Difference and mechanism of dynamic behaviors between two walls of normal fault
-
摘要:
随着大范围采矿活动的进行,正断层易滑动失稳产生震动波,并在断层两侧区域呈现出显著不对称动力响应特征。为解释山东新巨龙能源有限责任公司发生“2·22”冲击地压事故破坏区域主要集中在FD8断层上盘区域而下盘几乎没有出现动力破坏这一现象,从理论上分析了断层面(带)隔震的基本力学机理,基于波场及能量分解建立起了弹性波在断层面(带)界面波场分解能量系数模型,通过不同倾角断层面、不同破碎带厚度对震动波阻隔性数值模拟,并对正断层两盘活动性差异进行了分析。研究表明,对于一个相对孤立正断层(非断层组)而言随着断层倾角的增大,正断层上盘内的震动波沿着断层面“透射”将明显降低,呈现出显著的“隔震”特性,即当正断层上盘滑动诱发震动波难以穿过断层传播至下盘;地下正断层两盘活动差异性即断层上盘下降滑动、下盘不动2个方面揭示了正断层两盘动力灾害显现差异性动力学机制,为科学认知正断层活动诱灾机制提供了参考,并为在地下采矿中正断层诱灾防控策略提供了理论依据。
Abstract:With the development of large-scale mining activities, the normal fault is prone to slide and instability, resulting in vibration waves, which show significant asymmetric dynamic response characteristics in the areas on both sides of the fault. In order to solve the phenomenon that the “2·22” rock burst accident occurred in Shandong Xin Julong Energy Co., Ltd., the damage area is mainly concentrated in the FD8 fault hanging wall, but almost no dynamic damage in the footwall, it was theoretically analyzed the basic mechanical mechanism of fault plane (belt) isolation, by establishing an energy coefficient model of elastic wave field decomposition at along fault plane, based on the wave field and energy decomposition; numerically simulations for vibration wave barrier of fault plane with different dip angles and different fracture zone thickness were done; and it was also analyzed the activity difference between the two walls of normal fault. The investigations showed that for a relatively isolated normal fault (non fault group), with the increase of fault dip angle, the “transmission” of seismic waves in the hanging wall of the normal fault along the fault plane will be significantly reduced, showing a significant “isolation” characteristic. Also, the activity is different between two walls of normal fault, i.e. the hanging wall slides downward instead of the footwall slides upward. Thus, the dynamic mechanism of the difference between the two walls was revealed. It provides a reference for scientific cognition of the mechanism of normal fault induced disaster, and provides a strategy for the prevention and control of normal fault induced disaster in underground mining
-
表 1 材料参数
Table 1 Parameters of material
岩层 弹性模量
/ GPa泊松比 密度
/ (kg·m−3)厚度
/ m中砂岩 41.851 0.176 2500 50 粉砂岩 2.246 0.221 2700 20 细砂岩 5.014 0.199 2600 40 粉砂岩 2.246 0.221 2700 30 中砂岩 41.851 0.176 2500 40 -
[1] 胡聿贤, 孙平善, 章在墉, 等. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动, 1980, (0):34-41. HU Yuxian, SUN Pingshan, ZHANG Zaiyong, et al. Effcet of soil layer construction on earthquake damage and ground motion[J]. Earthquake Engineering and Engineering Vibration, 1980, (0): 34-41.
[2] ABRAHAMSON N A,SOMERVILLE P G. Effects of the hanging wall and footwall on ground motions recorded during the northridge Earthquake[J]. Bulletin of Seismological Society of America,1996,86(1B):S93−S99. doi: 10.1785/BSSA08601B0S93
[3] YU Yanxiang,GAO Mengtan. Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi), Taiwan Province, earthquake[J]. Acta Seismologica Sinica,2001,14(6):654−659. doi: 10.1007/BF02718076
[4] 吴 健, 吕红山, 刘爱文. 汶川地震烈度分布与震源过程相关性的初步研究[J]. 震灾防御技术, 2008, 3(3): 224-229. WU Jian, LU Hongshan, LIU Aiwen. Preliminary study on correlation between seismic intensity and earthquake source process in wenchuan earthquake of sichuan[J]. Technology for Earthquake Disaster Prevention, 2008, 3(3): 224-229.
[5] 黄润秋,李为乐. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,2009,17(1):19−28. HUANG Runqiu,LI Weile. Fault Effect Analysis of geo-hazard triggered by wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):19−28.
[6] 谢俊举,温增平,高孟潭,等. 2008年汶川地震近断层竖向与水平向地震动特征[J]. 地球物理学报,2010,53(8):1796−1805. XIE JunJu,WEN ZengPing,GAO MengTan,et al. Characteristics of near-fault vertical and horizontal ground motion from the 2008 wenchuan earthquake[J]. Chinese Journal of Geophysics,2010,53(8):1796−1805.
[7] HUDSON J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal International,1981,64(1):133−150. doi: 10.1111/j.1365-246X.1981.tb02662.x
[8] PYRAK-NOLTE L J,MYER L R,COOK N G W. Transmission of seismic wave across single natural fractures[J]. Journal of Geophysical Research,1990,95(6):8617−8638.
[9] BOADU F K, LONG T L. Effects of fractures on seismic-wave velocity and attenuation[J], Geophysical Journal International, 1996 127(1): 86-110.
[10] BOADU F K. Fractured rock mass characterization parameters and seismic properties: Analytical studies[J]. Journal of Applied Geophysics, 1997, 37(1): 1-19.
[11] 范留明, 李 宁. 软弱夹层的透射模型及其隔震特性研究[J]. 岩石力学与工程学报, 2005, 24(14): 2456-2462. FAN Liuming, LI Ning. Transmission model of weak intercalation and its vibration isolation properties[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2456-2462.
[12] 石 崇, 徐卫亚, 周家文, 等. 节理面透射模型及其隔振性能研究[J]. 岩土力学, 2009, 30(3): 729-734. SHI Chong, XU Weiya, ZHOU Jiawen, et al. Transmission model of joint interface and its performance of vibration isolation[J]. Rock and Soil Mechanics, 2009, 30(3): 729-734.
[13] 任 春,罗奇峰. 断层破碎带对非发震断层场地地震动的影响[J]. 地震研究,2005,28(2):162−166. doi: 10.3969/j.issn.1000-0666.2005.02.011 REN Chun,LUO Qifeng. Effect of fault fracture zone on the ground motion of non-causative fault site[J]. Journal of Seismological Research,2005,28(2):162−166. doi: 10.3969/j.issn.1000-0666.2005.02.011
[14] LI J C, LI N N, CHAI S B, et al. Analytical Study of Ground Motion Caused by Seismic Wave Propagation Across Faulted Rock Masses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(1): 95-109.
[15] BEN-ZION Y, AKI K. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone[J]. Bulletin of the Seismological Society of America, 1990, 80(4): 971-994.
[16] HARRIS R A, DAY S M Day. Effects of a Low-Velocity Zone on a Dynamic Rupture[J], Bulletin of the Seismological Society of America, 1997, 87(5): 1267-1280.
[17] IGEL H,BEN-ZION Y,LEARY P C. Simulation of SH- and P-SV-wave propagation in fault zones[J]. Geophysical Journal International,1997,128(3):533−546. doi: 10.1111/j.1365-246X.1997.tb05316.x
[18] KANG I B, MCMECHAN G A. Effects of viscoelasticity on seismic wave propagation in fault zones, near-surface sediments, and inclusions[J]. Bulletin of the Seismological Society of America, 1993, 83(3): 890-906.
[19] 石玉成,陈丙午. 非发震断层的地震效应问题[J]. 西北地震学报,1994,16(1):12−20. SHI Yucheng,CHEN Bingwu. Effect of Non-causative fault on earthquake damages[J]. Northwest Seismological Journal,1994,16(1):12−20.
[20] 温瑞智,周正华,孙平善,等. 断层场地地震动分析[J]. 地震工程与工程振动,2002,22(1):21−27. doi: 10.3969/j.issn.1000-1301.2002.01.004 WEN Ruizhi,ZHOU Zhenghua,SUN Pingshan,et al. Ground Motion Analysis for Near-fault Site[J]. Journal of Earthquake and Engineering Vibration,2002,22(1):21−27. doi: 10.3969/j.issn.1000-1301.2002.01.004
[21] IGEL H, JAHNKE G, BEN-ZION Y, Numerical Simulation of Fault Zone Guided Waves: Accuracy and 3-D Effects[J]. Pure and Applied Geophysics, 159(9): 2067-2083.
[22] 李山有,马 强,武东坡,等. 断层场地地震反应特征研究[J]. 地震工程与工程振动,2003,23(5):32−37. doi: 10.3969/j.issn.1000-1301.2003.05.005 LI Shanyou,MA Qiang,WU Dongpo,et al. Study on Characteristics of Seismic Responses of Fault Sites[J]. Journal of Earthquake and Engineering Vibration,2003,23(5):32−37. doi: 10.3969/j.issn.1000-1301.2003.05.005
[23] 刘必灯. 断陷盆地及断层破碎带场地地震动效应[D]. 哈尔滨: 中国地震局工程力学研究所, 2011. LIU Bideng. Site Effect of Strong Ground Motion for Dislocation Basin and Fault Fracture Zone[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011.
[24] NAKAMURA T,TAKENAKA H. A numerical analysis of seismic waves for an anisotropic fault zone[J]. Earth Planets and Space,2006,58(5):569−582. doi: 10.1186/BF03351954
[25] 梁建文,冯领香,巴振宁. 局部断层场地对P波的散射影响研究[J]. 岩土力学,2011,32(1):244−252. doi: 10.3969/j.issn.1000-7598.2011.01.039 LIANG Jianwen,FENG Lingxiang,BA Zhenning. Diffraction of plane P waves around a local fault[J]. Rock and Soil Mechanics,2011,32(1):244−252. doi: 10.3969/j.issn.1000-7598.2011.01.039
[26] 梁建文,韩红霞. 断层破碎带对地震动的放大作用: (I)基本规律[J]. 地震工程与工程振动,2013,33(5):9−19. LIANG Jianwen,HAN Hongxia. Amplification of Ground Motion Around Fault Fracture Zone(I): Basic Laws[J]. Journal of Earthquake and Engineering Vibration,2013,33(5):9−19.
[27] 梁建文,韩红霞. 断层破碎带对地震动的影响: (II): 非线性放大作用[J]. 地震工程与工程振动,2013,33(6):16−25. LIANG Jianwen,HAN Hongxia. Effect of Fault Fracture Zone on Ground Motion(II): Nonlinear Amplification[J]. Journal of Earthquake and Engineering Vibration,2013,33(6):16−25.
[28] 郭明珠,曹鑫雨,常议彬,等. 断层破碎带对场地地震动的影响[J]. 工程抗震与加固改造,2016,38(06):129−135. doi: 10.16226/j.issn.1002-8412.2016.06.019 GUO Mingzhu,CAO Xinyu,CHANG Yibin,et al. Effect of Fault Fracture Zone on Ground Motion of Fault Site[J]. Earthquake Resistant Engineering and Retrofitting,2016,38(06):129−135. doi: 10.16226/j.issn.1002-8412.2016.06.019
[29] JONÁS D D B, MRINAL K S, MARY F W. Elastic wave propagation in fractured media using the discontinuous Galerkin method[J]. Geophysics, 2016, 81(4): 163–174.
[30] VAMARAJU J, SEN M K, BASAB J D, et al. A Hybrid Galerkin Finite Element Method for Seismic Wave Propagation in Fractured Media[J]. Geophysical Journal International, 2019, 221(1): 857-878.
[31] 谢里夫, 吉尔达特. 勘探地震学[M]. 北京: 石油工业出版社, 1999. SHERIF R E, GELDART L P. Exploration Seismology[M]. Beijing: Petroleum Industry Press, 1999.
[32] 中国科学院地质研究所. 岩体工程地质力学问题[M]. 北京: 科学出版社, 1976. Institute of geology, Chinese Academy of Sciences. Engineering geomechanics of rock mass[M]. Beijing: Science Press, 1976.
-
期刊类型引用(19)
1. 李康, 张文轩, 王向来, 周晓峪, 董家旭, 曹安业, 温颖远, 郭文豪. 阶梯状断层上盘工作面回采期间应力演化规律研究. 矿业安全与环保. 2025(03) 百度学术
2. 师为战,刘志腾,彭宝山,胡艳波,殷浩,夏宏根,苌玉. 巨厚煤层工作面“见方”微震时空演化规律分析与防治技术. 能源科技. 2025(01): 14-20 . 百度学术
3. 谭云亮,张修峰,范德源,刘学生,朱斯陶,牟宗龙,陈洋. 沿空侧向覆岩结构改性防冲机理与实践. 煤炭学报. 2025(01): 209-223 . 百度学术
4. 曹芳山,林益芃,颜世尧,刘志刚,姜兴华,游武超. 近采空区工作面过断层应力传播规律及防治技术研究. 煤矿现代化. 2025(04): 124-128+133 . 百度学术
5. Yunliang Tan,Yan Tan,Weiyao Guo,Bo Li,Shudong He,Lei Zhang,Yujiang Zhang,Qiuyuan Zhang. Calculation model for kinetic energy and rock burst risk evaluation method during roadway excavation. International Journal of Mining Science and Technology. 2025(05): 677-690 . 必应学术
6. 贾宝新,李宝,周琳力,陈浩. 断层倾角对声发射信号传播规律影响的试验研究. 煤炭科学技术. 2025(05): 23-38 . 本站查看
7. 王少坤,吕义清,陈燕. 近断层煤层开采的采空区地震动力响应及其对地表的影响. 矿业研究与开发. 2024(02): 96-102 . 百度学术
8. 张翔,朱斯陶,张修峰,姜福兴,刘金海,陈洋,万晓,杨涛,朱淳,李佳洁. 深厚表土综放采场断层煤柱整体失稳型冲击地压机制研究. 岩石力学与工程学报. 2024(03): 713-727 . 百度学术
9. 谭云亮,张修峰,肖自义,范德源,尹延春,陈洋,刘学生. 冲击地压主控因素及孕灾机制. 煤炭学报. 2024(01): 367-379 . 百度学术
10. 梁文昭,刘国磊,郑寓超,王峰,孟圣师,崔嵛,马秋峰. 深部构造区大倾角工作面回撤致冲机理及防治技术. 煤矿安全. 2024(03): 127-138 . 百度学术
11. 王飞,李明利,武轶凡,蔡东. 高应力断层构造区巷道冲击破坏特征研究. 工矿自动化. 2024(07): 55-63 . 百度学术
12. 康红普,高富强,王晓卿,柏建彪,王琦,章冲,王襄禹,杨磊,娄金福,李延辉,王学宁,原贵阳. 煤矿巷道断层滑移型冲击地压试验系统研制与试验验证. 煤炭学报. 2024(09): 3701-3710 . 百度学术
13. 高富强,卢志国,彭相愿,娄金福,曹舒雯,王晓卿,陆闯,杨磊. 基于局部矿井刚度理论的煤柱冲击机理及防治. 煤炭科学技术. 2024(09): 125-136 . 本站查看
14. 郭伟耀,张悦颖,谷雪斌,公绪飞,郭传清,郭文静,张骞,张磊. 大范围采动影响下特大断层构造区微震活动规律及调控方法. 煤炭科学技术. 2024(11): 260-272 . 本站查看
15. 庾佳,谢秋芸,刘小清,桂志先,黄群. 高密度电法结合地温梯度研究羊屿地热田. 工程地球物理学报. 2024(06): 1059-1067 . 百度学术
16. 袁健博,万晓,刘志刚,贾海宾,尚文政,杨田田. 深部工作面上盘开采的断层煤柱应力演化特征分析. 矿业安全与环保. 2024(06): 106-111 . 百度学术
17. 王万里. 综掘面过断层冲击地压监测及解危卸压技术分析. 山东煤炭科技. 2023(06): 190-192 . 百度学术
18. 张严方,胡其志,张洁,游姗. 2017年九寨沟M7.0地震强地面运动估计与方向效应研究. 大地测量与地球动力学. 2023(11): 1136-1142 . 百度学术
19. 郭永红,娄杰,闫帅,付豪,陈紫奂. 近断层巷道非对称大变形机理及控制技术研究. 煤炭工程. 2023(11): 56-63 . 百度学术
其他类型引用(8)