高级检索

大埋深高承压水双层结构底板破坏机理及应用研究

李昂, 周永根, 杨宇轩, 于振子, 牟谦, 王满, 张波

李 昂,周永根,杨宇轩,等. 大埋深高承压水双层结构底板破坏机理及应用研究[J]. 煤炭科学技术,2023,51(10):207−219. DOI: 10.13199/j.cnki.cst.2022-1485
引用本文: 李 昂,周永根,杨宇轩,等. 大埋深高承压水双层结构底板破坏机理及应用研究[J]. 煤炭科学技术,2023,51(10):207−219. DOI: 10.13199/j.cnki.cst.2022-1485
LI Ang,ZHOU Yonggen,YANG Yuxuan,et al. Study on failure mechanism and application of double-layer structure floor with large buried depth and high confined water[J]. Coal Science and Technology,2023,51(10):207−219. DOI: 10.13199/j.cnki.cst.2022-1485
Citation: LI Ang,ZHOU Yonggen,YANG Yuxuan,et al. Study on failure mechanism and application of double-layer structure floor with large buried depth and high confined water[J]. Coal Science and Technology,2023,51(10):207−219. DOI: 10.13199/j.cnki.cst.2022-1485

大埋深高承压水双层结构底板破坏机理及应用研究

基金项目: 

国家自然科学基金面上资助项目(51874229);陕西省自然科学基础研究计划重点资助项目(2020JZ-52)

详细信息
    作者简介:

    李昂: (1981—),男,辽宁鞍山人,副教授,博士。E-mail:651238823@qq.com

  • 中图分类号: TD32

Study on failure mechanism and application of double-layer structure floor with large buried depth and high confined water

Funds: 

National Natural Science Foundation of China (51874229); Key Funding Project of Shaanxi Provincial Natural Science Basic Research Program (2020JZ-52)

  • 摘要:

    平煤矿区首次开采近全岩下保护层工作面用于解放其上部受瓦斯突出威胁的己组煤炭资源,近千米埋深开采近全岩层势必加大底板破坏深度,一旦扰动隔水层内L5弱富水性含水层形成寒灰水间接补给通道,影响工作面底板安全稳定。为此首先建立双层结构底板塑性滑移线场理论模型,推导出三种工况下双层底板最大破坏深度解析解;然后通过自主设计的孔隙水压力(弹簧)和地层有效应力(千斤顶)协同工作的相似模拟试验平台,基于数字图像相关技术模拟分析了采场顶底板变形形态和破坏特征;最后使用钻孔应变测量方法在平煤十二矿己15-31040近全岩工作面开展底板破裂发育形态现场监测。结果表明:采用双层结构底板塑性滑移线场理论计算出己15-31040近全岩工作面底板最大破坏深度为16.59 m;相似模拟试验揭示了底板破坏集中于开切眼及工作面两端,具有明显滞后破坏特征,最大破坏深度为17.8 m,工作面推进159.9 m进入充分开采后,底板应力逐渐恢复;现场实测结果显示底板岩体在工作面前方7.9 m出现压剪滑移破坏,工作面推过钻孔前后底板分别表现出压剪和拉剪破坏,底板最大破坏深度介于16.5~18 m。现场实测与理论计算和相似模拟试验结果较为吻合,研究成果有利于推动大埋深、高承压煤岩层开采底板水害防治技术的进步。

    Abstract:

    The first mining of nearly whole rock lower protective layer working face in Pingdingshan coal mining area is used to liberate the Ji group coal resources of its upper threatened by the gas outburst. The mining of the rock layer at a depth of nearly 1000 meters is bound to increase the depth of the floor damage. Once the L5 weak water-rich aquifer in the aquifuge is disturbed, the indirect recharge channel of the cold ash water is formed, which affects the safety and stability of the rock floor. Firstly, the theoretical model of plastic slip line of double-layer structure floor is established, and the analytical solution of maximum failure depth of double-layer floor under three working conditions is derived. Then through the self-designed similar simulation experimental platform of pore water pressure (spring) and stratum effective stress (jack), the deformation form and failure characteristics of stope roof and floor are simulated and analyzed based on digital image correlation technology. Finally, the borehole strain measurement method was used to carry out on-site monitoring of floor fracture development morphology in Ji15-31040 nearly whole rock working face of Pingdingshan No.12 Coal Mine. The results show that the maximum failure depth of Ji15-31040 nearly whole rock working face floor is 16.59 m by using the plastic slip line theory of double-layer structure floor. The similar simulation experiment reveals that the floor failure is concentrated at both ends of the open-off cut and the working face, with obvious lagging failure characteristics. The maximum failure depth is 17.8 m. After the working face advances 159.9 m into full mining, the floor stress gradually recovers. The field measurement results show that the floor rock mass has a compression-shear slip failure at 7.9 m in front of the working face. The floor before and after the working face is pushed through the borehole shows compression-shear and tension-shear failure, respectively. The maximum failure depth of the floor is between 16.5 m and 18 m. The results of field measurement are in good agreement with theoretical calculation and similar simulation test.

  • 图  1   单层结构底板破坏深度计算简图

    Figure  1.   Calculation diagram of failure depth of single-layer structure floor

    图  2   H0<H'工况下的双层结构底板破坏深度计算简图

    Figure  2.   Calculation diagram of floor failure depth of double-layer structure under H0<H'

    图  3   H0H'工况下的双层结构底板破坏深度计算简图

    Figure  3.   Calculation diagram of floor failure depth of double-layer structure under H0H'

    图  4   H0>H'工况下的双层结构底板破坏深度计算简图

    Figure  4.   Calculation diagram of floor failure depth of double-layer structure under H0>H'

    图  5   底板岩体综合柱状图

    Figure  5.   Synthesis column map

    图  6   顶板相似材料

    Figure  6.   Roof similar material of block

    图  7   底板承压水模拟系统

    Figure  7.   Floor pressurized water simulation system

    图  8   不同规格弹簧的弹性系数

    Figure  8.   Elastic coefficient of spring with different specifications

    图  9   顶板压力加载系统

    Figure  9.   Roof pressure loading system

    图  10   监测系统示意

    Figure  10.   Monitoring system schematic

    图  11   相似试验概况

    Figure  11.   Overview of similar simulation experiments

    图  12   顶底板塑性破坏范围演化规律

    Figure  12.   Evolution law of plastic failure range of roof and floor

    图  13   监测方案示意

    Figure  13.   Monitoring programme schematics

    图  14   应变量实测曲线

    Figure  14.   Measured curve of strain

    图  15   不同推进度下应变变化速率等值线及彩色影像图

    Figure  15.   Isoline and color image of strain change rate under different propulsion

    表  1   底板最大破坏深度理论计算参数

    Table  1   Theoretical calculation parameters of maximum floor failure depth

    工作面超前塑性破坏长度/m底板岩体内摩擦角/(°)上层岩体
    厚度/m
    上层下层
    x0φ1φ2H'
    7.939365.5
    下载: 导出CSV

    表  2   底板相似材料配比及用量

    Table  2   Proportion and dosage of similar materials for floor

    序号底板
    岩性
    厚度
    /m
    模拟层
    厚/cm
    配比砂子质
    量/ kg
    石膏质
    量/kg
    大白粉质
    量/kg
    1L8灰岩3.52.76∶7∶318.52.20.9
    20.20.28∶8∶21.10.10.03
    3砂质
    泥岩
    1.81.48∶8∶210.31.00.3
    4L7灰岩7.25.66∶7∶338.44.51.9
    5砂质
    泥岩
    1.00.88∶8∶25.60.60.1
    60.350.38∶8∶22.20.20.06
    7砂质
    泥岩
    118.58∶8∶255.55.51.4
    8L6灰岩2.31.86∶7∶312.31.40.6
    9砂质
    泥岩
    3.22.58∶8∶217.81.80.4
    10L5灰岩5.24.16∶7∶328.13.31.4
    110.80.68∶8∶24.30.40.1
    12砂质
    泥岩
    3.02.38∶8∶216.31.70.4
    13L4灰岩4.03.16∶7∶321.32.51.1
    140.50.48∶8∶22.80.30.08
    15砂质
    泥岩
    3.52.78∶8∶219.31.90.5
    16L3-L1灰岩9.57.46∶7∶350.75.92.5
    17铝土
    泥岩
    8.06.38∶2∶844.81.14.5
    注:配比为砂子质量∶石膏质量∶大白粉质量。
    下载: 导出CSV

    表  3   顶板相似材料配比

    Table  3   Proportion and dosage of similar materials for floor

    序号顶板
    岩性
    层厚/
    m
    模拟
    厚度/
    cm
    单个块体厚度/
    cm
    块体材料
    配比
    胶结材料
    配比(砂子∶石膏∶大白粉)
    1140.433水泥∶胶乳∶砂-1∶0.2∶34∶2∶1.5
    2细粒砂岩1.233水泥∶胶乳∶砂-1∶0.2∶34∶2∶1.5
    3砂质泥岩544水泥∶JS-1.2∶13∶2∶1
    4细粒砂岩433水泥∶胶乳∶砂-1∶0.2∶34∶2∶1.5
    5砂质泥岩784水泥∶JS-1.2∶13∶2∶1
    6泥岩1.763水泥∶JS-1∶13∶1∶1.5
    715563水泥∶JS-1∶13∶1∶1.5
    8泥岩0.363水泥∶JS-1∶13∶1∶1.5
    9砂质泥岩1084水泥∶JS-1.2∶13∶2∶1
    1016-171.833水泥∶JS-1∶13∶1∶1
    11砂质泥岩0.533水泥∶JS-1∶13∶1∶1
    12细粒砂岩233水泥∶JS-1∶13∶1∶1
    13砂质泥岩11.884水泥∶JS-1.2∶13∶2∶1
    15L9灰岩2.433水泥∶胶乳∶砂-1∶0.1∶13∶3∶1
    下载: 导出CSV

    表  4   来压步距统计

    Table  4   Pressure step statistics

    来压次数基本顶
    初次来压
    第1次
    来压
    第2次
    来压
    第3次
    来压
    第4次
    来压
    第5次
    来压
    第6次
    来压
    第7次
    来压
    开挖距离/m48.464.077.487.3101.5109.1120.1132.9
    来压步距/m48.415.613.49.914.27.611.012.8
    来压次数第8次
    来压
    第9次
    来压
    第10次
    来压
    第11次
    来压
    第12次
    来压
    第13次
    来压
    第14次
    来压
    平均
    周期来压
    开挖距离/m141.2155.9163.8173.7186.9202.2218.9
    来压步距/m8.314.77.99.913.215.416.612.2
    下载: 导出CSV
  • [1]

    RANJITH P G,ZHAO J,JU M H,et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering,2017,3(4):546−551. doi: 10.1016/J.ENG.2017.04.024

    [2] 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术,2017,49(2):1−16.

    XIE Heping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences,2017,49(2):1−16.

    [3] 吴 涛,方向清,宁树正,等. 华北型煤田“三下一上”煤炭资源现状及开发利用研究[J]. 煤炭科学技术,2021,49(9):129−135. doi: 10.13199/j.cnki.cst.2021.09.019

    WU Tao,FANG Xiangqing,NING Shuzheng,et al. Study on status quo and development as well as utilization of coal resources“under buildings, water bodies, railways and above confined water”in North China Coalfields[J]. Coal Science and Technology,2021,49(9):129−135. doi: 10.13199/j.cnki.cst.2021.09.019

    [4]

    BAI L Y,LIANG Y B,SONG Y B,et al. Study on failure law and failure depth of floor in deep mining[J]. Geotechnical and Geological Engineering,2019,37(6):4933−4946. doi: 10.1007/s10706-019-00953-7

    [5] 李春元,崔春阳,雷国荣,等. 深部开采岩体围压卸荷-渗流致拉破裂机制[J]. 煤炭学报,2022,47(8):3069−3082. doi: 10.13225/j.cnki.jccs.2022.0394

    LI Chunyuan,CUI Chunyang,LEI Guorong,et al. Tensile fracture mechanism of rock mass induced by the unloading-seeping of confining pressure in deep coal mining[J]. Journal of China Coal Society,2022,47(8):3069−3082. doi: 10.13225/j.cnki.jccs.2022.0394

    [6]

    LI A, YANG Y X, ZHU M C, et al. Design theory and physical simulation test using a textile bag to control water inrush in a coal mine roadway[J]. Mine Water and the Environment, 2022: 1-12.

    [7] 黄炳香,张 农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报,2020,45(3):911−926.

    HUANG Bingxiang,ZHANG Nong,JING Hongwen,et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society,2020,45(3):911−926.

    [8]

    FANG F,SHU C,WANG H T. Physical simulation of upper protective coal layer mining with different coal seam inclinations[J]. Energy Science & Engineering,2020,8(9):3103−3116.

    [9] 王中华,曹建军. 深部远距离煤层群卸压主控因素及首采层优选方法研究[J]. 煤炭科学技术,2021,49(8):154−161. doi: 10.13199/j.cnki.cst.2021.08.020

    WANG Zhonghua,CAO. Jianjun. Study on main control factors of pressure relief of deep and long-distance coal seams group and optimization method of initial mining[J]. Coal Science and Technology,2021,49(8):154−161. doi: 10.13199/j.cnki.cst.2021.08.020

    [10] 杨 科,刘 帅,唐春安,等. 多关键层跨煤组远程被保护层煤壁片帮机理及防治[J]. 煤炭学报,2019,44(9):2611−2621. doi: 10.13225/j.cnki.jccs.2019.0416

    YANG Ke,LIU Shuai,TANG Chunan,et al. Mechanism and prevention of coal seam rib spalling in remote protected layer across coal group[J]. Journal of China Coal Society,2019,44(9):2611−2621. doi: 10.13225/j.cnki.jccs.2019.0416

    [11] 杨 科,刘 帅. 深部远距离下保护层开采多关键层运移-裂隙演化-瓦斯涌出动态规律研究[J]. 采矿与安全工程学报,2020,37(5):991−1000.

    YANG Ke,LIU Shuai. Rule of multi-key strata movement-fracture evolution-dynamics of gas emission in deep long distance lower protective layer mining[J]. Journal of Mining& Safety Engineering,2020,37(5):991−1000.

    [12]

    JIN K,CHENG Y P,WANG W,et al. Evaluation of the remote lower protective seam mining for coal mine gas control: a typical case study from the Zhuxianzhuang coal mine, Huaibei coalfield, China[J]. Journal of Natural Gas Science and Engineering,2016,33:44−55. doi: 10.1016/j.jngse.2016.05.004

    [13]

    MA D,DUAN H Y,ZHANG J X,et al. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines[J]. International Journal of Coal Science & Technology,2022,9(1):1−28.

    [14]

    LI A,DING X S,YU Z Z,et al. Prediction model of fracture depth and water inrush risk zoning in deep mining coal seam floor[J]. Environmental Earth Sciences,2022,81(11):1−21.

    [15] 王朋朋,赵毅鑫,姜耀东,等. 邢东矿深部带压开采底板突水特征及控制技术[J]. 煤炭学报,2020,45(7):2444−2454. doi: 10.13225/j.cnki.jccs.DZ20.0680

    WANG Pengpeng,ZHAO Yixin,JIANG Yaodong,et al. Characteristics and control technology of water inrush from deep coal seam floor above confined aquifer in Xingdong coal mine[J]. Journal of China Coal Society,2020,45(7):2444−2454. doi: 10.13225/j.cnki.jccs.DZ20.0680

    [16]

    LI A,MA Q,LIAN Y Q,et al. Numerical simulation and experimental study on floor failure mechanism of typical working face in thick coal seam in Chenghe Mining Area of Weibei, China[J]. Environmental Earth Sciences,2020,79(5):1−22.

    [17] 李 昂,李睿妮,王 盼,等. 澄合矿区5#煤综采面不同倾长下底板破坏深度规律研究[J]. 煤炭技术,2017,36(4):9−12.

    LI Ang,LI Ruini,WANG Pan,et al. Study on regularity of failure depth of floor No. 5 coal seam in fully mechanized coal mining face in different length in Chenghe Mining Area[J]. Coal Technology,2017,36(4):9−12.

    [18] 李见波,尹尚先. 近奥灰薄隔水层底板岩体变形破坏机制研究[J]. 煤炭科学技术,2021,49(12):173−179. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112021

    LI Jianbo,YIN Shangxian. Study on deformation and rock failure mechanism of floor rock mass with thin aquifuge near Ordovician limestone[J]. Coal Science and Technology,2021,49(12):173−179. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112021

    [19] 李 昂,牟 谦,刘朝阳,等. 渭北煤田多因素影响下底板扰动破坏深度研究[J]. 煤炭工程,2020,52(5):138−143.

    LI Ang,MU Qian,LIU Chaoyang,et al. Fitting analysis and verification of floor disturbance failure depth under the influence of multiple factors in Weibei coalfield[J]. Coal Engineering,2020,52(5):138−143.

    [20]

    LI A,MU Q,MA L,et al. Numerical analysis of the water-blocking performance of a floor with a composite structure under fluid-solid coupling[J]. Mine Water and the Environment,2021,40(3):479−496.

    [21] 李 昂,谷拴成,陈方方. 带压开采煤层底板破坏深度理论分析及数值模拟:以陕西澄合矿区董家河煤矿5号煤层为例[J]. 煤田地质与勘探,2013,41(4):56−60. doi: 10.3969/j.issn.1001-1986.2013.04.014

    LI Ang,GU Shuancheng,CHEN Fangfang. Theoretical analysis and numerical simulation of destroyed depth of coal seam floor during bearing mining: with seam No. 5 in Dongjiahe mine, Chenghe mining area, Shaanxi as example[J]. Coal Geology & Exploration,2013,41(4):56−60. doi: 10.3969/j.issn.1001-1986.2013.04.014

    [22] 刘伟韬,穆殿瑞,杨 利,等. 倾斜煤层底板破坏深度计算方法及主控因素敏感性分析[J]. 煤炭学报,2017,42(4):849−859.

    LIU Weitao,MU Dianrui,YANG Li,et al. Calculation method and main factor sensitivity analysis of inclined coal floor damage depth[J]. Journal of China Coal Society,2017,42(4):849−859.

    [23] 虎维岳,朱开鹏,黄选明. 非均布高压水对采煤工作面底板隔水岩层破坏特征及其突水条件研究[J]. 煤炭学报,2010,35(7):1109−1114. doi: 10.13225/j.cnki.jccs.2010.07.017

    HU Weiyue,ZHU Kaipeng,HUANG Xuanming. Study on floor rock mass failure and water inrush caused by non-uniform distributed water pressure in mining face[J]. Journal of China Coal Society,2010,35(7):1109−1114. doi: 10.13225/j.cnki.jccs.2010.07.017

    [24]

    ZHAO J H,CHEN J T,ZHANG X G,et al. Distribution characteristics of floor pore water pressure based on similarity simulation experiments[J]. Bulletin of Engineering Geology and the Environment,2020,79(9):4805−4816. doi: 10.1007/s10064-020-01835-6

    [25] 李杨杨,张士川,孙煕震,等. 煤层采动底板突水演变过程可视化试验平台研制与试验研究[J]. 煤炭学报,2020,45(3):911−926. doi: 10.13225/j.cnki.jccs.2020.1435

    LI Yangyang,ZHANG Shichuan,SUN Xizhen,et al. Development and experimental study on yisua lization test platform for water inrush evolution process of coal seam mining floor[J]. Journal of China Coal Society,2020,45(3):911−926. doi: 10.13225/j.cnki.jccs.2020.1435

    [26]

    LIU S L,LIU W T,SHEN J J. Stress evolution law and failure characteristics of mining floor rock mass above confined water[J]. KSCE Journal of Civil Engineering,2017,21(7):2665−2672. doi: 10.1007/s12205-017-1578-6

    [27] 冯梅梅,茅献彪,白海波,等. 承压水上开采煤层底板隔水层裂隙演化规律的试验研究[J]. 岩石力学与工程学报,2009,28(2):336−341.

    FENG Meimei,MAO Xianbiao,BAI Haibo,et al. Experimental research on fracture evolution law of water-resisting strata in coal seam floor above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):336−341.

    [28] 赵毅鑫,姜耀东,吕玉凯,等. 承压工作面底板破断规律双向加载相似模拟试验[J]. 煤炭学报,2013,38(3):384−390.

    ZHAO Yixin,JIANG Yaodong,LYU Yukai,et al. Similar simulation ex-periment of bi-directional loading for floor destruction rules in coal mining above aquifer[J]. Journal of China Coal Society,2013,38(3):384−390.

    [29] 李春元. 深部强扰动底板裂隙岩体破裂机制及模型研究[D]. 北京: 中国矿业大学(北京), 2018: 1-120.

    LI Chunyuan. Fracture mechanism and its model of floor rock mass under strong disturbance in deep coal mining[D]. Beijing: China University of Mining & Technology, Beijing, 2018: 1-120.

    [30] 张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990,15(2):46−55. doi: 10.3321/j.issn:0253-9993.1990.02.002

    ZHANG Jincai,LIU Tianquan. On depth of fissured zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society,1990,15(2):46−55. doi: 10.3321/j.issn:0253-9993.1990.02.002

    [31]

    LI A,JI B N,MA Q,et al. Physical simulation study on grouting water plugging of flexible isolation layer in coal seam mining[J]. Scientific Reports,2022,12(1):1−16. doi: 10.1038/s41598-021-99269-x

    [32] 彭守建,张倩文,许 江,等. 基于三维数字图像相关技术的砂岩渗流-应力耦合变形局部化特性试验研究[J]. 岩土力学,2022,43(5):1197−1206.

    PENG Shoujian,ZHANG Qianwen,XU Jiang,et al. Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology[J]. Rock and Soil Mechanics,2022,43(5):1197−1206.

    [33] 曹志国,张建民,王 皓,等. 西部矿区煤水协调开采物理与情景模拟实验研究[J]. 煤炭学报,2021,46(2):638−651. doi: 10.13225/j.cnki.jccs.2020.1173

    CAO Zhiguo,ZHANG Jianmin,WANG Hao,et al. Physical modelling and scenario simulation of coal water co-mining in coal mining areas in western China[J]. Journal of China Coal Society,2021,46(2):638−651. doi: 10.13225/j.cnki.jccs.2020.1173

  • 期刊类型引用(6)

    1. 黄雨童, 臧传伟, 白雍瑞, 张帆. 回采巷道非对称底鼓机制与切槽卸压控制技术. 工矿自动化. 2025(06) 百度学术
    2. 党嘉鑫,涂敏,张向阳,赵庆冲. 采空区底板煤岩体时空演化特征及卸压效果研究. 采矿与安全工程学报. 2025(02): 356-370 . 百度学术
    3. 李昂,杨钧皓,张文忠,李远谋,薛智轩,范六一,田胜祺. 基于疏水降压法井筒渗水模拟试验与应用研究. 煤炭科学技术. 2025(02): 301-313 . 本站查看
    4. 姚辉,尹慧超,梁满玉,尹尚先,侯恩科,连会青,夏向学,张金福,吴传实. 机器学习方法在矿井水防治理论体系研究中的应用思考. 煤田地质与勘探. 2024(05): 107-117 . 百度学术
    5. 刘世伟,赵家鑫,孙利辉,袁乐忠,杨江华,王中海. 基于PCA-SaDE-ELM优化算法的煤层底板破坏深度预测及工程应用. 煤炭技术. 2024(06): 69-73 . 百度学术
    6. 程帅帅,黄存捍,张伟,翟明磊,王文强,曹正正. 考虑浆液黏度时变性的底板含水层注浆充填改造机制研究. 绿色矿冶. 2024(06): 28-34 . 百度学术

    其他类型引用(4)

图(15)  /  表(4)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  7
  • PDF下载量:  33
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-08-14
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2023-10-19

目录

    ZHANG Bo

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回