 高海涛, 冯光俊, 密文天

尚福华,苗 科,朱炎铭,等. 复杂构造区页岩孔隙结构、吸附特征及其影响因素[J]. 煤炭科学技术,2023,51(2):269−282

. DOI: 10.13199/j.cnki.cst.2022-1576
引用本文:

尚福华,苗 科,朱炎铭,等. 复杂构造区页岩孔隙结构、吸附特征及其影响因素[J]. 煤炭科学技术,2023,51(2):269−282

. DOI: 10.13199/j.cnki.cst.2022-1576

SHANG Fuhua,MIAO Ke,ZHU Yanming,et al. Pore structure, adsorption capacity and their controlling factors of shale in complex structural area[J]. Coal Science and Technology,2023,51(2):269−282

. DOI: 10.13199/j.cnki.cst.2022-1576
Citation:

SHANG Fuhua,MIAO Ke,ZHU Yanming,et al. Pore structure, adsorption capacity and their controlling factors of shale in complex structural area[J]. Coal Science and Technology,2023,51(2):269−282

. DOI: 10.13199/j.cnki.cst.2022-1576

复杂构造区页岩孔隙结构、吸附特征及其影响因素

基金项目: 

中央引导地方科技发展资金资助项目(2022SZY0482);内蒙古自然科学基金资助项目(2022MS04008);内蒙古科研项目基本业务费资助项目(JY20220243)

详细信息
    作者简介:

    尚福华: (1991—)男,黑龙江宾县人,讲师,博士。E-mail:sfh@imut.edu.cn

  • 中图分类号: TE311

Pore structure, adsorption capacity and their controlling factors of shale in complex structural area

Funds: 

Central Government Guide Local Science and Technology Development Fund Project (2022SZY0482); Inner Mongolia Natural Science Foundation Project (2022MS04008); Inner Mongolia Research Project Basic operating Expenses Project (JY20220243)

  • 摘要:

    随着我国页岩气勘探开发的不断深入,构造复杂区已成为下一步勘探的重要方向。以渝东北复杂构造区龙马溪组页岩为例,开展了扫描电镜、压汞、低压气体吸附、等温吸附等试验,系统性地表征了渝东北地区不同构造变形带龙马溪组孔隙结构及吸附特征,分析了复杂构造区页岩孔隙结构和吸附特征的影响因素,阐明了构造变形对于孔隙结构和吸附能力的作用机制。结果表明:① 滑脱褶皱带和断层褶皱带龙马溪组页岩中发育较多的有机质孔,而叠瓦断层带龙马溪组页岩仅发育少量有机质孔隙,但发育更多矿物相关的孔裂隙;② 滑脱褶皱带龙马溪组页岩中微孔(< 2 nm)、介孔(2~50 nm)及宏孔(> 50 nm)均有发育,而断层褶皱带和叠瓦状冲断带龙马溪组页岩样品中微孔不是很发育,而介孔和宏孔相对比较发育;③ 龙马溪组页岩“过剩”吸附量都是随着压力的增大迅速增加,达到最大值( 6~9 MPa)后开始缓慢降低,而绝对吸附量则随着压力的增大单调增大;④ 孔隙结构主要受控于TOC(总有机碳)和黏土矿物含量,而吸附能力主要与TOC和微孔密切相关,此外,构造变形也可以通过改造孔隙结构来影响吸附能力。该研究成果为复杂构造区页岩气勘探提供了理论依据。

    Abstract:

    With the continuous exploration and development of shale gas in China, the complex structure area has become an important direction for further exploration. The Longmaxi shale samples collected from complex structure area in Northeast Chongqing were conducted scanning electron microscopy, mercury intrusion, low-pressure gas adsorption, isothermal adsorption. This study systematically characterized the pore structure and adsorption capacity of Longmaxi shale in different tectonic belts, analyzed the influencing factors of pore structure and adsorption capacity, and revealed the action mechanism of tectonic deformation on pore structure and adsorption capacity. The results showed that ① OM pores are relatively developed in the Longmaxi shales collected from thrust slip belt and thrust fold belt, but not in the Longmaxi shale from imbricate thrust belt, where mineral-related pores and fractures are mainly developed. ② Micropores (<2 nm), mesopores (2~50 nm) and macropores (>50 nm) are developed in the Longmaxi shale in the thrust slip belt, while mesopores and macropores are relatively developed in the thrust fold belt and imbricate thrust belt. ③ The “excess” adsorption capacity of Longmaxi shale rapidly increases with the increased pressure, and slowly decreases after reaching the maximum (6−9 MPa), while the absolute adsorption capacity monotonously increases with the increased pressure. ④ The pore structure is mainly controlled by TOC (Total Organic Carbon) and clay mineral content, and the adsorption capacity is closely related to TOC and micropores. In addition, tectonic deformation can also affect the adsorption capacity by modifying the pore structure. This study has a very important guiding significance for the evaluation and development of shale gas resources in complex tectonic areas.

  • 图  1   变形页岩样品分布

    Figure  1.   Distribution of deformed shale samples

    图  2   四川盆地及其东北缘龙马溪页岩孔隙形貌特征[41-43]

    Figure  2.   Pore morphological characteristics of Longmaxi shale in Sichuan Basin and its Northeast margin [41-43]

    图  3   渝东北不同构造带龙马溪组页岩代表性样品孔隙结构联合表征

    Figure  3.   The joint characterization of pore structure of representative samples of Longmaxi shale from different tectonic belts in Northeast Chongqing

    图  4   渝东北不同构造带龙马溪组页岩样品高压甲烷过剩吸附等温线及绝对吸附等温线

    Figure  4.   Isotherm of excess adsorption and absolute adsorption for Longmaxi shale samples as fitted by Langmuir model

    图  5   渝东北不同构造带龙马溪组页岩样品物质组成与孔隙结构参数关系

    Figure  5.   Relationship between composition and pore structure of Longmaxi shale from different tectonic belts in Northeast Chongqing

    图  6   不同孔径孔隙对于孔体积和比表面积贡献

    Figure  6.   Contribution of pores with different pore diameters to pore volume and specific surface area

    图  7   龙马溪组页岩物质组成与吸附能力相关性

    Figure  7.   Plots of TOC content, clay content and brittle minerals content vs. adsorption capacity of Longmaxi shale samples

    图  8   龙马溪组页岩吸附能力与孔隙结构相关性

    Figure  8.   Plots of adsorption capacity and pore structure parameters of Longmaxi shale

    表  1   渝东北龙马溪组页岩物质组成

    Table  1   Material composition of Longmaxi Formation shale in North Chongqing

    样品TOC含量/%矿物组成质量分数/%
    石英钾长石斜长石白云石黄铁矿黏土矿物脆性矿物
    T-17.7948063331090
    T-23.3459312351882
    M-16.596926041981
    M-26.636037761783
    L-14.07625001783
    L-23.057528001585
    下载: 导出CSV

    表  2   渝东北不同构造带龙马溪组页岩孔隙结构参数

    Table  2   Structural pore parameters of Longmaxi shale from different tectonic belts in Northeast Chongqing

    样品压汞试验氮气吸附试验二氧化碳吸附试验
    宏孔体积/(cm3·g−1)宏孔比表面积/(m2·g−1)介孔体积/(cm3·g−1)介孔比表面积/(m2·g−1)微孔体积/(cm3·g−1)微孔比表面积/(m2·g−1)
    T-10.012 50.014 80.032 319.201 00.006 924.882 0
    T-20.020 80.073 40.017 611.674 00.004 318.352 0
    M-10.031 40.987 00.003 91.669 00.003 918.896 0
    M-20.029 10.653 00.006 14.341 00.003 320.363 0
    L-10.017 60.743 00.002 91.290 00.003 416.263 0
    L-20.051 71.530 00.005 43.796 00.002 112.564 0
    下载: 导出CSV

    表  3   龙马溪组页岩样品高压甲烷吸附拟合参数

    Table  3   Fitting parameters of methane adsorption on different shale samples

    样品编号TOC含量/%T/℃GL/(cm3·g−1)PL/MPaρadsGL/TOC(cm3·g−1
    T-17.79505.562.260.28471.37
    T-23.34503.472.680.299103.89
    M-16.59503.491.920.32852.96
    M-26.63503.741.820.29656.41
    L-14.00502.341.850.31458.50
    L-23.05502.922.30.26495.74
    下载: 导出CSV
  • [1]

    GUO Xusheng,HU Dongfeng,LI Yuping,et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development,2017,44(4):513−523. doi: 10.1016/S1876-3804(17)30060-5

    [2]

    ZOU Caineng,ZHU Rukai,CHEN Zhongqiang,et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews,2019,189:51−78. doi: 10.1016/j.earscirev.2018.12.002

    [3]

    ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China: characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development,2015,42(6):753−767. doi: 10.1016/S1876-3804(15)30072-0

    [4]

    MA Xinhua,WANG Hongyan,ZHOU Shangwen,et al. Deep shale gas in China: geological characteristics and development strategies[J]. Energy Reports,2021,7:1903−1914. doi: 10.1016/j.egyr.2021.03.043

    [5]

    ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry B,2021,41(8):121−142.

    [6] 梁 峰,拜文华,邹才能,等. 渝东北地区巫溪 2 井页岩气富集模式及勘探意义[J]. 石油勘探与开发,2016,43(3):386−394. doi: 10.1016/S1876-3804(16)30045-3

    LIANG Feng,BAI Wenhua,ZOU Caineng,et al. Shale gas enrichment pattern and exploration significance of Well WuXi-2 in northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development,2016,43(3):386−394. doi: 10.1016/S1876-3804(16)30045-3

    [7]

    MA Yong,ARDAKANI Omid H,ZHONG Ningning,et al. Possible pore structure deformation effects on the shale gas enrichment: an example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology,2020,217:103349. doi: 10.1016/j.coal.2019.103349

    [8]

    CURTIS John B. Fractured shale-gas systems[J]. AAPG bulletin,2020,86(11):1921−1938.

    [9]

    LOUCKS Robert G,RUPPEL Stephen C,WANG Xiangzeng,et al. Pore types, pore-network analysis, and pore quantification of the lacustrine shale-hydrocarbon system in the Late Triassic Yanchang Formation in the southeastern Ordos Basin, China[J]. Interpretation,2017,5(2):63−79. doi: 10.1190/INT-2016-0094.1

    [10] 刘丹丹,王 茗,赵天垚,等. 五峰组—龙马溪组页岩储层纳米孔隙结构分类量化表征−以巫溪地区WX-1井为例[J]. 非常规油气,2023,10(1):93−103. doi: 10.19901/j.fcgyq.2023.01.12

    LIU Dandan,WANG Ming,ZHAO Tianyao,et al. Classification and quantitative characterization of nano-scale pore structure in shale reservoirs of Wufeng-Longmaxi Formation: a case study of well WX-1 in Wuxi Area[J]. Unconventional Oil & Gas,2023,10(1):93−103. doi: 10.19901/j.fcgyq.2023.01.12

    [11] 朱炎铭,王 阳,陈尚斌,等. 页岩储层孔隙结构多尺度定性-定量综合表征: 以上扬子海相龙马溪组为例[J]. 地学前缘,2016,23(1):154−163.

    ZHU Yanming,WANG Yang,CHEN Shangbin,et al. Qualitative-quantitative multiscale characteriration of pore structures in shalereservoirs: a case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers,2016,23(1):154−163.

    [12]

    ZHU Hongjian,JU Yiwen,QI Yu,et al. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel,2018,228:272−289. doi: 10.1016/j.fuel.2018.04.137

    [13]

    LOUCKS Robert G,REED Robert M,RUPPEL Stephen C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG bulletin,2012,96(6):1071−1098. doi: 10.1306/08171111061

    [14]

    JARVIE Daniel M,HILL Ronald J,RUBLE Tim E,et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG bulletin,2007,91(4):475−499. doi: 10.1306/12190606068

    [15] 汤庆艳,张铭杰,张同伟,等. 生烃热模拟试验方法述评[J]. 西南石油大学学报 (自然科学版),2013,35(1):52.

    TANG Qingyan,ZHANG Mingjie,ZHANG Tongwei,et al. A review on pyrolysis experimentation on hydrocarbon generation[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2013,35(1):52.

    [16] 党 伟, 张金川, 聂海宽, 等. 页岩油微观赋存特征及其主控因素: 以鄂尔多斯盆地延安地区延长组7段3亚段陆相页岩为例[J]. 石油学报, 2022, 43(4): 507−523.

    DANG Wei, ZHANG Jinchuan, NIE Haikuan, et al. Microscopic occurrence characteristics of shale oil and their main controlling factors: a case study of the3rd submember continental shale of Member 7 of Yanchang Formation in Yan'an area. Ordos Basin [J]. Acta Petrolei Sinica, 2022, 43(4): 507−523.

    [17]

    DONG Tian,HARRIS Nicholas B,MCMILLAN Julia M,et al. A model for porosity evolution in shale reservoirs: An example from the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin[J]. AAPG Bulletin,2019,103(5):1017−1044. doi: 10.1306/10261817272

    [18] 赵卫卫,李富康,单长安,等. 延安地区延长组长7段陆相泥页岩孔隙类型及其吸附特征研究[J]. 非常规油气,2023,10(1):32−43. doi: 10.19901/j.fcgyq.2023.01.05

    ZHAO Weiwei,LI Fukang,SHAN Chang’an,et al. Pore types and adsorption characteristics of continental mud shale in Chang7 member of Yanchang Formation of Yan'an Area[J]. Unconventional Oil & Gas,2023,10(1):32−43. doi: 10.19901/j.fcgyq.2023.01.05

    [19]

    LIU Bei,MASTALERZ Maria,SCHIEBER Juergen. SEM petrography of dispersed organic matter in black shales: A review[J]. Earth-Science Reviews,2022,224:103874. doi: 10.1016/j.earscirev.2021.103874

    [20] 龚 卓,陈尚斌,李学元,等. 基于AFM的巫溪2井页岩储层孔隙特征研究[J]. 煤炭科学技术,2022,50(7):216−223.

    GONG Zhuo,CHEN Shangbin,LI Xueyuan,et al. Research on pore characteristics of shale reservoir in Wuxi No. 2Well based on AFM[J]. Coal Science and Technology,2022,50(7):216−223.

    [21]

    SHANG Fuhua,ZHU Yanming,GAO Haitao,et al. Relationship between tectonism and composition and pore characteristics of shale reservoirs[J]. Geofluids,2020:1−14.

    [22] 刘旭彤,赵迪斐. 过渡相页岩储层纳米矿物孔隙的成因-形貌类型及系统分类:以太原西山古交矿区山西组页岩为例[J]. 非常规油气,2023,10(1):77−83,103. doi: 10.19901/j.fcgyq.2023.01.10

    LIU Xutong,ZHAO Difei. Genesis, morphological types and systematic classification of nano-mineral pores in transitional facies shale reservoirs: A case study of Shanxi Formation shale in Xishan Gujiao mining area, Taiyuan[J]. Unconventional Oil & Gas,2023,10(1):77−83,103. doi: 10.19901/j.fcgyq.2023.01.10

    [23] 李恒超,刘大永,彭平安,等. 构造作用对重庆及邻区龙马溪组页岩储集空间特征的影响[J]. 天然气地球科学,2015,26(9):1705−1711.

    LI Hengchao,LIU Dayong,PENG Pingan,et al. Tectonic impact on reservoir character of Chongqing and its neighbor area[J]. Natural Gas Geoscience,2015,26(9):1705−1711.

    [24] 刘文平,张成林,高贵冬,等. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报,2017,38(2):175−184. doi: 10.7623/syxb201702005

    LIU Wenping,ZHANG Chenglin,GAO Guidong,et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica,2017,38(2):175−184. doi: 10.7623/syxb201702005

    [25]

    MA Yong,ZHONG Ningning,LI Dahua,et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China: a possible microscopic mechanism for gas preservation[J]. International Journal of Coal Geology,2015,137:38−54. doi: 10.1016/j.coal.2014.11.001

    [26]

    ROSS Daniel J K,BUSTIN R Marc. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology,2009,26(6):916−927. doi: 10.1016/j.marpetgeo.2008.06.004

    [27]

    REXER Thomas F T,BENHAM Michael J,Aplin Andrew C,et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels,2013,27(6):3099−3109.

    [28]

    WANG Yang,ZHU Yanming,LIU Shimin,et al. Methane adsorption measurements and modeling for organic-rich marine shale samples[J]. Fuel,2016,172:301−309. doi: 10.1016/j.fuel.2015.12.074

    [29]

    SHANG Fuhua,ZHU Yanming,HU Qinhong,et al. Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance[J]. Journal of Natural Gas Science and Engineering,2020,84:103676. doi: 10.1016/j.jngse.2020.103676

    [30]

    GASPARIK Matus,GHANIZADEH Amin,BERTIER Pieter,et al. High-pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & fuels,2012,26(8):4995−5004.

    [31]

    GASPARIK Matus,BERTIER Pieter,GENSTERBLUM Yves,et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology,2014,123:34−51. doi: 10.1016/j.coal.2013.06.010

    [32]

    CHALMERS Gareth R L,BUSTIN R Marc. Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology,2008,56(1):1−21. doi: 10.2113/gscpgbull.56.1.1

    [33]

    ZHOU Shangwen,XUE Huaqing,NING Yang,et al. Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane[J]. Fuel,2018,211:140−148. doi: 10.1016/j.fuel.2017.09.065

    [34]

    LOUCKS Robert G,REED Robert M,RUPPEL Stephen C,et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79(12):848−861. doi: 10.2110/jsr.2009.092

    [35]

    CHALMERS Gareth R,BUSTIN R Marc,POWER Ian M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin,2012,96(6):1099−1119. doi: 10.1306/10171111052

    [36]

    MASTALERZ Maria,SCHIMMELMANN Arndt,DROBNIAK Agnieszka,et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin,2013,97(10):1621−1643. doi: 10.1306/04011312194

    [37]

    GREGG Sideny John,SING Kenneth Stafford William. Adsorption surface area and porosity[J]. Journal of the Electrochemical society,1967,114(11):279Ca.

    [38]

    SAKUROVS Richard,DAY Stuart,WEIR Steve,et al. Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions[J]. Energy & Fuels,2007,21(2):992−997.

    [39]

    SIRCAR S. Gibbsian surface excess for gas adsorption revisited[J]. Industrial & Engineering Chemistry Research,1999,38(10):3670−3682.

    [40]

    LANGMUIR Irving. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical society,1918,40(9):1361−1403. doi: 10.1021/ja02242a004

    [41]

    WANG Qingtao,WANG Taoli,LIU Wenping,et al. Relationships among composition, porosity and permeability of Longmaxi Shale reservoir in the Weiyuan Block, Sichuan Basin, China[J]. Marine and Petroleum Geology,2019,102:33−47. doi: 10.1016/j.marpetgeo.2018.12.026

    [42]

    CHEN Zhiyuan,SONG Yan,JIANG Zhenxue,et al. Identification of organic matter components and organic pore characteristics of marine shale: a case study of Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Marine and Petroleum Geology,2019,109:56−69. doi: 10.1016/j.marpetgeo.2019.06.002

    [43]

    HU Guang,PANG Qian,JIAO Kun,et al. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology,2020,116:104314. doi: 10.1016/j.marpetgeo.2020.104314

    [44]

    MILLIKENilliken K L,RUDNICKI M,AWWILLER D N,et al. Organic matter–hosted pore system, Marcellus formation (Devonian), Pennsylvania[J]. AAPG Bulletin,2013,97(2):177−200. doi: 10.1306/07231212048

    [45]

    JI Liming,ZHANG Tongwei,KITTY L Milliken,et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry,2012,27(12):2533−2545. doi: 10.1016/j.apgeochem.2012.08.027

    [46]

    SANDER R,PAN Zhejun,CONNELL L D,et al. Controls on methane sorption capacity of Mesoproterozoic gas shales from the Beetaloo Sub-basin, Australia and global shales[J]. International Journal of Coal Geology,2018,199:65−90. doi: 10.1016/j.coal.2018.09.018

    [47]

    HOU Yuguang,ZHANG Kunpeng,WANG Furong,et al. Structural evolution of organic matter and implications for graphitization in over-mature marine shales, south China[J]. Marine and Petroleum Geology,2019,109:304−316. doi: 10.1016/j.marpetgeo.2019.06.009

    [48]

    LIANG Mingliang,WANG Zongxiu,GAO Li,et al. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel,2017,197:310−319. doi: 10.1016/j.fuel.2017.02.035

    [49]

    WANG Guochang. Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin,2020,104(1):21−36.

    [50]

    EMMANUEL S,DAY-Stirrat R J. A framework for quantifying size dependent deformation of nano-scale pores in mudrocks[J]. Journal of applied geophysics,2012,86:29−35. doi: 10.1016/j.jappgeo.2012.07.011

  • 期刊类型引用(10)

    1. 贺兵兵, 任麒亨, 王青祥, 张福成, 马灵军, 许亚优, 王宝富, 宋小林. 高压磨料水射流流场形态及煤体冲蚀破坏特征试验研究. 煤矿安全. 2025(08) 百度学术
    2. 魏建平,蔡玉波,刘勇,余大炀,黄逸,李兴,高梦雅. 非刀具破岩理论与技术研究进展与趋势. 煤炭学报. 2024(02): 801-832 . 百度学术
    3. 刘送永,朱瑞,左辉,杨雪源. 采煤机滚筒适应性设计方法研究. 中南大学学报(自然科学版). 2024(12): 4544-4559 . 百度学术
    4. 刘送永,李洪盛,江红祥,张强,崔玉明,刘晓辉. 矿山煤岩破碎方法研究进展及展望. 煤炭学报. 2023(02): 1047-1069 . 百度学术
    5. 卢义玉,朱志丹,汤积仁,刘文川,凌远非,张洋凯,杨盛,姚奇. 增压式脉冲水射流破碎硬岩性能研究. 振动与冲击. 2023(07): 114-122 . 百度学术
    6. 顾聪聪,刘送永,李洪盛,孙敦凯,江红祥,周小磊. 高压聚能射流发生装置设计及性能. 煤炭学报. 2023(12): 4632-4646 . 百度学术
    7. 张强,张润鑫,刘峻铭,王聪,张赫哲,田莹. 煤矿智能化开采煤岩识别技术综述. 煤炭科学技术. 2022(02): 1-26 . 本站查看
    8. 张强,张赫哲,田莹,王聪. 截齿辅助冲击作用下坚硬煤体的破碎特性. 煤炭学报. 2022(02): 1002-1016 . 百度学术
    9. 刘春生,刘爽,刘若涵,徐鹏. 多自由度悬臂截割机构碟盘刀具的空间位姿模型. 黑龙江科技大学学报. 2022(05): 641-648 . 百度学术
    10. 刘波,刘道园,杨云博. 矿用5G多频段融合组网应用研究. 工矿自动化. 2022(S1): 108-111 . 百度学术

    其他类型引用(5)

图(9)  /  表(3)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  8
  • PDF下载量:  41
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-09-27
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-03-19

目录

    MI Wentian

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回