高级检索

基于1DCNN-ELM的带式输送机托辊轴承故障诊断研究

张伟, 李军霞, 吴磊, 李斌

张 伟,李军霞,吴 磊,等. 基于1DCNN-ELM的带式输送机托辊轴承故障诊断研究[J]. 煤炭科学技术,2023,51(S1):383−389

. DOI: 10.13199/j.cnki.cst.2022-1195
引用本文:

张 伟,李军霞,吴 磊,等. 基于1DCNN-ELM的带式输送机托辊轴承故障诊断研究[J]. 煤炭科学技术,2023,51(S1):383−389

. DOI: 10.13199/j.cnki.cst.2022-1195

ZHANG Wei,LI Junxia,WU Lei,et al. Research on fault diagnosis of idler bearing of belt conveyor based on 1DCNN-ELM[J]. Coal Science and Technology,2023,51(S1):383−389

. DOI: 10.13199/j.cnki.cst.2022-1195
Citation:

ZHANG Wei,LI Junxia,WU Lei,et al. Research on fault diagnosis of idler bearing of belt conveyor based on 1DCNN-ELM[J]. Coal Science and Technology,2023,51(S1):383−389

. DOI: 10.13199/j.cnki.cst.2022-1195

基于1DCNN-ELM的带式输送机托辊轴承故障诊断研究

基金项目: 

中央引导地方科技发展资金资助项目(YDZJSX2021A023);国家自然科学基金资助项目(52174147)

详细信息
    作者简介:

    张伟: (1994—),男,山西太谷人,博士研究生。E-mail:837531868@qq.com

    通讯作者:

    李军霞: (1976—),女,河南许昌人,教授,博士。E-mail:bstljx@163.com

  • 中图分类号: TD713

Research on fault diagnosis of idler bearing of belt conveyor based on 1DCNN-ELM

Funds: 

Central Government Guide Local Science and Technology Development Fund Project (YDZJSX2021A023); National Natural Science Foundation of China (52174147)

  • 摘要:

    针对带式输送机托辊轴承故障诊断中振动信号提取特征困难而导致故障诊断精度较低的难题,提出了一种基于一维卷积神经网络(1DCNN)和极限学习机(ELM)的托辊轴承故障诊断方法。首先,根据具体的故障诊断任务,对采集到的数据进行划分,并进行傅里叶变换,采用多个标签表示健康状态、故障类型和损伤程度。然后,利用1DCNN来提取故障特征,根据提取的故障特征利用ELM进行故障分类。该方法中的参数是随机产生的,不需要迭代更新,可有效加快计算速度。最后,通过Case Western Reserve University的轴承数据集以及自制托辊故障数据集进行故障诊断试验,测试精度均达到了100%,用时分别为2.82 s和2.42 s,能够在较短的时间内准确判断出托辊故障类型,验证了所提方法的有效性。通过与ELM、随机森林、K最邻近法、支持向量机和卷积神经网络等方法进行对比,体现了所提方法的优越性。结果表明:采用1DCNN和ELM相结合的诊断方法,其诊断效果比采用单一方法更好,能够满足煤矿领域托辊故障诊断的需求。

    Abstract:

    Aiming at the problem that vibration signal features in the fault diagnosis of idler bearing of belt conveyor are extracted difficulty, which leads to low accuracy of fault diagnosis. A fault diagnosis method for idler bearings based on one-dimensional convolutional neural network (1DCNN) and extreme learning machine (ELM) is proposed. First, the collected data is separated according to the specific fault diagnosis task, the Fourier transform is performed, and the health status, fault type and damage degree are expressed by multiple labels. Then, 1DCNN is used to extract fault features, and ELM performs fault classification according to the extracted features. In this method, the parameters are randomly generated, and iterative updating is not needed, which speeds up the calculation speed. Finally, the fault diagnosis experiments were carried out through the bearing data set of Case Western Reserve University and the self-made idler fault data set. The test accuracy reached 100%, and the running time was 2.82 s and 2.42 s, respectively. It can accurately judge the type of idler failure in a short time, which verifies the effectiveness of this method. The superiority of the proposed method is demonstrated by comparing it with methods such as ELM, random forest, K-nearest neighbor, support vector machine, and convolutional neural networks. The results show that the diagnosis effect of the combination of 1DCNN and ELM is better than that of a single method, and it can meet the needs of idler fault diagnosis in the coal mine field.

  • 托辊作为带式输送机的重要组成部分,其健康状态对整个运输系统的性能、效率和使用寿命有着巨大影响[1]。由于托辊长时间在高速重载的环境下运行,容易发生各种故障。突发性的故障不仅会造成巨额的经济损失,而且还可能引发火灾、爆炸等恶性次生事故[2]。如2018年,重庆松藻煤矿由于托辊卡死导致胶带摩擦着火,造成16死42伤的严重事故。因此,有必要对托辊的运行状态进行监测和识别,确保输送系统安全高效运行。

    为了及时发现托辊潜在的各种故障,国内外学者在机器学习和深度学习等数据驱动方面开展了大量研究[3]。基于机器学习的诊断方法,首先采用信号分析等技术提取鲜明的样本特征,再借助随机森林(RF)、支持向量机(SVM)、极限学习机(ELM)等分类器找到故障特征分量与标签之间的映射关系。RAVIKUMAR等[4]对采集到的托辊振动信号提取峭度等统计特征,使用决策树算法选择最高级特征,采用K-star算法实现了91.7%的故障分类准确率。RAVIKUMAR等[5]还将获取的托辊振动数据输入朴素贝叶斯算法中,对获取到的信号进行分类,分类准确率可达90%。DENG等[6]用经验模态分解和模糊信息熵有效地提取故障特征,将其输入到具有高分类精度的最优LS-SVM分类器中,实现轴承故障诊断。从以上研究可以发现,这些故障诊断方法过分依赖故障特征的提取,需要去除冗余特征,容易受到经验和主观因素影响,缺少复杂环境下的适应性。

    基于深度学习的故障诊断技术是当前的研究热点,该方法能够自适应地提取故障特征并进行模式识别,具有精度高等优点,但同时存在超参数多,运行时间长等问题。卷积神经网络(CNN)作为深度学习的代表,已在故障诊断领域得到广泛应用[7]。一维卷积神经网络(1DCNN)能够从采集到的一维振动信号中提取到有效故障特征,具备良好的诊断效果。LIU等[8]提出了一种多任务一维卷积神经网络,利用主干网络来学习每个任务所需的共享特征,然后通过多个特定的分支处理不同的任务。PINTO等[9]通过随机生成大量复杂的、非线性的、多层CNN进行特征筛选,结合标准的机器学习技术,在视觉系统中取得了很好的效果。JARRETT等[10]采用随机权值的CNN,在没有训练的情况下能够很好地执行对象识别任务,从而避免了耗时的学习过程。目前,对采用随机权值的1DCNN提取故障特征的研究处在起步阶段,研究较少[11]

    为解决CNN运行时间长的问题,提出一种基于1DCNN和ELM的托辊轴承故障诊断方法。首先,对采集到的振动信号进行傅里叶变换,突出其故障特征。然后,利用1DCNN强大的特征提取能力,对变换后的信号提取相关特征向量,ELM根据提取到的特征对样本进行分类。最后,采用Case Western Reserve University (CWRU)的轴承数据集以及自制托辊故障数据集进行故障诊断试验。

    1DCNN通过多个滤波器对输入数据进行多次卷积与池化运算,从而自适应提取数据内部的高级特征[12]。1DCNN采用局部连接和权值共享的方式进行运算,具有训练参数少、网络结构简单、计算速度快等优点。典型1DCNN由输入层、卷积层、池化层、全连接层和输出层组成,其结构如图1所示[13]

    图  1  1DCNN的网络结构[13]
    Figure  1.  Network structure of 1DCNN[13]

    卷积层通过多个卷积核与输入信号进行卷积运算,经过激活函数得到特征图,卷积过程的函数表达式为[14]

    $$ y_j^l = f\left( {\sum\limits_{i = 1}^n {x_i^{l - 1} * k_{ij}^l + d_j^l} } \right) $$ (1)

    式中:n为第(l-1)层的核数;$ y_j^l $为第l层的第j个特征映射;kd分别为对应的卷积核的权重和偏置项,f ( )为非线性激活函数;*表示卷积运算。

    池化层在保留重要特征的基础上通过降采样操作改变特征图的大小达到降维降参、提高运算速度的效果,同时避免网络结构出现过拟合的现象。本文采用最大池化方式,其数学表达式为:

    $$ {p^{g\left( {m,r} \right)}} = \mathop {\max }\limits_{\left( {s - 1} \right)w \leqslant r \leqslant sw} \left[ {{e^{g\left( {m,r} \right)}}} \right] $$ (2)

    式中:pg(m,r)为池化层的输出值;eg(m,r)为第g层中第m个特征图的第r个神经元的激活值;w为池化核大小;s表示第s个池化核。

    ELM主要由输入层、隐藏层和输出层组成,通过随机产生权值和偏差,并且在训练过程中保持不变,从而提高训练速度,基本结构如图2所示。

    图  2  ELM的网络结构
    Figure  2.  Network structure of ELM

    对于N个不同的训练样本,当隐藏层有L个神经元时,则ELM的输出函数为yi

    $$ {y_i} = \sum\limits_{j = 1}^L {{\beta _i}} \upsilon \left( {{\omega _i} \times {x_i} + {b_i}} \right),{\text{ }}i = 1,{\text{ }}2,{\text{ }} \cdots ,{\text{ }}N $$ (3)

    式中:υ为激活函数;ωi为输入层与隐藏层间的连接权值;βi为隐藏层与输出层间的权重;bi为第i个隐藏层神经元的阈值;βibi都是随机产生的,ωi×xi为第i个连接权值与第i个输入样本的内积[15]

    式(3)简化可得:

    $$ {\boldsymbol{Y}} = {\boldsymbol{H\beta }} $$ (4)

    式中:Y为所使用训练样本的目标矩阵;H为隐藏层的输出矩阵;β为所求的权值矩阵。

    通过寻找预测误差损失函数之和的最小值来求解权值β,目标函数z为:

    $$ {\textit{z}} = \mathop {\min }\limits_{\beta \in {R^{L \times c}}} \frac{1}{2}{\left\| {\boldsymbol{\beta }} \right\|^2} + \frac{C}{2}{\left\| {{\boldsymbol{H{\boldsymbol{\beta }}}} - {\boldsymbol{Y}}} \right\|^2} $$ (5)

    第一项为权值的范数;第二项为训练误差。C为控制两项之间权衡的惩罚系数;c为输出层中的类数。

    求解上述目标函数可视为最小二乘优化问题,令目标函数对于β的梯度为零,可得:

    $$ {{\boldsymbol{\beta }}^ + } - C{{\boldsymbol{H}}^{\text{T}}}\left( {{\boldsymbol{Y}} - {\boldsymbol{H}}{{\boldsymbol{\beta }}^ + }} \right) = {{\textit{0}}} $$ (6)

    利用奇异值分解和矩阵求逆等方法可以计算出输出权值β+的最优解。根据样本数量N和隐藏层神经元个数L的大小关系,β+存在以下2种情况[16]

    $$ {{\boldsymbol{\beta }}^ + } = \left\{ {\begin{array}{*{20}{c}} {{{\left( {{{\boldsymbol{H}}^{\text{T}}}{\boldsymbol{H}} + \dfrac{{{{\boldsymbol{I}}_L}}}{C}} \right)}^{ - 1}}{{\boldsymbol{H}}^{\text{T}}}{\boldsymbol{Y}},{\text{ }}N \geqslant L;} \\ {{{\boldsymbol{H}}^{\text{T}}}{{\left( {{{\boldsymbol{H}}^{\text{T}}}{\boldsymbol{H}} + \dfrac{{{{\boldsymbol{I}}_N}}}{C}} \right)}^{ - 1}}{\boldsymbol{Y}},{\text{ }}N \leqslant L.} \end{array}} \right. $$ (7)

    式中:INN阶单位矩阵;ILL阶单位矩阵。

    1DCNN有着良好的特征提取能力,ELM有着强大的分类能力。因此,综合考虑2种方法的优点,将1DCNN和ELM相结合,构建了1DCNN-ELM网络架构,用于轴承和托辊的故障诊断,如图3所示。该方法解决了CNN运行时间长的问题,改善了ELM的故障分类能力。1DCNN主要由输入层、卷积层、池化层和全连接层组成[17]。输入层对应于傅里叶变换(FFT)后的振动信号,卷积层从变换后的振动信号中提取故障特征,池化层在保留有用信息的基础上减少数据长度。全连接层将提取到的特征平铺成一维向量。最后通过ELM分类器,建立故障特征和样本标签之间的对应关系。具体步骤如下:

    图  3  1DCNN-ELM方法流程
    Figure  3.  Flowchart of the 1DCNN-ELM method

    步骤1:用数据采集仪采集轴承一维振动信号,随机划分为训练集和测试集,并进行傅里叶变换。

    步骤2:构建1DCNN-ELM网络结构,设置卷积核数目和尺度,以及隐藏层神经元数量和学习率;随机产生1DCNN的权重和偏置项,并且在整个训练过程中保持不变;利用1DCNN提取振动信号特征,ELM根据提取到的信号特征对训练集进行分类。

    步骤3:将训练好的1DCNN-ELM网络模型进行存储。

    步骤4:将测试集输入到训练好的1DCNN-ELM网络模型中,记录故障识别结果。

    为验证所提方法在机械故障诊断领域的性能,采用CWRU轴承数据中心提供的轴承数据进行试验,试验台由驱动电机、扭矩传感器、加载电机和测试轴承等组成,如图4所示[18]。在不同负载条件下(负载分别为0、1马力、2马力和3马力,1马力约为735.5 W),分别采集轴承在健康、不同磨损程度(故障直径分别为0.177 8、0.355 6、0.533 4 mm)的内圈故障、外圈故障和滚珠故障等状态下的运行数据。将原始数据划分为长度为1 000个点的样本,从而得到了10种状态下的4 800个样本。按照7∶3比例将其随机划分为训练集和测试集。数据集的详细信息见表1

    图  4  CWRU轴承故障诊断试验台[18]
    Figure  4.  Test device for bearing fault diagnosis of CWRU[18]
    表  1  轴承数据集的样本描述
    Table  1.  Sample description of bearing dataset
    负载
    /马力
    轴承状态故障直径/mm样本
    数量
    分类
    标签
    0&1
    &2&3
    健康04801
    滚动体故障0.177 84802
    内圈故障0.177 84803
    外圈故障0.177 84804
    滚动体故障0.355 64805
    内圈故障0.355 64806
    外圈故障0.355 64807
    滚动体故障0.534 44808
    内圈故障0.534 44809
    外圈故障0.534 448010
    下载: 导出CSV 
    | 显示表格

    原始信号的频域波形如图5所示,分别对应轴承的10种状态。从图5中可以看出,每个样本中的共振频带对应的频率各不相同,其振幅也不同,样本之间差异性较大,故障特征比较明显,有利于实现故障类型的准确诊断。

    图  5  原始信号的频域波形图
    Figure  5.  The frequency domain waveform of the original signal

    为了进一步验证所提方法的优越性,将ELM、RF、K最邻近法(KNN)、SVM等机器学习方法和CNN在相同条件下进行测试[19-20]。其他算法的参数选择如下:

    1) CNN:设置卷积层1的卷积核数量为16,滤波器数量为16,池化核1数量为8,设置卷积层2的卷积核数量为32,滤波器数量为8,池化核2数量为4,全连接层神经元数量为512。以交叉熵为目标函数,选用Adam优化器进行迭代更新50次,最后用Softmax进行分类。

    2) ELM:隐藏层神经元数量L为2000,惩罚系数C为0.5。

    3) RF:分类器的数量n_estimators设为100,随机数random_state设为0。

    4) KNN:参数K取值为5。

    5) SVM:采用径向基支持向量机进行分类,惩罚系数C取值为10,核函数参数g取值为0.001。

    为了定量评价所有方法的优劣性,从测试精度、运行时间等方面进行比较。所有算法都是在Python软件上运行的,运行结果如图6图7所示。图6中的训练精度与测试精度分别表示训练集和测试集预测学习的精度。从图6可以看到,所有算法的训练精度都达到了100%,取得了不错的训练效果。所有算法的测试精度都达到99.5%以上,能够满足故障诊断的需求,尤其是1DCNN-ELM和KNN算法,所有测试结果都正确,测试精度达到100%,能够对测试集样本进行全部正确判断。单独采用1DCNN和ELM的测试精度分别为99.93%和99.97%,采用1DCNN和ELM相结合的诊断方法,测试精度为100%,其诊断效果比采用单一方法要好。

    图  6  不同算法诊断结果对比
    Figure  6.  Comparison of diagnostic results of different algorithms
    图  7  不同算法运行时间对比
    Figure  7.  Comparison of the running time of different algorithms

    不同算法运行时间如图7所示,与深度学习方法相比,机器学习方法消耗的时间较少,CNN由于迭代更新50次,消耗的时间最长,达到了20.87 s。ELM和KNN消耗的时间较少,分别为0.81和0.15 s。所提方法所用时间远小于CNN,主要是因为所用1DCNN中的权重和偏置项是随机产生的,并且在整个训练过程中保持不变,所用的ELM分类器可以提供更快的收敛速度和更好的优化性能。

    为进一步开拓所提方法在煤矿领域中的应用,搭建了托辊轴承故障诊断试验台。试验台由带式输送机、振动传感器、数据采集仪、电源、计算机和故障托辊组成,如图8所示。振动传感器安装在托辊轴上,用于采集轴承的运行信号,采集信号时多个托辊同时运动,产生的信号相互耦合,进一步增加了故障诊断的难度。笔者模拟了托辊常见的4种故障类型,通过线切割技术在轴承内外圈上加工出2 mm的裂缝,形成内、外圈故障;用异物(碎石、粉尘等)侵入轴承使托辊旋转卡顿;托辊主轴安装不当导致托辊旋转卡死。当输送带以1 m/s的速度运行时,通过数据采集仪采集托辊健康、内圈故障、外圈故障、卡顿、卡死等状态下的运行数据,制作的数据集信息见表2

    图  8  托辊轴承故障诊断试验台
    Figure  8.  Test device for fault diagnosis of idler bearing
    表  2  托辊数据集的样本描述
    Table  2.  Sample description of idler
    轴承状态样本数量分类标签
    健康2001
    内圈故障2002
    外圈故障2003
    旋转卡顿2004
    旋转卡死2005
    下载: 导出CSV 
    | 显示表格

    对采集到的样本进行傅里叶变换,得到的频域波形如图9所示。从图9中可以看出,真实采集的振动信号中存在大量噪声,周期性冲击被淹没,影响托辊故障类型的判断。

    图  9  原始信号的频域波形图
    Figure  9.  The frequency domain waveform of the original signal

    所有算法的诊断结果和运行时间如图10图11所示,从图10中可以看出,除了ELM和KNN,其他方法的测试精度都达到了100%,取得了良好的诊断效果。采用CNN和ELM的测试精度分别为100%和99.66%,1DCNN-ELM的测试精度为100%,高于ELM的测试精度。虽然测试精度和CNN一样,但是所提方法的运行时间更短。从图11可以看出,1DCNN-ELM和CNN的运行时间高于所有的机器学习方法,主要是因为这2种方法中隐藏层神经元数量多,求解参数耗时长。从以上可以看出,1DCNN-ELM在较短的时间内准确判断出托辊故障类型,能够满足煤矿领域托辊故障诊断的需求。

    图  10  不同算法诊断结果对比
    Figure  10.  Comparison of diagnostic results of different algorithms
    图  11  不同算法运行时间对比
    Figure  11.  Comparison of the running time of different algorithms

    1)提出了一种基于1DCNN-ELM的故障诊断方法。利用1DCNN来提取振动信号故障特征,再用ELM根据提取到的特征对故障进行分类。其故障诊断效果比单独采用CNN和ELM方法更好,能够准确判断出托辊的故障类型,减少煤矿安全事故的发生。

    2)1DCNN中的权重和偏置项是随机产生的,并且在整个训练过程中保持不变,依然能够准确提取到故障特征,同时加快运行速度。

    3)采用CWRU的轴承数据集以及自制托辊故障数据集进行试验,其测试精度均达到了100%,运行时间分别为2.82和2.42 s,验证了1DCNN-ELM方法的优越性,为托辊轴承故障诊断领域提供了研究方向。

    4)通过与ELM、RF、KNN、SVM和CNN等方法进行对比,体现了所提方法的优越性。

  • 图  1   1DCNN的网络结构[13]

    Figure  1.   Network structure of 1DCNN[13]

    图  2   ELM的网络结构

    Figure  2.   Network structure of ELM

    图  3   1DCNN-ELM方法流程

    Figure  3.   Flowchart of the 1DCNN-ELM method

    图  4   CWRU轴承故障诊断试验台[18]

    Figure  4.   Test device for bearing fault diagnosis of CWRU[18]

    图  5   原始信号的频域波形图

    Figure  5.   The frequency domain waveform of the original signal

    图  6   不同算法诊断结果对比

    Figure  6.   Comparison of diagnostic results of different algorithms

    图  7   不同算法运行时间对比

    Figure  7.   Comparison of the running time of different algorithms

    图  8   托辊轴承故障诊断试验台

    Figure  8.   Test device for fault diagnosis of idler bearing

    图  9   原始信号的频域波形图

    Figure  9.   The frequency domain waveform of the original signal

    图  10   不同算法诊断结果对比

    Figure  10.   Comparison of diagnostic results of different algorithms

    图  11   不同算法运行时间对比

    Figure  11.   Comparison of the running time of different algorithms

    表  1   轴承数据集的样本描述

    Table  1   Sample description of bearing dataset

    负载
    /马力
    轴承状态故障直径/mm样本
    数量
    分类
    标签
    0&1
    &2&3
    健康04801
    滚动体故障0.177 84802
    内圈故障0.177 84803
    外圈故障0.177 84804
    滚动体故障0.355 64805
    内圈故障0.355 64806
    外圈故障0.355 64807
    滚动体故障0.534 44808
    内圈故障0.534 44809
    外圈故障0.534 448010
    下载: 导出CSV

    表  2   托辊数据集的样本描述

    Table  2   Sample description of idler

    轴承状态样本数量分类标签
    健康2001
    内圈故障2002
    外圈故障2003
    旋转卡顿2004
    旋转卡死2005
    下载: 导出CSV
  • [1] 谢厚抗,鲍久圣,葛世荣,等. 带式输送机承载托辊旋转阻力特性试验研究[J]. 煤炭学报,2019,44(S2):731−736. doi: 10.13225/j.cnki.jccs.2019.0902

    XIE Houkang,BAO Jiusheng,GE Shirong,et al. Experimental research on rotational resistance characteristics of belt conveyor bearing idler[J]. Journal of China Coal Society,2019,44(S2):731−736. doi: 10.13225/j.cnki.jccs.2019.0902

    [2] 陈维望,李军霞,张 伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(05):596−603. doi: 10.3969/j.issn.1001-4551.2022.05.004

    CHENG Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(05):596−603. doi: 10.3969/j.issn.1001-4551.2022.05.004

    [3] 郑一珍,牛蔺楷,熊晓燕,等. 基于一维卷积神经网络的圆柱滚子轴承保持架故障诊断[J]. 振动与冲击,2021,40(19):230−238,285. doi: 10.13465/j.cnki.jvs.2021.19.029

    ZHENG Yizhen,NIU Linkai,XIONG Xiaoyan,et al. Fault diagnosis of cylindrical roller bearing cage based on 1D convolution neural network[J]. Journal of Vibration and Shock,2021,40(19):230−238,285. doi: 10.13465/j.cnki.jvs.2021.19.029

    [4]

    RAVIKUMAR S,KANAGASABAPATHY H,MURALIDHARAN V. Fault diagnosis of self-aligning troughing rollers in belt conveyor system using k-star algorithm[J]. Measurement,2018,133:341−349.

    [5]

    RAVIKUMAR S, KANAGASABAPATHY H, MURALIDHARAN V, et al. Fault diagnosis of self-aligning troughing rollers in a belt conveyor system using an artificial neural network and Naive Bayes algorithm [C]//5th Biennial International Conference on Emerging Trends in Engineering, Science and Technology, Govt Coll, Thrissur, INDIA: CRC Press-Taylor & Francis Group, 2018: 401−408.

    [6]

    DENG W,YAO R,ZHAO H,et al. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm[J]. Soft Computing,2017,23(7):2445−2462.

    [7] 王 琦,邓林峰,赵荣珍. 基于改进一维卷积神经网络的滚动轴承故障识别[J]. 振动与冲击,2022,41(3):216−223. doi: 10.13465/j.cnki.jvs.2022.03.026

    WANG Qi,DENG Linfeng,ZHAO Rongzhen. Fault recognition of rolling bearing based on improved 1D convolutional neural network[J]. Journal of Vibration and Shock,2022,41(3):216−223. doi: 10.13465/j.cnki.jvs.2022.03.026

    [8]

    LIU Z,WANG H,LIU J,et al. Multitask learning based on lightweight 1DCNN for fault diagnosis of wheelset bearings[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:3501711.

    [9]

    PINTO N, COX D. Beyond simple features: A large-scale feature search approach to unconstrained face recognition[C]//IEEE International Conference on Automatic Face and Gesture Recognition, Santa Barbara, CA, USA: IEEE, 2011: 8−15.

    [10]

    JARRETT K,KAVUKCUOGLU K,K. RANZATO M,et al. What is the best multi-stage architecture for object recognition?[J]. 2009 IEEE 12th International Conference on Computer Vision,2009:2146−2154.

    [11] 任晓红,万 红,俞 啸,等. 基于Park变换的三电平逆变器开路故障诊断[J]. 工矿自动化,2020,46(5):82−86,93. doi: 10.13272/j.issn.1671-251x.17523

    REN Xiaohong,WAN Hong,YU Xiao,et al. Open-circuit fault diagnosis of three-level inverter based on Park transformation[J]. Journal of Mine Automation,2020,46(5):82−86,93. doi: 10.13272/j.issn.1671-251x.17523

    [12] 杨 洁,万安平,王景霖,等. 基于多传感器融合卷积神经网络的航空发动机轴承故障诊断[J]. 中国电机工程学报,2022,42(13):4933−4942. doi: 10.13334/J.0258-8013.PCSEE.211097

    YANG Jie,WAN Anping,WANG Jinglin,et al. Aeroengine bearing fault diagnosis based on convolutional neural network for multi-sensor information fusion[J]. Proceedings of the CSEE,2022,42(13):4933−4942. doi: 10.13334/J.0258-8013.PCSEE.211097

    [13]

    DENG W,ZHANG S,ZHAO H,et al. A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing[J]. IEEE Access,2018,6(1):35042−35056.

    [14] 丁津津,邵庆祝,齐振兴,等. 基于迁移学习的卷积神经网络电网故障诊断[J]. 科学技术与工程,2022,22(14):5653−5658. doi: 10.3969/j.issn.1671-1815.2022.14.020

    DING Jinjin,SHAO Qingzhu,QI Zhenxing,et al. CNN distribution network fault diagnosis method based on transfer learning[J]. Science Technology and Engineering,2022,22(14):5653−5658. doi: 10.3969/j.issn.1671-1815.2022.14.020

    [15] 葛兴来,张 鑫. 采用奇异能量谱与改进ELM的轴承故障诊断方法[J]. 电机与控制学报,2021,25(5):80−87. doi: 10.15938/j.emc.2021.05.010

    GE Xinglai,ZHANG Xin. Bearing fault diagnosis method using singular energy spectrum and improved ELM[J]. Electric Machines and Control,2021,25(5):80−87. doi: 10.15938/j.emc.2021.05.010

    [16]

    XIAO L,ZHANG L,YAN Z,et al. Diagnosis and distinguishment of open-switch and current sensor faults in PMSM drives using improved regularized extreme learning machine[J]. Mechanical Systems and Signal Processing,2022,171:108866. doi: 10.1016/j.ymssp.2022.108866

    [17] 刘 立,朱健成,韩光洁,等. 基于1D-CNN联合特征提取的轴承健康监测与故障诊断[J]. 软件学报,2021,32(08):2379−2390. doi: 10.13328/j.cnki.jos.006188

    LIU Li,ZHU Jiancheng,HAN Guangjie,et al. Bearing health monitoring and fault diagnosis based on joint feature extraction in 1D-CNN[J]. Journal of Software,2021,32(08):2379−2390. doi: 10.13328/j.cnki.jos.006188

    [18]

    HENDRIKS J,DUMOND P,KNOX D A. Towards better benchmarking using the CWRU bearing fault dataset[J]. Mechanical Systems and Signal Processing,2022,169:108732. doi: 10.1016/j.ymssp.2021.108732

    [19]

    ROY S S,DEY S,CHATTERJEE S. Autocorrelation aided random forest classifier-based bearing fault detection framework[J]. IEEE Sensors Journal,2020,20(18):10792−10800. doi: 10.1109/JSEN.2020.2995109

    [20]

    DENG L,ZHANG A,ZHAO R. Intelligent identification of incipient rolling bearing faults based on VMD and PCA-SVM[J]. Advances in Mechanical Engineering,2022,14(1):1−18.

  • 期刊类型引用(4)

    1. 李灵锋,张洁,陈茁,查天任,尹瑞. 刮板输送机断链智能监测技术研究. 工矿自动化. 2025(03): 63-69+77 . 百度学术
    2. 邢震,田野新,包建军,齐智峰,周李兵,叶柏松,张蓉. 带式输送机托辊故障诊断及协同管控研究综述. 工矿自动化. 2025(03): 39-53 . 百度学术
    3. 陶瀚宇,陈换过,彭程程,高祥冲,杨磊. 基于MFCC-IMFCC混合倒谱的托辊轴承故障诊断. 机电工程. 2024(07): 1215-1222 . 百度学术
    4. 邹筱瑜,孙国庆,王忠宾,潘杰,刘新华,李鑫. 基于时频融合深度网络的矿用钻机轴承故障诊断. 中国机械工程. 2024(08): 1405-1413+1448 . 百度学术

    其他类型引用(11)

图(11)  /  表(2)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  31
  • PDF下载量:  31
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-07-24
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2023-05-31

目录

/

返回文章
返回